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Module 1: Background to
Data Analysis

S U M M A R Y

This module begins by stating the background knowledge of statistics that is

needed for fully understanding the material in this and the other modules in

this document.  Briefly, what is required is a knowledge of what discrete and

continuous statistical distributions are, the concept of a sampling distribution,

an understanding of the structure of a test of significance, and an

understanding of what a confidence interval means.  The module then covers

a number of general issues related to the design and analysis of studies:

• The difference between observational studies (with passive observation

only) and experimental studies (with the manipulation of conditions).

• The difference between true experiments (with randomization,

replication and controls), and quasi-experiments (with one or more of

these components missing), and how this affects the strength of the

conclusions that can be drawn.

• The difference between design-based inference (which draws its validity

from random sampling), and model-based inference (which relies on the

assumed model being more or less correct).

• The current controversy about the value of tests of significance, and

whether using confidence limits instead overcomes the perceived

problems.

• The computer-intensive methods of randomization and bootstrapping

that are receiving increasing use in all areas of science.

• What pseudoreplication is, and how it can be avoided.

• If and when adjustments for multiple testing should be made when

analysing data.

• Meta-analysis methods for combining the results of several studies on the

same variable.

• The difference between classical statistical methods and the Bayesian

methods that are becoming popular with some data analysts.

• Data quality objective (DQO) procedures for ensuring that when studies

are finished they will meet the original objectives.
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1.1 The Starting Point

This module and the ones that follow assume that readers are starting with a

background knowledge of statistics at the level that is usually expected to be

reached or exceeded after taking a typical first year university course.  Table

1.1 gives a list of what this should include.  What is important is not so much

to be familiar with all the details of the items that are listed, but is more the

understanding of the concepts involved.  For example, with tests of

significance it is not necessary to be able to carry out the calculations for a

range of tests without looking up the equations in a text book.  However, it is

important to understand the logic behind these tests, i.e. the idea of setting up

a null hypothesis and testing this by comparing the observed value of a test

statistic with the distribution of the statistic that will apply if the null

hypothesis is correct.

There are many statistics texts available that cover the material in Table 1.1.  If

you are feeling a little statistically “rusty” then some revision using one of

these texts may be useful.

1.2 Drawing Conclusions from Data

Statistics is all about drawing conclusions from data, and in this module

we at the basis of some of the methods that are used for drawing conclusions.

Quite a variety of topics are considered, including some which are rather

important and yet often receive relatively little attention in statistics texts.

These include the difference between observational and experimental studies,

the difference between inference based on the random sampling design used

to collect data and inference based on the assumption of a particular model

for the data, criticisms that have been raised about the excessive use of

significance tests, the use of the computer-intensive methods of

randomization and bootstrapping instead of more conventional methods, the

avoidance of pseudoreplication, the use of sampling methods where sample

units have different probabilities of selection, the problem of multiple testing,

meta-analysis (methods for combining the results from different studies), and

the use of Bayesian inference, which is currently receiving a great deal of

attention.
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TABLE  1 . 1   STAT IST ICAL  BACKGROUND THAT I S  ASSUMED IN  THIS  AND

THE FOLLOWING MODULES

CONCEPT WHAT SHOULD BE KNOWN

Random variation How observations taken under apparently similar conditions display

in data  variation, which can be described by statistical distributions such as

the normal distribution for continuous data, and the binomial

distribution for discrete (count) data.

Summary statistics How the mean, standard deviation, etc. are used to summarise a

sample or a theoretical distribution.

Distributions for The standard error of the mean, SE(  x ) = σ/√n.  The use of the

sample statistics t-distribution for inferences about sample means.  The uses of the

chi-squared distribution with count data.

Tests of significance The logic behind tests of significance, including the difference

between one and two sided tests, the meaning of the significance

level, and the role of the null and alternative hypotheses.  The use

of one and two sample t-tests, chi-squared goodness of fit tests.

Confidence limits The interpretation of a confidence interval as one within which a

population parameter will lie with a stated probability.

Analysis of variance The partitioning of the total sum of squares about the mean for a set

of data into components associated with different factors and their

interactions, the summary of this in an analysis of variance table,

and F-tests for significant effects, for factorial experiments only (i.e.

one factor analysis of variance, two factor analysis of variance, etc.)

Regression The idea of accounting for the variation in a dependent variable Y in

terms of the variation in one or more X variables.  The uses of the t-

distribution and F-distribution to determine which of the X variables

are important.

People often use statistical methods without giving much thought to why

these methods lead to valid conclusions - if indeed they do!  This module is

intended to make you think more critically about these matters.

1.3 Observational and Experimental Studies

When considering the nature of empirical studies there is an important distinction

between observational and experimental studies. With observational studies

data are collected by observing populations in a passive manner that as far

as possible will not change the processes going on.  For example samples of

animals might be collected in order to estimate the proportions in different age

classes or the sex ratio.  On the other hand, experimental studies are usually

thought of as involving the collection of data with some manipulation of

variables that is assumed to affect population parameters, keeping other

variables constant as far as possible.  An example of this type would be a study

where possums are removed from an area to see whether this leads to

improved survival of an endangered plant.
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In many cases the same statistical analysis can be used with either

observational or experimental data.  However the validity of any inferences

that result from the analysis depends very much on the type of study.  In

particular, an effect that is seen consistently in replications of a well designed

experiment can only reasonably be explained as being caused by the

manipulation of the experimental variables.  But with an observational study

the same consistency of results might be obtained because all the data are

affected in the same way by some unknown and unmeasured variable.

Therefore the ‘obvious’ explanation for an effect that is seen in the results of

an observational study may be quite wrong.  To put it another way, the

conclusions from observational studies are not necessarily wrong.  The

problem is that there is little assurance that they are right (Hairston, 1989, p.

1).

It is clear that in general it is best to base inferences on experiments rather

than observational studies, but this is not always possible.  Some experiments

cannot be performed either because the variables involved are not

controllable, or because the experiment is not feasible.  For example, suppose

that a researcher wishes to assess the effect of discharges of pollutants from a

sewage treatment plant on the organisms in a river.  Then systematically

changing the levels of pollutants, and in some cases increasing them to higher

levels than would normally occur, might either not be possible or be

considered to be unethical.  Hence in this situation the only study possible

might be one involving attempts to relate measurements on the organisms to

unplanned variation in pollutant levels, with some allowance for the effects of

other factors that may be important.

Having defined two categories of study (observational and experimental), it

must be admitted that at times the distinction becomes a little blurred.  In

particular, suppose that the variables that are thought to determine the state of

an ecological system are abruptly changed either by some naturally occurring

accident, or are an unintentional result of some human intervention.  If the

outcome is then studied this appears to be virtually the same as if the changes

were made by the observer as part of an experiment.  But such ‘natural

experiments’ do not have some of the important characteristics of true

experiments.  The conclusions that can be drawn might be stronger than those

that could be drawn if the system was not subjected to large changes, but they

are not as strong as those that could be drawn if the same changes were made

as part of a well designed experiment.

Although the broad distinction that has been made between observational and

experimental studies is useful, a little thought will show that both of these

categories can be further subdivided in meaningful ways.  For example,

Eberhardt and Thomas (1991) propose a classification of studies into eight

different types.  However, this elaboration is unnecessary here, where it

merely needs to be noted that most of the studies carried out by DOC staff are

observational, with all the potential limitations that this implies.
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1.4 True Experiments and Quasi-Experiments

At this stage it becomes necessary to better define what is required for a study

to be a ‘true’ experiment.  Basically, the three important ingredients are

randomization, replication, and controls.

Randomization should be used whenever there is an arbitrary choice to be

made of which units will be measured out of a larger collection of possible

units, or of the units to which different levels of a factor will be assigned.  This

does not mean that all selections of units and all allocations of factor levels

have to be made completely at random.  In fact, a large part of the theory of

experimental design is concerned with how to restrict randomization and

allocation in order to obtain the maximum amount of information from a fixed

number of observations.  Thus randomization is only required subject to

whatever constraints are involved in the experimental design.

Randomization is used in the hope that it will remove any systematic effects of

uncontrolled factors of which the experimenter has no knowledge.  The

effects of these factors will still be in the observations.  However,

randomization makes these effects part of the experimental errors that are

allowed for by statistical theory.  Perhaps more to the point, if randomization

is not carried out then there is always the possibility of some unseen bias in

what seems to be a haphazardous selection or allocation.

Randomization in experiments is not universally recommended.  Its critics

point to the possibility of obtaining random choices that appear to be

unsatisfactory.  For example, if different varieties of a crop are to be planted

in different plots in a field then a random allocation can result in all of one

variety being placed on one side of the field.  Any fertility trends in the soil

may then appear as a difference between the two varieties, and the

randomization has failed to remove potential biases due to positions in the

field.  Although this is true, common sense suggests that if an experimenter

has designed an experiment that takes into account all the obvious sources of

variation, such as fertility trends in a field, so that the only choices left are

between units that appear to be essentially the same, such as two plots in the

same part of a field, then randomization is always worthwhile as one extra

safeguard against the effects of unknown factors.

Replication is needed in order to decide how large effects have to be before

they become difficult to account for in terms of normal variation.  This

requires the measurement of normal variation, which can be done by

repeating experimental arrangements independently a number of times under

conditions that are as similar as possible.  Experiments without replication are

case studies that may be quite informative and convincing, but it becomes a

matter of judgement as to whether the outcome could have occurred in the

absence of any manipulation.

Controls provide observations under normal conditions without the

manipulation of factor levels.  They are included in an experiment to give the

standard with which the results under other conditions are compared.  In the

absence of controls it is usually necessary to assume that if there had been

controls then these would have given a particular outcome.  For instance,

suppose that the yield of a new type of wheat is determined without running

control trials with the standard variety.  Then in order to decide whether the
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yield of the new variety is higher than that for the standard it is necessary to

make some assumption about what the yield of the standard variety would

have been under the experimental conditions.  The danger here is obvious: it

may be that under the conditions of the study the yield of the standard variety

would not be what is expected, so that the new variety is being compared

with the wrong standard.

Experiments that lack one or more of the ingredients of randomization,

replication and control are sometimes called quasi-experiments.  Social

scientists realized many years ago that they can often only do quasi-

experiments rather that true experiments, and have considered very

thoroughly the implications of this in terms of drawing conclusions (Campbell

and Stanley, 1963; Manly, 1992, Chapter 5 and 6).  It is important point to

realize is that the experiments carried out by DOC staff are usually quasi-

experiments, so that the social scientists problems are also problems for DOC.

