Appendix 1

CROSS SECTION AND COVER CLASS PLOTS AT EACH SITE ON EACH SAMPLING OCCASION

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Riparian vegetation</td>
<td></td>
</tr>
<tr>
<td>Emergent/semi-aquatic vegetation</td>
<td></td>
</tr>
<tr>
<td>Aquatic macrophytes</td>
<td></td>
</tr>
<tr>
<td>Regenerating stands of macrophytes</td>
<td></td>
</tr>
<tr>
<td>Floating macrophytes (Azolla & Lemna)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1.1—Murrays Drain 12.5 m

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>Date</th>
<th>LB In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 01</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>10 Jan 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>22 Feb 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>30 Jul 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
</tbody>
</table>

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>Date</th>
<th>LB In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Nov 01</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>24 Jan 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>19 Apr 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
</tbody>
</table>

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>Date</th>
<th>LB In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 01</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>10 Jan 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>22 Feb 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
<tr>
<td>30 Jul 02</td>
<td>95 Terrestrial grasses</td>
<td>5 Nasturtium sp.</td>
</tr>
</tbody>
</table>
Appendix 1.2—Murrays Drain 25 m

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

15 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

95 Terrestrial grasses
5-A. sanguisorba
Sweet pea
80 Elodea canadensis
5 Callitriche stagnalis
5 Spirogyra sp.

10 Jan 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largely unchanged</td>
<td>Largely unchanged, Nasturtium spreading</td>
<td>Largely unchanged, Grasses dying back</td>
</tr>
</tbody>
</table>

22 Feb 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largely unchanged, spreading</td>
<td>Largely unchanged, Grasses dying back</td>
<td>Tall grasses dying back</td>
</tr>
</tbody>
</table>

24 Jan 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

19 Apr 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasses died back</td>
<td>Elodea thickening</td>
<td>Tall grasses dying back</td>
</tr>
</tbody>
</table>

27 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

30 Jul 02
Appendix 1.3—Murrays Drain 37.5 m

<table>
<thead>
<tr>
<th>Date</th>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Nov 01</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>24 Jan 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>22 Feb 02</td>
<td>Unchanged</td>
<td>Largely unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>19 Apr 02</td>
<td>Unchanged</td>
<td>Grasses & Nasturtium continuing to encroach</td>
<td>More die back</td>
</tr>
<tr>
<td>30 Jul 02</td>
<td>Unchanged</td>
<td>Grasses & Nasturtium dying back</td>
<td>More die back</td>
</tr>
<tr>
<td>15 Nov 01</td>
<td>Unchanged</td>
<td>Elodea sparse</td>
<td>Cover of leaf litter</td>
</tr>
<tr>
<td>10 Jan 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>23 Apr 01</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB In-stream RB</th>
<th>LB In-stream RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial grasses 90% Cladium mariscus 10% Nasturtium sp.</td>
<td>Terrestrial grasses 90% Cladium mariscus 10% Nasturtium sp.</td>
</tr>
</tbody>
</table>

Bank collapsed
Appendix 1.4—Foots Drain 25 m

Dominant plant species and approximate percent composition

LB	In-stream	RB
90 Terrestrial grasses
Cutty grass
Clover
A. sanguisorbae
85 Nitella sp.
5 Vaucheria sp.
>1 Lemna minor
A. Sanguisorbae
95 Terrestrial grasses
5 Thistle
95 Terrestrial grasses
5 Thistle
A. sanguisorbae

Dominant plant species and approximate percent composition

LB	In-stream	RB
Unchanged
Lemna sparse
Otherwise unchanged
Unchanged

Dominant plant species and approximate percent composition

LB	In-stream	RB
Terrestrial grasses
(growing through mud)
50 Nitella sp.
20 Lemna minor
Terrestrial grasses
(growing through mud)

Dominant plant species and approximate percent composition

LB	In-stream	RB
Terrestrial grasses
regrowing
70 Nitella sp.
(re-established)
80-100 Lemna minor
Terrestrial grasses
regrowing
Appendix 1.5—Foots Drain 50 m

<table>
<thead>
<tr>
<th>Date</th>
<th>In-stream</th>
<th>LB</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Jan 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Feb 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Jul 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Apr 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Nov 01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1.6—Foots Drain 75 m
Appendix 1.7—Pa Drain 25 m

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Cutty grass</td>
<td>Grass roots</td>
<td>90 Cutty grass</td>
</tr>
<tr>
<td>10 Terrestrial grasses</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