There is no need here to discuss these problems at length.  In fact, many of

them are fairly obvious with a little thought.  Some of the simpler designs that

are sometimes used without a proper recognition of potential problems are

listed below.  Here O
i
 indicates observations made on a group of experimental

units, X denotes an experimental manipulation, and R indicates a random

allocation of experimental units to treatment groups.  For example R O
1
 X O

2

indicates that there is a random allocation to groups, observations are taken

on the experimental group, an experimental manipulation is made for this

group, and then observations are taken again.  The description ‘pre-

experimental design’ is used for the weakest situations, where inferences are

only possible by making strong assumptions.  ‘Quasi-experimental designs’

are better, but still not very satisfactory, while ‘proper designs’ have all the

desirable characteristics of true experiments.

Two Pre-Experimental Designs

The one group pretest-posttest design

O
1
 X O

2

The two group comparison without randomization

X O
1

   O
2

A Quasi-Experimental Design

The comparative change design without randomization

O
1
 X O

2

O
3
    O

4

Two Proper Designs

The two group comparison with randomization

R X O
1

 R    O
2

The comparative change design with randomization

R O
1
 X O

2

 R O
3
    O

4

Of these designs, the comparative change ones are of particular interest

because they are the same as the before-after-control-impact (BACI) design



8 Module 1: Background to Data  Analysis

that is commonly used by DOC scientists.  Problems arise in these applications

when, as is usually the case, it is not possible to randomly allocate

experimental units to the treated and control groups before the treatment is

applied.  There is then the possibility that somehow the nature of the units is

different for the control and treated groups in terms of how they are likely to

change with time either with or without any treatment.

1.5 Design-Based and Model-Based Inference

It is often not realized that conclusions from data are reached using two very

different philosophies for making scientific inferences.  One is design-based,

using the randomization used when collecting data, and the other is model-

based, using the randomness that is inherent in the assumed model.

All of the classical methods for sampling that are discussed in Module 2

are design-based, because this is how the classical theory for sampling finite

populations developed.  For example, one important equation used in that

module is for the variance of the mean of a random sample of size n from a

population of size N with variance σ2.  This equation states that Var(  y ) = (σ2/

n)(1 - n/N).  What this means is that if the process of drawing a random

sample is repeated many times, and the sample means   y 1
,   y 2

,   y 3
, ... are

recorded, then the variance of these means will be (σ2/n)(1 - n/N).  Thus this

is the variance that is generated by the sampling process.  No model is needed

for the distribution of the Y values, and in fact the variance applies for any

distribution at all.

By way of contrast, consider the testing of the coefficient of X for a simple

linear regression equation.  In that case the usual situation is that there are n

values y
1
, y

2
, ..., y

n
 for Y with corresponding values x

1
, x

2
, ..., x

n
 for X.  The

specific model

y
i
 = β

0
 + β

1
x

i
 + ε

i
(1.1)

is then assumed, where β
0
 and β

1
 are constants to be estimated, and ε

i
, is a

random value from a normal distribution with a mean of zero and a constant

unknown variance σ2.  The values of β
0
 and β

1
 are then estimated by least-

squares as discussed in Module 4.  If b
1
 is the estimate of β

1
, with an estimated

standard error     SÊ( )b1 , then a test to see whether this is significantly different

from zero involves comparing     b b1 1/ ˆ( )SE  with critical values of the

t-distribution with n - 2 degrees of freedom.

In this case, there is no requirement that the units on which X and Y are

measured are a random sample from some specific population.  In fact, the

equation for estimating the standard error of b
1
 is based on the assumption

that the X values for the data are fixed constants rather than being random,

with the difference between b
1
 and β

1
 being due only to the particular values

that are obtained for the errors ε
1
, ε

2
, ... ε

n
 in the model.  Thus in this case the

assessment about whether b
1
 is significantly different from zero is not based

on any requirement for random sampling of a population.  Instead, it is based

on the assumption that the model (1.1) correctly describes the structure

of the data, and that the errors ε
1
, ε

2
, ... ε

n
 for the real data are a random

sample from a normal distribution with mean zero and constant variance.
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What often happens with environmental studies is that design-based and

model-based inference are both used at different times.  For example,

consider evaluation of the impact of an accidental spill of a toxic chemical on

some biological variable.  There may be:

1. design-based estimates of the exposure to the chemical from random

sampling in the field;

2. model-based laboratory assessments of the effects of the chemical based

on true experiments with randomization, replication and controls; and

3. model-based simulations of the effects of the chemical exposure using

parameters estimated from the random sampling in the field.

An advantage of the design-based approach is that valid inferences are

possible which are completely justified by the design of the study and the way

that data are collected.  The conclusions can then always be defended

providing that there is agreement about which variables should be measured,

the procedures used to do the measuring, and the design protocol.  In this

case, any reanalysis of the data by other groups will not be able to declare

these original conclusions incorrect. It is possible that a reanalysis using a

model-based method may lead to different conclusions, but the original

analysis will still retain its validity.

On the other hand, most statistical analysis is model-based, and there can be

no question about the fact that this is necessary.  The use of models allows

much more flexibility in analyses and all of the methods described in the

previous chapter are model-based, requiring specific assumptions about the

structure of data.  The flexibility comes at a price.  Sometimes the implicit

assumptions of models are hidden below the surface of the analysis.  These

range from assumptions about the random components of models that may or

may not be critical as far as conclusions to assumptions about the

mathematical form of the equations that relate different variables which may

be absolutely critical particularly if it is necessary to predict the response of

some variable when predictor variables are outside of the range observed on

the available data.  Moreover, whenever conclusions are drawn from a model-

based analysis there is always the possibility that someone else will repeat the

analysis with another equally reasonable model and reach different

conclusions.

A case in point is the use of the lognormal distribution as a model for data.

This is frequently assumed for the distribution of the concentration of a

chemical in field samples because it has an appropriate shape (Figure 1.1).

However, two recent studies have cast doubt on the uncritical use of this

model.

Schmoyer et al. (1996) simulated data from lognormal, truncated normal and

gamma distributions and compared the results from estimation and testing

assuming a lognormal distribution with other approaches that do not make

this assumption.  They found that departures from the lognormal distribution

were difficult to detect with the sample sizes that they used, but when they

occurred the tests based on the lognormal assumption did not work as well as

the alternatives.  They concluded that “in the estimation of or tests about a

mean, if the assumption of lognormality is at all suspect, then lognormal-
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based approaches may not be as good as the alternative methods”.  Because

the lognormal distribution will probably seldom hold exactly for real data, this

is a serious criticism of the model.

Wiens (1999) example is perhaps more disturbing.  The same set of data was

analysed two ways.  First, the observations (the amount of antibody to

hepatitis A virus in serum samples) were analysed assuming a generalized

linear model (as discussed in Module 4) with a possible mean difference

between two groups, and lognormal errors.  The difference in the two groups

was approaching significance (p = 0.10) with the second group estimated to

have a higher mean.  Next, the data were analysed assuming gamma

distributed errors, where the gamma distribution is one that often has the

same type of shape as the lognormal.  In this case the difference between the

two groups was nowhere near significant (p = 0.71), but the first group was

estimated to have a higher mean.  Hence, the modelling assumptions made

when analysing the data are rather crucial.  Wiens notes that with this

particular example a non-parametric test can be used to compare the two

groups, which is better than the model-based approach.  However, he also

points out that with more complicated data sets a model-based approach may

be preferred because of the flexibility that this permits in the analysis.  He

therefore proposes the ad-hoc solution of analysing data like this using both

the lognormal and gamma models and investigating further if the results do

not agree.  This, of course, raises the possibility that both models are wrong,

with similar misleading outcomes that go undetected.

The moral from all this is that although a strict adherence to design-based

analyses is not possible for all DOC studies, it is a good idea to rely on design-

based analyses as much as possible.  The value of at least a few indisputable

design-based statistical inferences may, for example, be of great value for

defending a study in a court case.

1.6 Tests of Significance and Confidence Intervals

Tests of significance are very commonly used for drawing conclusions

from data.  However, these tests have certain limitations which have led

over the years to a number of authors questioning their use, or at least

the extent to which they are used.

The two basic problems can be illustrated in terms of the comparison of the

mean of a variable at a site which was once contaminated and is now

supposed to be cleaned up with the mean at a reference site which was never

contaminated.  The first problem is that the two sites cannot be expected to

have exactly the same mean even if the cleaning operation has been very

effective.  Therefore, if large samples are taken from each site there will be a

high probability of finding a significant difference between the two sample

means, irrespective of the effectiveness of the cleanup.  The second problem

is that if the difference between the sample means is not significant then it

does not mean that no difference exists.  An alternative explanation is that the

sample sizes used are not large enough to detect the existing differences.

These well-known problems have been discussed many times by social

scientists (e.g. Oakes, 1986), medical statisticians (e.g. Gardner and Altman,

1986), environmental scientists (e.g. McBride et al. 1993), wildlife scientists
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(e.g. Cherry, 1998 and Johnson, 1999), statisticians (e.g. Nelder, 1999), and no

doubt by those working in other areas as well.  A common theme is that too

often hypothesis tests are used when it is obvious in advance that the null

hypothesis is not true, and that as a result scientific papers are becoming

cluttered up with unnecessary p-values.

In truth, there is not much point in testing hypotheses that are known to

be false.  Under such circumstances it makes more sense to estimate the

magnitude of the effect of interest, with some indication of the likely accuracy

of results.  However, there are situations where the truth of a null hypothesis

really is in question, and then carrying out a significance test is an entirely

reasonable thing to do.  Once evidence for the existence of an effect is found,

it is then reasonable to start measuring its magnitude.

Testing the effect of poisoned 1080 baits on invertebrates numbers is a case in

point.  It may be entirely plausible initially that a drop of poisoned baits in an

area has no perceptible effect on invertebrate numbers one week after a drop.

It is then sensible to ask whether an observed mean change in the invertebrate

density before and after experimental drops is statistically significant.

No doubt arguments about the value of tests of significance will continue.

The point of view adopted here is that it does often happen that the existence

of an effect is in doubt, in which case testing the null hypothesis that the

effect does not exist is sensible.  However, in other cases it is more or less

certain that an effect exists and the main question of interest is the size of the

effect.  In that case a confidence interval may provide the necessary

information.  Thus both tests of significance and confidence intervals are

important tools for data analysis, but under different circumstances.

1.7 Randomization Tests

Randomization is a computer-intensive method that is receiving more

use as time goes by for the analysis of biological data (Manly, 1997),

although it has a long history, going back about 65 years to the work of Sir

Ronald Fisher, one of developers of many of the statistical methods used

today (Fisher, 1935, 1936).  What a randomization test does is to see whether

a pattern in a set of data is likely to have occurred by chance if there is

actually no effect for the factor being studied.

The simplest situation for understanding what is mean by a randomization test

is the two group comparison, as proposed by Fisher (1936).  In this situation

there is one sample of values x
1
, x

2
, ..., x

m
, with mean   x , and a second sample

of values y
1
, y

2
, ..., y

n
, with mean   y .  The question of interest is whether the

two samples come from the same distribution or, more precisely, whether the

absolute mean difference     | |x y−  is small enough for this to be plausible.

The test proceeds as follows:

1. The observed absolute mean difference is labelled d
1
.

2. It is argued that if the null hypothesis is true (the two samples come from

the same distribution) then any one of the observed values x
1
, x

2
, ..., x

m

and y
1
, y

2
, ..., y

n
 could equally well have occurred in either of the

samples.  On this basis, a new sample 1 is chosen by randomly selecting

m out of the full set of n + m values, with the remaining values providing
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the new sample 2.  The absolute mean difference d
2
 =     | |x y−  is then

calculated for this randomized set of data.

3. Step (2) is repeated a large number R - 1 of times to give a total of R

differences d
1
, d

2
, ..., d

R
.

4. The R differences are put in order from the smallest to largest.

5. If the null hypothesis is true then d
1 
should look like a typical value from

the set of R differences, and is equally likely to appear anywhere in the

list.  On the other hand, if the two original samples come from

distributions with different means then d
1
 will tend to be near the top of

the list.  On this basis, d
1
 is said to be significantly large at the 100"%

level if it is among the top 100α% of values in the list.  If 100α% is small

(say 5% or less) then this is regarded as evidence against the null

hypothesis.

It is an interesting fact that this test is exact in a certain sense even when R is

quite small.  For example, suppose that R = 99.  Then if the null hypothesis is

true and there are no tied values in the  differences d
1
, d

2
, ..., d

100
, the

probability of d
1
 being one of the largest 5% of values (i.e. one of the largest

5) is exactly 0.05.  This is precisely what is required for a test at the 5% level:

the probability of a significant result when the null hypothesis is true is equal

to 0.05.

The test just described is two-sided.  A one-sided version is easily constructed

by using the signed difference   x y−  as the test statistic, and seeing whether

this is significantly high (assuming that the alternative to the null hypothesis

of interest is that the values in the first sample come from a distribution with

a higher mean than that for the second sample).

An advantage that the randomization approach has over a conventional

parametric test on the sample mean difference is that it is not necessary

to assume any particular type of distribution for the data, such as

normal distributions for the two samples for a t-test.  The randomization

approach also has an advantage over a non-parametric test like the Mann-

Whitney U-test because it allows the original data to be used rather than just

the ranks of the data.  Indeed, the Mann-Whitney U-test is really just a type of

randomization test for which the test statistic only depends on the ordering of

the data values in the two samples being compared.

Example: The Effect of 1080 Poison Pellets on Invertebrates
A DOC study of the effect of 1080 (sodium monofluoroacetate) pellets on

invertebrates was carried out at Ohakune in the North Island of New Zealand.

Trials were run for either 9 or 18 days, using neighbouring grids of pellets,

with one grid as a control receiving placebo pellets, and the other grid

receiving 1080 poison pellets.  Pellets were replaced every day, and the data

obtained were counts of the invertebrates found on the pellets at a certain

time each day.  For the 9 day trials pellets were put out as shown in Table 1.2

(a).  For the 18 day trials the same design was used but was repeated for

another 9 days, as shown in Table 1.2 (b).  More details about the

experimental arrangements are given by Sherley and Wakelin (1998).  This is a

type of before-after-control-impact (BACI) design.
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TABLE  1 . 2   EXPER IMENTAL  DES IGN FOR THE  9  AND 18  DAY TR IALS  TO

COMPARE  INVERTEBRATE  NUMBERS  ON PLACEBO AND 1080  PELLETS .

(A) 9 DAY TRIALS

Grid Days 1 - 3 Days 4 - 6 Days 7 - 9

Control Placebo pellets Placebo pellets Placebo pellets

Treated Placebo pellets 1080 pellets Placebo pellets

(B) 18 DAY TRIALS (AS ABOVE PLUS)

Grid Days 10 - 12 Days 13 - 15 Days 16 - 18

Control Placebo pellets Placebo pellets Placebo pellets

Treated Placebo pellets 1080 pellets Placebo pellets

There are many different approaches that might be used to analyse the data

from this experiment including, for example, attempting to model the counts

of invertebrates on individual pellets.  However, a fairly straightforward

randomization test for the effect of 1080 is also possible.  It is important to

realize in this respect that this was an initial experiment to determine whether

there is any effect at all.

To carry out a randomization test it is first necessary to measure the effect of

poisoning, if any.  A simple way to do this is illustrated in Table 1.3, based on

the results for days 1 to 9 of the first trial.  Two measures are calculated.  The

first is E
1
, which is the change in the treated - control difference between the

initial 3 days of the experiment (when no poison was laid) and the next 3 days

(when 1080 pellets were laid on the treated grid).  The treated - control

difference was initially 0.35, but changed to -0.39, to give E
1
 = -0.39 - 0.35 = -

0.74.  Thus the apparent effect of the 1080 pellets was to reduce the

invertebrate count by an average of 0.74 per pellet.  This is a measure of the

immediate effect of using 1080 pellets.

The second measure is E
2
, which is the change in the treated - control

difference between the initial 3 days and day 9.  The initial difference of 0.35

changed to -1.13, giving E
2
 =  -1.13 - 0.35 = -1.47.  This is a measure of the

residual effect of the treatment after it has been discontinued for 3 days.

TABLE  1 . 3   CALCULAT ION OF  E1,  THE  IMMEDIATE  EFFECT  OF  POISON

PELLETS ,  AND E2,  THE  RES IDUAL  EFFECT  OF  POISON PELLETS  FOR THE

F IRST  9  DAYS  OF  TR IAL  1 .

                      AVERAGE INVERTEBRATES PER BAIT

BEFORE DURING AFTER

Control 0.66 0.78 1.89

Treated 1.01 0.39 0.76

Difference 0.35 -0.39 -1.13

Effect E1 = -0.74 E2 = -1.47
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When the trial was repeated on days 10 to 18 it is possible to calculate another

two statistics E
3
 and E

4
.  Here E

3
 is the same as E

1
 but calculated for the second

9 days instead of the first 9 days.  It measures the effect of the treatment when

it is repeated.  Similarly, E
4
 is the same as E

3
 but calculated for the last 9 days.

This measures the residual effect for a second treatment.

TABLE  1 . 4   FULL  RESULTS  FOR THE  POISON PELLET  TR IALS  IN  TERMS  OF

THE STAT IST ICS  E 1 (THE  IMMEDIATE  EFFECT) ,  E 2 (THE  RES IDUAL  EFFECT) ,

E 3 (THE  IMMEDIATE  EFFECT  FROM A  REPEATED APPL ICAT ION) ,  AND E 4

(THE  RES IDUAL  EFFECT  FROM A  REPEATED APPL ICAT ION) .

        Immediate Effects    Repeated Effects

Trial E1 E2 E3 E4

1 -0.74 -1.47 -1.85 -0.52

2 -0.38 -0.98 -1.79 -0.68

3 -0.19 -0.10 -0.90 -0.59

4 -0.11 -0.01 -0.66 -0.18

5 0.09 -0.59

6 -0.51 0.68

7 -0.12 0.46

8 -0.15 0.05

9 -0.20 0.01

10 -2.13 0.30 -0.03 -0.53

11 -1.98 -0.51 0.12 -0.89

12 -0.66 0.10

13 -0.79 0.02

Mean -0.60 -0.16 -0.85 -0.56

Table 1.4 shows the full experimental results for E
1
 to E

4
 for the 13 trials

carried out.  The mean values of these statistics are shown at the foot of the

table, and the question to be considered is whether these mean values

indicate a significant impact of the poison pellets.

To run a randomization test it is only necessary to note that switching round

the control and treated data for one trial just has the effect of changing the

signs to E
1
 to E

4
.  It can therefore be argued that on the null hypothesis of no

treatment effect the signs in any row of Table 1.4 were equally likely to be as

they are shown, or reversed.  The test therefore involves seeing whether the

mean values shown in the table are significantly low in comparison with the

distributions found by randomly reversing the signs of E
1
 to E

4
 for the

individual trials with probability 0.5.  A one sided-test is called for because it

is hard to imagine how the use of 1080 pellets could increase invertebrate

numbers.

The @RISK software (Pallisade, 1995) was used to generate 10,000 randomized

sets of data.  The proportion (p) of times that a mean value as low as that

shown in Table 1.4 was then determined, for each of the mean values for E
1
 to

E
4
.  The mean of E

1
 was very significantly low (p = 0.0001), giving very strong

evidence of an immediate reduction in invertebrates from the poison pellets.

The mean of E
2
 was not significantly low (p = 0.19), so there is no real

evidence of a residual effect from one treatment.  The mean of E
3
 was fairly
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significantly low (p = 0.047), giving some evidence of a reduction in

invertebrate numbers following a second treatment.  The mean of E
4
 was quite

significantly low (p = 0.015), giving some evidence of a residual effect of the

second treatment.

This example is really a complicated application of Fisher’s (1935)

randomization analysis for the method of paired comparisons.  There is more

that could be said about it, plus some questions such as why the experimental

design was chosen.  It seems a bit ad-hoc.  Also, of course many statisticians

would prefer a model-based analysis using the raw data rather than the

summary statistics E
1
 to E

4
.  I like the analysis given here because it is easy to

understand, and quite convincing.

1.8 Bootstrapping

Bootstrapping as a general tool for analysing data was first proposed by Efron

(1979).  Initially the main interest was in using this method to construct

confidence intervals for population parameters using the minimum of

assumptions, but more recently there has been interest in bootstrap tests of

hypotheses (Hall and Wilson, 1991; Manly, 1997).

The basic idea behind bootstrapping is that when only sample data are

available, and no assumptions can be made about the distribution that the

data are from, then the best guide to what might happen by taking more

samples from the distribution is provided by resampling the sample.

This is a very general idea, and the way that it might be applied is

illustrated by the following example.

Example: Finding a 95% Confidence Interval for the Mean
Chlorophyll-a in Lakes
A random sample of 25 lakes is taken from the large number in a certain area,

and the values for chlorophyll-a are determined.  The sample mean is 50.30

and the sample standard deviation is 50.02.  There is interest in calculating a

95% confidence interval for the mean of chlorophyll-a in all the lakes in the

area.