15 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

10 Jan 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasses, blackberry desiccated</td>
<td>Collapsing into stream</td>
<td>Carex least affected</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

24 Jan 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

22 Feb 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obvious die back line</td>
<td>Most plant collapsed into stream</td>
<td>Filamentous algae profusely (Vaucheria, Spirogyra dom.)</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

19 Apr 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die back complete</td>
<td>Decaying matter on bottom = detritus</td>
<td>Sparce cover of Nitella on stream bed</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

30 Jul 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

15 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

27 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasses, blackberry desiccated</td>
<td>Collapsing into stream</td>
<td>Carex least affected</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

24 Jan 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

22 Feb 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obvious die back line</td>
<td>Most plant collapsed into stream</td>
<td>Filamentous algae profusely (Vaucheria, Spirogyra dom.)</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

19 Apr 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die back complete</td>
<td>Decaying matter on bottom = detritus</td>
<td>Sparce cover of Nitella on stream bed</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

30 Jul 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

15 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

27 Nov 01

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasses, blackberry desiccated</td>
<td>Collapsing into stream</td>
<td>Carex least affected</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

24 Jan 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>Grass roots</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

22 Feb 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obvious die back line</td>
<td>Most plant collapsed into stream</td>
<td>Filamentous algae profusely (Vaucheria, Spirogyra dom.)</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

19 Apr 02

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die back complete</td>
<td>Decaying matter on bottom = detritus</td>
<td>Sparce cover of Nitella on stream bed</td>
</tr>
</tbody>
</table>

0123456
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

30 Jul 02
Appendix 1.8—Pa Drain 50 m

![Graphs and tables showing changes in plant species and composition over time.](image)

<table>
<thead>
<tr>
<th>Date</th>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 01</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>27 Nov 01</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>10 Jan 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>24 Jan 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>22 Feb 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>19 Apr 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>30 Jul 02</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

Dominant plant species and approximate percent composition:

- **LB**
 - Terrestrial grasses recovering
 - Nasturtium filling 75% of stream profile
 - Traces of *L. minor*
 - Cutty grass recovering on RB

- **In-stream**
 - Further die back; Nasturtium decaying in stream
 - Filamentous algae common; Nasturtium recovering Calothrix algae developing
 - New grass growing through on banks

- **RB**
 - Unchanged
 - Terrestrial grasses recovering
 - Nasturtium (Trace)
 - *L. minor* cutty grass recovering on RB

Dominant plant species and approximate percent composition:

- *Carex*
- *Nasturtium* (Trace)
- 90% Terrestrial grasses

Notes:

- Most plant collapsed in sprayed area
- Plant beginning decay in stream
- Filamentous algae proliferated (*Vaucheria*, *Spirogyra* dom.)
- New grass growing through on banks
Appendix 1.9—Pa Drain 75 m

Dominant plant species and approximate percent composition

<table>
<thead>
<tr>
<th>Date</th>
<th>LB</th>
<th>In-stream</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 01</td>
<td>80</td>
<td>Terrestrial grasses</td>
<td>80 Terrestrial grasses</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Carex sp.</td>
<td>10 Carex sp.</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Nitella sp.</td>
<td>90 Nitella sp.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Nasturtium</td>
<td>10 Nasturtium</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Rubus fruticosus</td>
<td>10 Rubus fruticosus</td>
</tr>
<tr>
<td>27 Nov 01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Jan 02</td>
<td>Largely unchanged</td>
<td>Largely unchanged</td>
<td>Largely unchanged</td>
</tr>
<tr>
<td>22 Feb 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Apr 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Jul 02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued dieback
Plants collapsing into stream