If the chlorophyll-a values are approximately normally distributed then the

confidence interval can be calculated using the t-distribution.  The interval is

then

    x s x s− < < +2 06 25 2 06 25. / . /µ , (1.2)

where   x  is the sample mean, s is the sample standard deviation, and 2.06 is

the value that is exceeded with probability 0.025 for the t-distribution with 24

degrees of freedom.  For the data in question,   x  = 50.30 and s = 50.02, so the

interval is

29.66 < µ < 70.95.

Unfortunately, the values of chrorophyll-a are very far from being normally

distributed, as is clear from Figure 1.1.  There is therefore a question about

whether this t-distribution method for determining the interval really gives the

required level of 95% confidence.
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Figure 1.1  The distribution of chlorophyll-a for 25 lakes in a region, with the height of the
histogram bars reflecting the percentage of the distribution in different ranges.

Bootstrapping offers a possible method for obtaining an improved confidence

interval, with the method that will now be described being called bootstrap-t.

This works by using the bootstrap to approximate the distribution of

    t x s= −( ) /( / )µ 25

instead of assuming that this follows a t-distribution with 24 degrees of

freedom, which it would for a sample from a normal distribution.

An algorithm to do this is as follows, where this was easily carried out in a

spreadsheet program:

 (a) The 25 sample observations of chlorophyll-a is set up as the bootstrap

population to be sampled.  This population has the known mean of

µ
B
 = 50.30.

(b) A bootstrap sample of size 25 is selected from the population by making

each value in the sample equally likely to be any of the 25 population

values.  This is sampling with replacement, so that a population value

may occur 0, 1, 2, 3 or more times.

(c) The t-statistic     t x s1 25= −( ) /( / )µβ  is calculated from the bootstrap

sample.

(d) Steps (b) and (c) are repeated 5000 times to produce 5000 t-values t
1
, t

2
,

..., t
5000

 to approximate the distribution of the t-statistic for samples from

bootstrap population.

(e) Using the bootstrap distribution obtained, two critical values t
low

 and t
high

are estimated such that

    Prob low[( ) /( / ) ] .x s t− < =µβ 25 0 025 ,

and

    Prob high[( ) /( / ) ] .x s t− < =µβ 25 0 025 .
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At this point it is assumed that the critical values that are obtained at step (e)

also apply for random samples of size 25 from the distribution of chlorophyll-

a from which the original set of data was drawn.  Thus it is asserted that

    Prob low high[ ( ) /( / ) ] .t x s t< − < =µ 25 0 95,

where x  and s are now the values calculated from the original sample, and µ
is the mean chlorophyll-a value for all lakes in the region of interest.

Rearranging the inequalities then leads to the statement that

    Prob high low[ / / ] .x t s x t s− < < − =25 25 0 95µ ,

so that the required 95% confidence interval is

    x t s x t s− < < −high low/ / ]25 25µ . (1.3)

The intervals (1.2) and (1.3) differ to the extent that t
low

 and t
high

 vary from

2.064.  When the process was carried out it was found that the bootstrap

distribution of     t x s= −( ) /( / )µβ 25  is quite close to the t-distribution with 24

degrees of freedom, as shown by Figure 1.2, but with t
low

 = -2.6 and t
high

 = 2.0.

Using the sample mean and standard deviation, the bootstrap-t interval

therefore becomes

50.30 - 2.0(50.02/5) < µ < 50.30 + 2.6(50.02/5),

or

30.24 < µ < 76.51.

These compare with the limits of 29.66 to 70.95 obtained using the t-

distribution.  Thus the bootstrap-t method gives a rather higher upper limit,

presumably because this takes better account of the type of distribution being

sampled.

Figure 1.2  Comparison between the bootstrap distribution of (  x  - µ
B
)/(s/√25) and the t-

distribution with 24 degrees of freedom.  According to the bootstrap distribution, the
probability of a value less than t

low
 = -2.6 is approximately 0.025, and the probability of a

value higher than t
high

 = 2.0 is approximately 0.025.
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1.9 Pseudoreplication

The term “pseudoreplication” causes some concern, particularly among field

ecologists, with the clear implication that when an investigator believes that

replicated observations have been taken, this may not really the case at all.

Consequently, there is some fear that the conclusions from studies will not be

valid because of unrecognized pseudoreplication.

The concept of pseudoreplication was introduced by Hurlbert (1984) with the

definition “the use of inferential statistics to test for treatment effects

with data from experiments where either treatments are not replicated,

or replicates are not statistically independent”.  Two examples of

pseudoreplication are:

• A sample of metre square quadrats randomly located within a 1 ha study

region randomly located in a larger burned area is treated as a random

sample from the entire burned area.

• Repeated observations on the location of a radio-tagged animal are

treated as a simple random sample of the habitat points used by the

animal, although in fact successive observations tend to be close together

in space.

In both of these examples it is the application of inferential statistics to

dependent replicates as if they were true replicates from the population of

interest that causes the pseudoreplication.  However, it is important to

understand that using a single observation per treatment or replicates that are

not independent data is not necessarily wrong.  Indeed it may be unavoidable

in some field studies.  What is wrong is to ignore this in the analysis of the

data.

There are two common aspects of pseudoreplication.  One of these is the

extension of a statistical inference observational study beyond the

specific population studied to other unstudied populations.  This is the

problem with the first example above on sampling of burned areas.   The

other aspect is the analysis of dependent data as if they are independent data.

This is the problem with the example on radio-tagged animals.

When dependent data are analysed as if they are independent, the

sample size used is larger than the effective number of independent

observations.  This often results in too many significant results being

obtained from tests of significance, and confidence intervals being narrower

than they should be.  To avoid this, a good rule to follow is that statistical

inferences should be based on only one value from each independently

sampled unit, unless the dependence in the data is properly handled in the

analysis.  For example, if five quadrats are randomly located in a study area,

then statistical inferences about the area should be based on five values,

regardless of the number of plants, animals, soil samples, etc., that are

counted or measured in each quadrat.  Similarly, if a study uses data from 5

radio-tagged animals then statistical inferences about the population of

animals should be based on a sample of size 5, regardless of the number of

times each animal is relocated.

When data are dependent because they are collected close together in time or

space there are a very large number of analyses available to allow for this.
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Some of these methods are discussed in later modules.  For now it is just

noted that unless it is clearly possible to identify independent observations

from the study design used then a method of analysis that allows for

dependent data needs to be used.

1.10 Multiple Testing

Suppose that an experimenter is planning to run a number of trials to

determine whether a chemical at a very low concentration in the environment

has adverse effects.  A number of variables will be measured (survival times of

fish, growth rate of plants, etc.) with comparisons between control and

treated situations, and the experimenter will end up doing 20 tests of

significance at the 5% level each.  She decides that if any of these tests give a

significant result then there is evidence of adverse effects.  This experimenter

has a multiple testing problem.

To see this, suppose that the chemical has no perceptible affects at the level

tested so that the probability of a significant effect on any one of his 20 tests

is 0.05.  Suppose also that the tests are on independent data.  Then the

probability of none of the tests being significant is 0.9520 = 0.36, so that the

probability of obtaining at least one significant result is 1 - 0.36 = 0.64.  Hence

the likely outcome of the experimenter’s work is to conclude that the

chemical has an adverse effect even when it is harmless.

Many solutions to the multiple testing problem have been proposed.  The best

known of these relate to the specific problem of comparing the mean values

at different levels of a factor in conjunction with analysis of variance.  These

are discussed at length in general statistics texts (e.g. Steel and Torrie, 1980,

Chapter 8; Underwood, 1997, Section 8.6), and also in the more specialised

texts of Hochberg and Tamhane (1987) and Westfall and Young (1993).  These

multiple comparison procedures are also available in standard statistical

computer packages, although they are not accepted as necessarily being

useful by all statisticians (e.g. Saville, 1986, 1990; Mead, 1988, p. 311; Nelder,

1999).

There are also some procedures that can be applied more generally when

several tests are to be conducted at the same time.  Of these, the Bonferroni

procedure is the simplest.  This is based on the fact that if m tests are carried

out at the same time using the significance level (100α%)/m, and all of the

null hypotheses are true, then the probability of getting any result significant

is less than α.  Thus the experimenter with 20 tests to carry out can use the

significance level (5%)/20 = 0.25% for each test, and this ensures that the

probability of getting any significant results is less than 0.05 when no effects

exist.

An argument against using the Bonferroni procedure is that it requires very

conservative significance levels when there are many tests to carry out.  This

has led to the development of a number of improvements that are designed to

result in more power to detect effects when they do really exist.  Of these,

the method of Holm’s (1979) appears to be the one which is easiest to

apply (Peres-Neto, 1999).  This does not however take into account the

correlation between the results of different tests.  If some correlation does

exist because the different test statistics are based partially on the same data
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then in principle methods which allow for this should be better, such as the

randomization procedure described by Manly (1997, Section 6.8) which can

be applied in a wide variety of different situations (e.g. Holyoak and Crowley,

1993), or several approaches that are described by Troendle and Legler

(1998).

Holm’s method works using the following algorithm:

1. Decide on the overall level of significance α to be used (the probability

of declaring anything significant when the null hypotheses are all true).

2. Calculate the p-value for the m tests being carried out.

3. Sort the p-values into the ascending order, to give p
1
, p

2
, ..., p

m
, with any

tied values being put in a random order.

4. See if p
1
≤α/k, and if so declare the corresponding test to give a

significant result, otherwise stop.  Next see if p
2
≤α/(k-1), and if so

declare the corresponding test to give a significant result, otherwise stop.

Next see if p
3
≤α/(k-2), and if so declare the corresponding test to give a

significant result, otherwise stop.  Continue this process until an

insignificant result is obtained, or until it is seen whether p
k
≤α, in which

case the corresponding test is declared to give a significant result.  Once

an insignificant result is obtained, all the remaining tests are also

insignificant, because their p-values are at least as large as the

insignificant one.

Example: Multiple Tests on Correlations Between Characters
for Brazilian Fish
This example used to illustrate the Holm (1979) procedure is also the one

used by Peres-Neto (1999).  The situation is that five morphological characters

have been measured for 47 species of Brazilian fish and there is interest in

which pairs of characters show significant correlation.  Table 1.5 shows the

ten pairwise correlations obtained with their probability values based on the

assumptions that the 47 species of fish are a random sample from some

population, and that the characters being measured have normal distributions

for this population.  (For the purposes of this example the validity of these

assumptions will not be questioned.)  The calculations for Holm’s procedure,

using an overall significance level of 5% (α = 0.05) are shown in Table 1.6.  It

is found that just two of the correlations are significant after allowing for

multiple testing.
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TABLE  1 . 5   CORRELAT IONS  (R )  BETWEEN CHARACTERS  FOR 47  SPEC IES  OF

BRAZIL IAN F I SH ,  WITH CORRESPONDING p -VALUES .   FOR  EXAMPLE ,  THE

CORRELAT ION BETWEEN CHARACTERS  1  AND 2  I S  0 . 110 ,  WITH p  =  0 . 460 .

                     CHARACTER

CHARACTER 1 2 3 4

2 r 0.110

p-value 0.460

3 r 0.325 0.345

p-value 0.026 0.018

4 r 0.266 0.130 0.142

p-value 0.070 0.385 0.340

5 r 0.446 0.192 0.294 0.439

p-value 0.002 0.196 0.045 0.002

1.11 Meta-Analysis: Methods for Combining Results from
Several Studies

The term ‘meta-analysis’  is used to describe methods for combining the

results from several studies to reach an overall conclusion.  This can be

done in a number of different ways, with the emphasis either on determining

whether there is overall evidence of the effect of some factor, or of producing

the best estimate of an overall effect.

TABLE  1 . 6   CALCULAT IONS  AND RESULTS  FROM THE HOLM (1979 )  METHOD

FOR MULT IPLE  TEST ING US ING THE  CORRELAT IONS  AND p -VALUES  FROM

TABLE  5 . 1 ,  AND α  =  0 . 05 .

i r p-VALUE 0.05/(m+i-1)      SIGNIFICANCE

1 0.439 0.002 0.005 yes

2 0.446 0.002 0.006 yes

3 0.345 0.018 0.006 no

4 0.325 0.026 0.007 no

5 0.294 0.045 0.008 no

6 0.266 0.070 0.010 no

7 0.192 0.196 0.013 no

8 0.142 0.340 0.017 no

9 0.130 0.385 0.025 no

10 0.110 0.460 0.050 no
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A simple approach to combining the results of several tests of significance was

proposed by Fisher (1970).  This is based on three well-known results: (a) if

the null hypothesis is true for a test of significance then the p-value from the

test has a uniform distribution between 0 and 1 (i.e. any value in this range is

equally likely to occur); (b) If p has a uniform distribution, then -2log
e
(p) has

a chi-squared distribution with 2 degrees of freedom; and (c) if X
1
, X

2
, ..., X

n

all have independent chi-squared distributions then their sum, S = ΣX
i
 also has

a chi-squared distribution, with the number of degrees of freedom being the

sum of the degrees of freedom for the components.  It follows from these

results that if n tests are carried out on the same null hypothesis using

independent data and yield p-values of p
1
, p

2
, ..., p

n
, then a sensible way to

combine the test results involves calculating

S
1
 = -2Σlog

e
(p

i
), (1.4)

where this will have a chi-squared distribution with 2n degrees of freedom if

the null hypothesis is true for all of the tests.  A significantly large value of S
1

is evidence that the null hypothesis is not true for at least one of the tests,

where this will occur if one or more of the individual p-values is very small, or

if most of the p-values are fairly small.

There are a number of alternative methods that have been proposed for

combining p-values, but Fisher’s method seems generally to be about the best

providing that the interest is in whether the null hypothesis false for any of

the sets of data being compared (Folks, 1984).  However, Rice (1990) argued

that sometimes this is not quite what is needed.  Instead, the question is

whether a set of tests of a null hypothesis are in good agreement about

whether there is evidence against the null hypothesis.  Then a consensus p-

value is needed to indicate whether, on balance, the null hypothesis is

supported or not.  For this purpose Rice suggests using the Stouffer method

described by Folks (1984).

The Stouffer method proceeds as follows.  First the p-value from each test is

converted to an equivalent z-score, i.e. the p-value p
i
 for the ith test is used to

find the value z
i
 such that

Prob(Z < z
i
) = p

i
, (1.5)

where Z is a random value from the standard normal distribution with a mean

of zero and a standard deviation of one.  If the null hypothesis is true for all of

the tests then all of the z
i
 values will be random values from the standard

normal distribution, and it can be shown that their mean   z  will be normally

distributed with a mean of zero and a variance of 1/√n.  The mean z-value can

therefore be tested for significance by seeing whether

    S z n2 1= /( / ) , (1.6)

is significantly less than zero.

There is a variation on the Stouffer method that is appropriate when for some

reason it is desirable to weight the results from different studies differently.

This is called the Liptak-Stouffer method by Folks 1984).  In this case, let w
i
 be

the weight for the ith study, and define the test statistic

    S3 1 1 2 2 1
2

2
2 2= + + + +( ... ) / ( ... )w z w z w z w w wn n n . (1.7)
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If the null hypothesis is true for all studies then this will follow a standard

normal distribution.  If it is significantly low in comparison with the standard

normal distribution then this is evidence that the null hypothesis is not always

true.

Meta-analysis as generally understood involves more than just

combining the p-values from several sets of data.  In fact, the usual

approach is to take a series of studies and for each one calculate an estimated

effect size, which is often just the mean difference between the treated and

control groups in units of the estimated standard deviation of individual

observations.  Questions of interest are then:

• How large is the effect overall?

• Is it generally a positive or a negative effect, and is it usually different

from zero?

• Are the effect sizes similar for all studies?

• If there is variation between studies, can this be related to the different

types of study involved?

There is a large literature on this type of meta-analysis.  Comprehensive

sources for more information are the books by Hedges and Olkin (1985,

1999), while the introductions to the topic provided by Gurevitch and Hedges

(1993, 1999) and Fernandez-Duque (1997) will be useful for beginners in this

area.  Also, a recent Special Feature in the journal Ecology gives an up-to-date

review of applications of meta-analysis in this area (Osenberg et al. 1999).

1.12 Bayesian Inference

So far the methods discussed in this book have all been based on a traditional

view of statistics, with tests of significance and confidence intervals being the

main tools for inference, with these being justified either by the study design

(for design-based inference) or an assumed model (with model-based

inference).  There is, however, another fundamentally different approach

to inference that is being used increasingly in recent times because

certain computational difficulties that used to occur have now been

overcome.

This alternative approach is called Bayesian inference because it is based on a

standard result in probability theory called Bayes’ theorem.  To see what this

theorem says, consider the situation where it is possible to state that a certain

parameter θ must take one, and only one of a set of n specific values denoted

by θ
1
, θ

2
, ... θ

n
, and where before any data are collected it is known that the

prior probability of θ
i
 (i.e. the probability of this being the correct value for θ)

is P(θ
i
), with P(θ

1
) + P(θ

2
) + ... + P(θ

n
) = 1.  Some data that are related to θ are

then collected.  Under these conditions, Bayes’ theorem states that the

posterior probability that θ
i
 (i.e. the probability that this is the correct value of

θ, given the evidence in the data), is

P(θ
i
|data) = P(data|θ

i
)P(θ

i
)/ ΣP(data|θ

k
)P(θ

k
), (1.8)

where the summation is for k = 1 to n, and P(data|θ
i
) is the probability of

observing the data if θ = θ
i
.
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This result offers a means of being able to calculate the probability that a

particular value is the correct one for θ on the basis of the data, which is the

best that can be hoped for in terms of inferences about θ.  The stumbling

block is that in order to do this it is necessary to know the prior probabilities

before the data are collected.

There are two approaches used to determine prior probabilities when, as is

usually the case, these are not really known.  The first approach uses the

investigator’s subjective probabilities, based on general knowledge about the

situation.  The obvious disadvantage of this is that another investigator will

likely not have the same subjective probabilities so that the conclusions from

the data will depend to some extent at least on who does the analysis.  It is

also very important that the prior probabilities are not determined after the

data have been examined because equation (1.8) does not apply if the prior

probabilities depend on the data.  Thus inferences based on equation (1.8)

with the prior probabilities depending partly on the data are not Bayesian

inferences.  In fact, they are not justified at all.

The second approach is based on choosing prior probabilities that are

uninformative, so that they do not have much effect on the posterior

probabilities.  For example, the n possible values of θ can all be given the

prior probability 1/n.  One argument for this approach is that it expresses

initial ignorance about the parameter in a reasonable way, and that providing

there is enough data the posterior probabilities do not depend very much on

whatever is assumed for the prior probabilities.

Equation (1.8) generalizes in a straightforward way to situations where there

are several or many parameters of interest, and where the prior distributions

for these parameters are discrete or continuous.  For many purposes, all that

needs to be known is that

P(parameters|data) ∝ P(data|parameters)P(parameters),

i.e. the probability of a set of parameters values given the data is proportional

to the probability of the data given the parameter values, multiplied by the

prior probability of the set of parameter values.  This result can be used to

generate posterior probability distributions using possibly very complicated

models when the calculations are done using a special technique called

Markov chain Monte Carlo.

There is one particular aspect of Bayesian inference that should be

appreciated.  It is very much model-based in the sense discussed in

Section 5.  This means that it is desirable with any serious study that the

conclusions from an analysis should not be quite robust to both the

assumptions made about prior distributions, and the assumptions made about

the other components in the model.  Unfortunately, these types of

assessments are often either not done, or not done very thoroughly.

A brief introduction to Bayesian methods is included here because it seems

likely that there will be increasing use of these methods in the future as means

of drawing conclusions from data.  More information about them with the

emphasis on Markov Chain Monte Carlo methods is provided in the books by

Manly (1997) and Gilks et al. (1996).  For more on Bayesian data analysis in

general see the book by Gelman et al. (1995), and for arguments why these

approaches should be viewed with caution see Dennis (1996).
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1.13 Data Quality Objectives (DQO) Process

The Data Quality Objectives (DQO) process was developed by the United

States Environmental Protection Agency to ensure that when a data collection

endeavour has been completed it will have accomplished two goals:

• provided sufficient data to make required decisions within a reasonable

certainty

• collected only the minimum amount of necessary data

The idea is to have the least expensive data collection scheme, but not at

the price of providing answers that have too much uncertainty (United

States Office of Environmental Management, 1997).

At the heart of the use of the process is the assumption that there will always

be two problems with environmental decision making: (1) the resources

available to address the question being considered are not infinite, and (2)

there will never be a 100% guarantee that the right decision has been reached.

Generally, more resources can be expected to reduce uncertainty.  The DQO

process therefore attempts to get the right balance between resource use and

uncertainty.  There are two main activities involved:

• the questions to be answered are stated very specifically for the problem

being considered

• the amount of uncertainty that can be tolerated is stated very specifically

The DQO process then provides a complete and defensible justification for

the data collection methods used, covering:

• the questions that are important

• whether the data will answer the questions

• what quality of data is needed

• how much data are needed

• how the data will actually be used in decision making

This is all done before the data are collected, and preferably agreed to by all

the stakeholders involved.