More growth
Largely unchanged

More growth
Largely unchanged
Appendix 2

AVERAGE DENSITY OF MACROINVERTEBRATES IN CORE SAMPLES FROM EACH DRAIN ON EACH SAMPLING OCCASION
<table>
<thead>
<tr>
<th>Taxon</th>
<th>MURRAYS DRAIN</th>
<th>PA DRAIN</th>
<th>FOOTS DRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayflies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austroclima jollyae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Austroclima septa</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Austroclima sp.</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Deleatidium spp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zephlebia sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zephlebia versicolor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Stoneflies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaleptoperla diminuta</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Megaleptoperla sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zelandobius furcillatus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dobsonflies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archichauliodes diversis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Damselflies (tail-less)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Austrolestes colensis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xanthobenennis zealandica</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dragonflies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procordulia sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Water bugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microvelia sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sigara sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Beetles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dytiscidae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Elmidae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Enochrus tritus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>True flies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthomyiidae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Austrosimulium spp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Chironomus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zealandicus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Corynoneura sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Culex sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Empididae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ephydridae pupae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Maoridamesa sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Neodimnia sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Orthocladiinae</td>
<td>6.0</td>
<td>10.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Paradimophila</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skusei</td>
<td>0.7</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Polyplectropus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. hendersoni</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tanypodinae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanytarsus sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Caddisflies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costachorema sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hudsonema amabile</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hydrobiosis copis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hydrobiosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parambrifennis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hydrobiosis sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hydrotliidae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Leptoceridae</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Oxyethira albiceps</td>
<td>2.7</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Paroxyethira</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benderoni</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Polyplectropus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pauperilis</td>
<td>0.0</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Psilocobrema bidens</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Psilocobrena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macropterus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Psilocobrena sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Psilocobrena tautorus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pycnocentrodes sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Trillectides cephalotes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Trillectides obsoleta</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Trillectides sp.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sampling Period</td>
<td>Murrays Drain</td>
<td>Pa Drain</td>
<td>Foots Drain</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>Flatworms</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Roundworms</td>
<td>0.0 2.0 0.0 0.0 0.5 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.3 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.3 0.0</td>
</tr>
<tr>
<td>Worms</td>
<td>169 192 251 118 260 268 113</td>
<td>108 50.7 35.0 34.0 175 132 282</td>
<td>350 185 217 72.3 532 379 228</td>
</tr>
<tr>
<td>Peanut worms</td>
<td>0.0 0.0 0.0 0.0 0.3 4.5 0.0</td>
<td>0.0 0.0 0.0 0.7 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Snails/Bivalves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrissia sp.</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Gyraulus sp.</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Hyridella sp.</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.3 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Physa sp.</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 1.3 0.0 0.3 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 1.3</td>
</tr>
<tr>
<td>Potamoerythrops antipodarum</td>
<td>1.0 5.5 0.3 1.0 9.0 1.0 0.0</td>
<td>15.0 12.0 97.0 8.0 16.7 87.7 17.7 119 0.0 77.7 105 102 134 228</td>
<td></td>
</tr>
<tr>
<td>Sphaeriidae</td>
<td>0.0 0.0 0.0 0.0 1.7 1.0 0.3</td>
<td>2.3 0.7 2.7 0.3 0.0 9.7 1.0 123 0.0 30.0 7.7 44.7 35.0 29.3</td>
<td></td>
</tr>
<tr>
<td>Crustaceans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>60.7 27.7 36.3 62.0 194 243 37.0</td>
<td>21.7 3.3 18.7 32.7 80.3 133.0 26.3</td>
<td>37 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Copepoda</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Daphnia carinata</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>0.0 1.5 10.7 1.5 8.0 0.7 0.0</td>
<td>12.3 1.7 1.0 0.0 0.7 2.7 0.3 11.3 0.0 47.1 1.7 16.7 15.3 0.7</td>
<td></td>
</tr>
<tr>
<td>Paranaeprhothis planifrons</td>
<td>3.7 2.0 3.3 0.7 2.0 1.0 0.3</td>
<td>0.0 0.0 0.0 1.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Paratya curvirostris</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.3 0.0 0.0 0.0 0.0 0.7 1.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Mites</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Springtails</td>
<td>0.7 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.3 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Total taxa</td>
<td>6.7 6.7 8.3 10.7 13.7 6.7 6.3</td>
<td>4.0 7.0 6.3 7.0 7.3 14.0 6.7 6.3 15.7 10.7 12.0 15.3 14.0</td>
<td></td>
</tr>
<tr>
<td>Total individuals</td>
<td>244 254 308 203 499 556 683</td>
<td>164 72.7 167 83.3 281 377 602 519 200 630 250 700 715 602</td>
<td></td>
</tr>
<tr>
<td>Density (m⁻²)</td>
<td>18099 18840 22790 15037 36938 41161 5062</td>
<td>12173 18519 51877 52963</td>
<td></td>
</tr>
</tbody>
</table>

1. Bold in columns used to distinguish Pa Drain entries from Murrays Drain and Foots Drain entries.
2. Sampling periods are as follows: 1 = 15 Nov 2001
 2 = 27 Nov 2001
 3 = 10 Jan 2002
 4 = 24 Jan 2002
 5 = 22 Feb 2002
 6 = 19 Apr 2002
 7 = 02 Aug 2002