There are seven steps to the DQO process:

1. State the problem: describe the problem, review prior work, understand

the important factors.

2. Identify the decision: find what questions need to be answered and the

actions that might be taken, depending on the answers.

3. Identify inputs to the decision: determine the data needed to answer the

important questions.

4. Define the study boundaries: specify the time periods and spatial areas to

which decisions will apply, determine when and where to gather data.

5. Develop a decision rule: define the parameter of interest, specify action

limits, integrate the previous DQO outputs into a single statement that

describes the logical basis for choosing among alternative possible

actions.
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6. Specify limits on decision errors: specify tolerable decision error

probabilities (probabilities of making the wrong decisions) based on the

consequences of incorrect decisions.

7. Optimize the design for obtaining data: generate alternative sampling

designs, choose the one that meets all the DQOs with the minimum use

of resources.

The output from each step influences the choices made later but it is

important to realize that the process is iterative and the carrying out of one

step may make it necessary to reconsider one or more earlier steps.  Steps 1-

6 should produce the Data Quality Objectives that are needed to develop the

sampling design at step 7.

When used by the US EPA, a DQO planning team usually consists of technical

experts, senior managers, a statistical expert and a quality assurance/quality

control (QA/QC) advisor.  The final product is a data collection design that

meets the qualitative and quantitative needs of the study, and much of the

information generated during the process is used for the development of

Quality Assurance Project Plans (QAPPs) and the implementation of the Data

Quality Assessment (DQA) Process.  These are all part of the US EPA’s system

for maintaining quality in their operations.

More information about the DQO process with reference documents can be

obtained from the world-wide web (United States Office of Environmental

Management, 1997).  A good start is to read the EPA’s guidance document

(United States Environmental Protection Agency, 1994).
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1.14 Key Points in This Module

• The prior knowledge of statistics needed to get the maximum benefit

from this and the other modules  is summarised

• In drawing conclusions from data, an important distinction is between

observational and experimental studies.  In general, observational

studies are more likely to be affected by uncontrolled factors, leading to

incorrect conclusions.

• Experimental studies can be either true experiments, or quasi-

experiments.  True experiments incorporate randomization, replication

and controls, while quasi-experiments lack one of these components.

Many studies in environmental science are really quasi-experiments, so it

is important to realize the limitations that this imposes on inferences.

• There are two quite distinct philosophies that are used for drawing

conclusions with conventional statistical methods.  One is design-based,

drawing its justification from the randomization used in sampling, or in

the random allocation of experimental units to different treatments.  The

other is model-based, drawing its justification from the random variation

inherent in a model assumed to describe the nature of observations.  In

general it is recommended that where possible inferences should be

design-based because this requires fewer assumptions and is always

valid providing that randomizations are properly carried out.

• There are limitations with tests of significance which has led to their use

being criticised, at least with some applications.  Two particular

problems are: (1) often tests are carried out when the null hypothesis is

known to probably be untrue so that a significant result is very likely if

enough data are collected, and (2) a non-significant result does not mean

that the null hypothesis is false because the sample size may just not be

large enough to detect the existing effect.

• It is argued that null hypotheses are relevant in situations where there

really is doubt about whether a null hypothesis is true or not.  If this is

not the case then it is more reasonable to estimate the magnitude of

effects with some measure of how accurate the estimation is, using a

confidence interval, for example.

• Randomization tests have been used quite often with environmental data.

The idea is to compare the value of an observed test statistic with the

distribution obtained by randomly reallocating the data to different

samples in some sense.  These tests have the advantage of requiring

fewer assumptions than more conventional tests.  They are, however,

computer-intensive and may need special computer software.

• Bootstrapping is another computer-intensive method.  It is based on the

idea that in the absence of any knowledge about a distribution other than

the values in a random sample from the distribution, the best guide to

what would happen by resampling the population is to resample the

sample.  In principle, bootstrapping can be used to conduct tests of

significance and to construct confidence intervals for population

parameters.
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• Pseudoreplication occurs when standard statistical methods are used to

test treatment effects where either treatments are not replicated, or

replicates are not statistically independent.  Two errors can be made in

this respect: (1) inferences can be extended outside the population

actually sampled, and (2) observations that are correlated because they

are close in space or time are not analysed taking this into account.

• When several related hypothesis tests are carried out at the same time

and all the null hypotheses are true, the probability of at least one

significant result increases with the number of tests.  This is a well-

known problem which has led to the development of a range of

procedures to take into account the multiple testing.  Multiple

comparison methods to compare means at different factor levels after

analysis of variance are procedures of this type that are widely available

in statistical software, but not favoured by all statisticians.  More general

approaches are also used, including using a Bonferroni adjustment for

the significance level used with individual tests, and Holm’s stepwise

method for adjusting these levels.

• Meta-analysis is concerned with the problem of combining the results

from a number of different studies on the same subject.  This can be done

by combining the p-values obtained from different studies using Fisher’s

method, or the Stouffer method.  The Stouffer method also has a

variation called the Liptak-Stouffer method which allows the results of

different studies to receive different weights.  Alternatively, rather than

using p-values, an effect size is estimated for each study and these effect

sizes are examined in terms of the overall effect, the extent to which the

effect varies from study to study, and whether the variation between

studies can be explained by differences between the type of studies

used.

• Bayesian inference is different from conventional statistical inference,

and is becoming more widely used.  With this approach a prior

distribution assumed for a parameter of interest is changed using Bayes’

theorem into a posterior distribution, given the information from some

new data.  Modern computing methods, particularly Markov chain Monte

Carlo, make the Bayesian approach much easier to use than was the case

in the past.  However, it is cautioned that Bayesian inference is very

much model-based, with all the potential problems that this implies.

• The United States Data Quality Objective (DQO) process is described.

This is a formal seven step mechanism for ensuring that sufficient data

are collected to make required decisions with a reasonable probability

that these are correct, and that only the minimum amount of necessary

data are collected.
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1.15 Questions About This Module

After completing this module you should be able to give reasonable answers

to the following questions:

1. For the following examples, decide whether it is an observational or

experimental study:

(a) the trials using 1080 pellets in the example of a randomization test

used in Section 1.7;

(b) monitoring of Dactylanthus taylorii near the summit of Mount

Pirongia, 1997-99 (Data Set 3 in the Appendix), where various

measures such as the number of chewed buds on plants were

compared for plants that were uncaged or caged;

(c) collection of data on blue cod lengths from Paterson Inlet, 1994-98

(Data Set 5 in the Appendix), where some sampling sites are in a

proposed marine reserve, and other sites are not;

(d) collection of data on the stomach contents of galaxid and trout in

Otago streams (Data Set 8 in the Appendix).

2. What is the difference between a ‘true’ experiment and a quasi-
experiment?

3. Are the before-after-control-impact (BACI) studies carried out by DOC
usually true experiments or quasi-experiments?

4. What is the difference between design-based inference and model-based
inference, and which is usually easiest to defend?

5. What is it about tests of significance which has led to their use being
attacked by a number of authors in recent years?

6. Given a sample of adult animals, and their lengths, how would you use a
randomization test to decide whether there is evidence that males tend to
be larger than females?

7. Consider the bootstrap example on finding a 95% confidence interval for
the mean chlorophyll-a in the lakes in a region used in Section1.8.  How
could bootstrapping be used to decide on the number of lakes that need
to be sampled in order to estimate the population mean with a 95%
confidence interval of  ± 10.0.

8. What are the two common types of pseudoreplication?

9. Under what circumstances should an adjustment for multiple testing be
used when carrying out a series of statistical tests, and what is the likely
outcome if no adjustment is made?

10. What is mean by a ‘meta-analysis’, and why might you want to combine
the p-values from several studies as part of a study of this type?

11. In order to use Bayesian inference it is necessary to specify prior
distributions for the parameters of interest (e.g. the prior distribution for
the mean amount of possum browse on the canopy of the trees in an
area).  What exactly does this prior distribution represent?

12. What are the main goals of the US EPA’s Data Quality Objectives (DQO)

process, and to what extent is this relevant with New Zealand conditions?
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Module 2: Sample Survey
Designs

S U M M A R Y

When data are collected to assess environmental quality, or change in quality,

they are usually only a sample from the population.  It is important therefore

to understand at least the basic ideas of the theory of statistics concerning

sampling designs and the estimation of population parameters.  This module

introduces the idea of simple random, stratified and systematic sampling, as

well as some more complex designs, and discusses how they are applied to

environmental management.

2.1 Population Parameters and Sample Statistics

Environmental data is usually only a sample of the population of interest. For

example, a data set of ground water quality measurements is only a subset of

what could have been collected if there was an infinitely large budget.  The

subset is a sample from a population which, in this example, may be defined

spatially (e.g. the Waimakariri Basin) and temporally (e.g. the calendar year of

1998).  The goal of sampling is to summarise the characteristics of the

population, e.g. the quality of the water.  A summary of these characteristics

might then consist of estimates of averages and variability.  These estimates

are called “estimators” of the population.  As another example, if we are

interested in breeding rate of the rodents a sample of the rodents may be

collected and the weight and sex of each animal recorded.  The mean and

standard deviation of the weight of animals and the proportion of females are

used to characterise the population.

In the terminology of statistics, the population is defined to be the collection

of all items that are of interest in an investigation.  This definition should

include the spatial and temporal location.  The water quality dataset is used to

estimate water quality in the Waimakariri Basin, and in the period of 1998.

The items in a population may be individual animals or plants, or small plots

of land, pieces of rock, or groups of animal, or units of water and air.  The

crucial thing as far as statistical theory is concerned is that the items that make

up the population are sampled using an appropriate procedure.  For this

reason the items are often called the sample units.

Sometimes population sizes are small enough to allow every item to be

examined.  This then provides a census.  However, the populations of interest

are usually too large to make a census practical.  In other situations

information may be available on all items but it is not possible to process all

the data in the time allowed or, in the time it takes to collect the information

on all the items the population would have changed.  For example, it would

be possible, given enough people, to survey the entire West Coast Region and

measure the coverage of Old Man’s Beard.  Given the growth rate of the vine,
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if the survey were conducted in summer the coverage would probably have

increased between the start of the survey and the end!

The measures that are used to summarise a population are called population

parameters and the corresponding sample values are called statistics.  For

example, the population mean (a parameter) may be estimated by a sample

mean (a statistic).  Similarly, a population sex ratio of females (a parameter)

may be estimated by a sample ratio (a statistic).  Remember - Population –

Parameter Sample - Statistics.  Some of the commonly used notation for

populations and samples are:

Sample mean -   y Population mean - µ

Sample variance - s2 Population variance - σ2

2.2 Variability in Environmental Data

One of the typical features of environmental data is high variability.

Variability means that the measurements taken from the population unit are

not the same.  We expect to have variability in environmental data and often

the amount of variation is what we are specifically interested in.  For example,

the abundance of a pest population is expected to increase following a

control operation.  The goal in monitoring may be to track this change, or

variation, over time to trigger a follow-up control operation once the

population has reached a target threshold level.  Temporal variation can be

confounded by other sources of variation, e.g. seasonal changes and variation

due to the fact we measure only a sample rather than the entire population

(Link et al. 1994).  What is important in sampling is to design a survey that

minimises these confounding sources of variation, or allows for them to be

quantified.

2.3 Simple Random Sampling

Whenever inferences are to be made about population parameters on the

basis of the sample result the sample design should have some element of

random selection.  This is because of the concept of statistical inference, i.e.

inferring about the population from the sample data is based on the laws of

probability.  Random sampling is not subjective sampling, where units in the

population are chosen because they “seem to be representative”, or

haphazard sampling where the units in the sample are those that are

“convenient” to select.  Random sampling involves the selection of units using

a well defined and carefully carried out randomisation procedure that (in its

simplest application) ensures that all possible samples of the required size are

equally likely to be chosen.  When subjective or haphazard sampling is

conducted results should not be used to infer about the whole population.

All possible samples from a population have equal chance of being selected

with random sampling and this method may produce exactly the same units as

a subjectively or haphazardly drawn sample.  It is important therefore to

appreciate that the key to the value of random sampling is the properties of

this procedure rather than the specific units that are obtained.  In fact it is not

uncommon to feel uncomfortable with the result of random sampling because

it does not look “representative” enough on close inspection.  This will not be
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a valid objection to the sample providing that the procedure used to select it

was defined and carried out in an appropriate manner.

Simple random sampling involves giving each sample unit the same

probability of being selected.  This can be with replacement, in which case

every selected unit is chosen from the full population, irrespective of which

units have already been included in the sample, or without replacement, in

which case a sample unit can occur at most once in the sample.  As a general

principle, sampling without replacement is preferable to sampling with

replacement because it gives slightly more accurate estimation of population

parameters.  However, the difference between the two methods of sampling is

not great when the population size is much larger than the sample size.

Example: Sampling Weeds in a Large Study Area
Suppose we need to estimate the density of a weed species in a large study

area.  One approach would be to set up a grid over the entire area.  Figure 1

indicates the type of result that might then be obtained, where in this case

there are 116 quadrats covering an irregular shaped area.  The quadrats are

the sampling units within the population of interest.  The list of these units is

sometimes called the sampling frame.  The variable that will be measured in

each sample unit, in this example, is the number of plants in the quadrat.

The next step would be to decide on a sample size n, i.e. how many quadrats

should be randomly sampled to estimate the population mean number of plants

per quadrat with an acceptable level of accuracy.  Methods for choosing sample

sizes are discussed later in this module.  For this example it will be assumed that

a sample size of 10 is needed. Note that we have had to decide on what quadrat

size to use in order to determine the desired number of quadrats.

There are various ways to determine the random sample.  One approach involves

labelling the quadrats in the population from 1 to 116 (as in Figure 2.1) and then

selecting the ones to sample by generating on a computer 10 random integers

from 1 to 116.  Because sampling should be without replacement the same

quadrat would not be allowed to occur more than once.  Any repeated selections

would therefore be ignored and the process of selecting random integers

continued until 10 different quadrats have been chosen.

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75 76 77

78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94

95 96 97 98 99 100 101

102 103 104 105 106 107

108 109 110 111 112

113 114 115 116

Figure 2.1 A study area divided into 116 square quadrats to be used as sample units.
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Computer programs are available to generate random integers within the

specified range of 1 to 116.  If one of these is not available then a table of

random numbers such as the one provided here in Table 2.1 can be used.  It

is definitely not allowable to just think up the numbers.  Human beings do not

have random number generators in their heads!

TABLE  2 . 1   A  RANDOM NUMBER TABLE  WITH EACH DIGIT  CHOSEN SUCH

THAT 0 ,  1 ,  . . . ,  9  WERE  EQUALLY  L IKELY  TO OCCUR .   THE  GROUPING INTO

GROUPS  OF  FOUR DIGITS  I S  ARB ITRARY SO THAT,  FOR  EXAMPLE ,  TO

SELECT  NUMBERS  FROM 0  TO 99999  THE  D IG ITS  CAN BE  CONS IDERED F IVE

AT  A  T IME .

1252 9045 1286 2235 6289 5542 2965 1219 7088 1533

9135 3824 8483 1617 0990 4547 9454 9266 9223 9662

8377 5968 0088 9813 4019 1597 2294 8177 5720 8526

3789 9509 1107 7492 7178 7485 6866 0353 8133 7247

6988 4191 0083 1273 1061 6058 8433 3782 4627 9535

7458 7394 0804 6410 7771 9514 1689 2248 7654 1608

2136 8184 0033 1742 9116 6480 4081 6121 9399 2601

5693 3627 8980 2877 6078 0993 6817 7790 4589 8833

1813 0018 9270 2802 2245 8313 7113 2074 1510 1802

9787 7735 0752 3671 2519 1063 5471 7114 3477 7203

7379 6355 4738 8695 6987 9312 5261 3915 4060 5020

8763 8141 4588 0345 6854 4575 5940 1427 8757 5221

6605 3563 6829 2171 8121 5723 3901 0456 8691 9649

8154 6617 3825 2320 0476 4355 7690 9987 2757 3871

5855 0345 0029 6323 0493 8556 6810 7981 8007 3433

7172 6273 6400 7392 4880 2917 9748 6690 0147 6744

7780 3051 6052 6389 0957 7744 5265 7623 5189 0917

7289 8817 9973 7058 2621 7637 1791 1904 8467 0318

9133 5493 2280 9064 6427 2426 9685 3109 8222 0136

1035 4738 9748 6313 1589 0097 7292 6264 7563 2146

5482 8213 2366 1834 9971 2467 5843 1570 5818 4827

7947 2968 3840 9873 0330 1909 4348 4157 6470 5028

6426 2413 9559 2008 7485 0321 5106 0967 6471 5151

8382 7446 9142 2006 4643 8984 6677 8596 7477 3682

1948 6713 2204 9931 8202 9055 0820 6296 6570 0438

3250 5110 7397 3638 1794 2059 2771 4461 2018 4981

8445 1259 5679 4109 4010 2484 1495 3704 8936 1270

1933 6213 9774 1158 1659 6400 8525 6531 4712 6738

7368 9021 1251 3162 0646 2380 1446 2573 5018 1051

9772 1664 6687 4493 1932 6164 5882 0672 8492 1277

0868 9041 0735 1319 9096 6458 1659 1224 2968 9657

3658 6429 1186 0768 0484 1996 0338 4044 8415 1906

3117 6575 1925 6232 3495 4706 3533 7630 5570 9400

7572 1054 6902 2256 0003 2189 1569 1272 2592 0912

3526 1092 4235 0755 3173 1446 6311 3243 7053 7094

2597 8181 8560 6492 1451 1325 7247 1535 8773 0009

4666 0581 2433 9756 6818 1746 1273 1105 1919 0986

5905 5680 2503 0569 1642 3789 8234 4337 2705 6416

3890 0286 9414 9485 6629 4167 2517 9717 2582 8480

3891 5768 9601 3765 9627 6064 7097 2654 2456 3028

To use Table 2.1 to choose the sample, first start at an arbitrary place in the

table such as the beginning of row five.  The first three digits in each block of
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four digits can then be considered, to give the series 698, 419, 008, 127, 106,

605, 843, 378, 462, 953, 745, and so on.  The first ten different numbers

between 1 and 116 then gives a simple random sample of quadrats: 8, 106,

and so on.

Once the sample quadrats are chosen the quadrats are surveyed to find the

number of plants that each contains.  The average for the 10 sample quadrats

then gives an estimate of the mean number of plants in the area of one

quadrat over the entire study region.  The likely level of error can be

determined by methods to be discussed below.  If necessary, the estimate and

its error can then be converted to be in terms of plants per square metre, or

the total number of plants in the area, or any other measure of density.

Another way to select a random sample is to select random sample unit

locations from a map.  Using horizontal and vertical co-ordinates from the

map (e.g. the eastings and northings) and random numbers, pairs of random

co-ordinates can be selected.  For example in a particular study area the

horizontal map co-ordinates extended from 890 to 990 (or for 100 units) and

the vertical co-ordinates extended from 700 to 800 (100 units).  The RND

function on a calculator was used and the first two random numbers were

0.403 and 0.414.  The first sample location is at: 890 + (100 * 0.403) = 930.3 =

930 east and .700 + 100 * 0.414 = 741.4 = 741 north.  This sequence can be

repeated for as many sample points are needed.  If any sample point falls

outside the study area it is discarded and a new set of random numbers

generated.  There are many other ways to select random co-ordinates for a

map.  The important point is that the co-ordinates should be randomly, not

subjectively, selected.

2.4 Estimation of Mean Values

Assume that a simple random sample of size n is taken from a population of N

units, and that the variable of interest Y has values y
1
, y

2
, ... ,y

n
, for the

sampled units.  Then sample statistics that are commonly computed are:

the sample mean
    
y

y y y

n

y

n
n

n

i
i

= + + = =
∑( ... )1 2 1 (1)

the sample variance
    
s

y y

n

n

i
i

2 1

2

1
=

−

−
=
∑ ( )

(2)

the sample standard deviation     s s= 2

the estimated coefficient of variation,
    
ĉv

s

y
=

Note that the use of a caret (^) is to indicate an estimate rather than the actual

true value, e.g.     y = µ̂ .  The difference between the sample mean   y  and the

true population µ mean, is the sampling error.  This difference will vary from

sample to sample if the sampling process is repeated.  It can be shown

theoretically that if the random sampling process is repeated many times then

the sampling error will average out to zero.  Therefore the sample mean is an

“unbiased” estimator of the population mean.
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If there were many samples taken from the same population then the variance

among the sample means is a measure of the precision of the sampling

procedure.  If the sample means were all very similar then the sampling has

high precision.  If the sample means are quite different than the sampling

would have low precision.  In real life we will usually only take one sample

from a population but the precision of the sample can still be measured

although this measure is only an estimate.  The estimate of the precision of a

sample mean is:

    
varˆ ( )y

s

n

n

N
= −







2

1 (3)

The factor (1-n/N) is called the finite population correction factor (fpc).  This

fpc adjusts the estimate of precision according to what proportion of the

population has been sampled. For example if only 10% of the population were

sampled, (say N = 1000 and n = 100) then the fpc will be 0.9.  But if 40% of the

population were sampled then the fpc = (1 - 0.4) = 0.6.  Multiplying the term

s2/n by 0.6 has a large effect in shrinking the estimate of variance.  Note that

the fpc is only used where you have a finite population, that is, where you

know how many units there are in the population.  In the above example

there were 116 quadrats, and N = 116.  In other examples the population size

may be unknown.  If possums were being sampled in a design where

individual animals were the sample unit we don’t know how many possums

there are in NZ and could not use a fpc.  A population may be truly infinite

e.g. where sampling occurs at regular intervals through time and may

continue forever. In this situation a fpc would not be used either.  In other

situations the fraction of the population that is sampled is so small the fpc has

little real effect.

The square root of     varˆ ( )y  is the estimated standard error of the sample mean.

It is usually denoted by SE, or     SE( )y .  Strictly speaking it should be     
ˆ ( )SE y

because it is the “estimated” standard error.  The estimated coefficient of

variation of the mean is 
    
ˆ ( )cv y

y
= SE

.  This is written simply as cv although this

makes it difficult to distinguish between     cv y( )  and     cv y( ) .

The terms “standard error of the mean” and “standard deviation” are often

confused when encountered for the first time.  What must be remembered is

that the standard error of the mean is just the standard deviation of the mean

rather than the standard deviation of individual observations.  More generally,

the term “standard error” is used to describe the standard deviation of any

sample statistic that is used to estimate a population parameter.

The coefficient of variation of the mean is an index that reflects the precision

of estimation relative to the magnitude of the mean.  This can be used to

compare the results of several studies, to see which have relatively better

precision than others.

Example: Surveys of Blue Cod from Paterson Inlet, Stewart
Island (Appendix Data Set 5)
As an example of the calculation of the statistics that have just been defined,

consider the data from six sites that were randomly selected from inside and

six from outside the proposed Marine Reserve area at Paterson Inlet.  Data

collected from each site included: the average length of cod, the number of

cod, the standard deviation of the cod lengths and the coefficient of variation
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of the cod lengths, cv(y).  The sample unit is the survey sites, and not the

individual fish that were measured.  This is discussed further in module 3 but

briefly, the survey sites were randomly selected rather than the individual fish.

Therefore the appropriate unit is the site.  The size of the sample is n = 6 for

the survey inside the Reserve area and n = 6 for the survey outside the

Reserve area.  The sample statistics from the data collected from the Reserve

area in 1998 in April were calculated in SPSS and some of the output is in

Table 2.2.

TABLE  2 . 2   SUMMARY STAT IST ICS  FOR SURVEYS  INS IDE  (RESERVE  =  IN )

AND OUTS IDE  (RESERVE  =  OUT)  THE  PROPOSED MARINE  RESERVE  AT

PATERSON INLET  IN  APR IL  1998 .   THE  VAR IABLES  ARE :  THE  AVERAGE COD

LENGTH (AVERAGE) ,  THE  NUMBER  OF  COD (NUMBER) ,  THE  STANDARD

DEVIAT ION OF  THE  COD LENGTHS  ( SD)  AND THE  COEFF IC IENT  OF

VARIAT ION OF  THE  COD LENGTHS  (CV) .

RESERVE N MEAN STD. ERROR STD. DEVIATION VARIANCE

In Average 6 295.1884 9.3289 22.8512 522.175

Number 6 53.8333 11.5684 28.3367 802.967

sd 6 60.0110 7.3736 18.0616 326.223

cv 6 .2031 2.450E-02 6.001E-02 3.602E-03

Out Average 6 296.0682 7.6332 18.6974 349.592

Number 6 64.0000 10.1259 24.8032 615.200

sd 6 50.4157 5.5507 13.5964 184.862

cv 6 .1706 1.845E-02 4.520E-02 2.043E-03

The mean of the average cod length among survey sites within the proposed

Reserve was   y  = 295.19,     SE( )y  = 9.33, s = 22.85 and s2 = 522.18.  The     ̂ ( )cv y
= 295.19/22.85 = 12.92.  These calculations have been carried through to two

decimal places.  As a general rule it is reasonable for statistics to be quoted

with at least one more decimal place than the original data.  SPSS does not

include the fpc in calculating the standard error.  In this example the fpc is not

needed because there are an infinite number of sites that could have been

sampled.  If the fpc were to be used the standard error produced by SPSS

would need to be adjusted.

The summary statistic for the variable “Number” can also be read from the

SPSS output.  The meaning of summary statistics for the other variables is a

little more complicated.  The variable cv was used as a measure of the

variation in cod length within each survey site.  The mean of the cv, 0.20, is a

measure of the average amount of this variation of the within-survey site cod

lengths.  The other three statistics,     SE( )y , s and s2 are measures of how

variable, or how different, the within-site variation is, i.e. whether some sites

have more or less variation in cod length than other sites.

The summary statistics for the survey sites outside the Reserve can be

compared to the statistics from the sites inside the Reserve.  For example, the

average cod length in sites in the Reserve area (  y in = 295.19) is similar to the

average length of cod in sites outside the Reserve area (  y out = 296.07).  The

next step would be to test for statistical significance, e.g. by a t-test.
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The accuracy of a sample mean for estimating the population mean is often

represented by a 100(1-α)% confidence interval of the form

    y z± α / ,2 SE (4)

where zα/2
 refers to the value that is exceeded with probability α/2 for the

standard normal distribution.  Common values used for the confidence level

with the corresponding values of z are: z
0.25

 = 0.68 for 50% confidence, z
0.16

 =

1.00 for 68% confidence, z
0.05

 = 1.64 for 90% confidence, z
0.025

 = 1.96 for 95%

confidence, and z
0.005

 = 2.58 for 99% confidence.  The meaning of “confidence

interval” is best understood by an example.  For instance the interval

    y ± 1 64. ( )SE  will contain the true population mean with a probability of

approximately 0.90.  In other words, if there were many samples taken from a

population, and for each a confidence interval were calculated, approximately

90% of the intervals would contain the true population mean.

The interval (4) is only valid for large samples.  For small samples (say with n

< 20) it is better to use

    y t n± −α / ,2 1SE

where tα/2,n-1
 is the value that is exceeded with probability α/2 for the

t-distribution with n-1 degrees of freedom.  This requires the assumption that

the variable being measured is approximately normally distributed in the

population being sampled.  If this is not the case then no simple method

exists for calculating an exact confidence interval.  For the cod data example

above the 90% confidence interval for the average cod length in sites inside

the proposed Reserve in April 1998 is:

295.19 ± 2.02(9.33)

295.19 ± 18.80

The value 2.02 is t
0.025, 5.

  This can be found in statistical tables, or as a function

in EXCEL using the function TINV(0.1,5), or in SPSS with the transformation

IDF.T(0.05,5).  Note, EXCEL gives the two-tailed distribution (which is what

we want here) and SPSS the one-tailed distribution.  We can say with 90%

confidence that the true average cod length for the proposed Marine Reserve

area is between 295.19 - 18.80 = 276.39 and 295.19 + 18.80 = 313.99.  For the

area outside the Reserve the 90% confidence interval is 296.07 ± 2.02(7.63), or

between 280.69 and 311.45.  These confidence intervals overlap and there is

no evidence that there are differences in average cod length between the area

inside and outside the proposed Reserve.

2.5 Sample Sizes for Estimation of Means

One of the key considerations in designing a study is choosing what sample

size is use.  The sample size should be large enough to give an adequate level

of precision, but should not be unnecessarily large.  The sample size is

determined by the properties desired for the estimates  and the available

resources.  In most studies the resources available have the greatest influence.

One property for estimates that plays an important role in sample size

determination is the precision.  This refers to how close the estimate is to the
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quantity being estimated and usually we think in terms of the maximum

allowable precision.  The precision may be defined to be:

(i) absolute so that, for example, a mean is to be estimated to within 10 of

the true figure;

(ii) relative so that, for example, an estimate is to be within 5% of the true

figure; or

(iii) in terms of the coefficient of variation of the mean,     cv y( )  so that, for

example     cv y( )  should be no more than 0.02.

Usually precision is defined in terms of absolute or relative precision.

However, some researchers prefer the use of the coefficient of variation.

The other property of estimates that is important is the reliability, which refers

to the probability that the estimate will be as close to the parameter being

estimated as is specified by the measure of precision.  For example, a

researcher may wish to ensure with probability 0.9 (or with 90% confidence)

that a sample mean is within 30 units of the population mean.

One further definition is needed in discussing the determination of sample

sizes.  This relates to the precision of a confidence interval.  As discussed

earlier, the end points of a 100(1-α)% confidence interval are often

approximated by the values

(Estimate) ± zα/2
SE(Estimate).

The precision of the confidence interval is then d=±zα/2
SE(Estimate) and the

relative precision of the interval is r=±zα/2
SE(Estimate)/Estimate.  A typical

question in this respect is then: how large a sample is needed to ensure that d

is less than some chosen value d
0
 or r is less than some chosen r

0
?

This type of question can be answered approximately by setting d or r equal

to the desired value and solving the resulting equation for the sample size n.

Thus in order to obtain a 100(1-α)% confidence interval for the mean of   y ±d
0

it is required from equation (4) that

    z y dα / ( )2 0SE = ,

so that

    z s n n N dα / ( / ) ( / )2 01 − = .

Solving this equation for n yields

    n z s d z s N= +α α/ //( / )2
2 2

0

2

2
2 2 . (5)

Because the standard deviation is not known in advance it is necessary to

guess what this might be, for example using the value from an earlier sample.

Notice that if the population size N is large then

    n z s d≈ ( / )/α 2 0
2 . (6)

In fact this is a conservative equation in the sense that, for all population sizes

N, equation (6) gives a larger value of n than equation (5).

If it is a relative precision of r
0
 that is needed for a confidence interval for the

population mean then this requires that

    z y rα / /2 0SE = ,
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so that

    z s n n N y rα / ( / ) ( / ) /2 01 − = .

Solving for n then gives

    
n z s y r z s y N= + }α α/ /( / ) / ( / ) /2

2 2
0

2

2

2 2
,

or

    
n z cv y r z cv y N= + }α α/ /ˆ ( ) / ˆ ( ) /2

2 2
0

2

2

2 2
. (7)

This equation can be applied with an estimated, or guessed, value for the

coefficient of variation in the population in place of the unknown     ̂ ( )cv y .  For

a large population size N it reduces to

    n z cv y ra= { ˆ ( ) / }/ 2

2

0
2 , (8)

which always gives a larger value than equation (7).

Suppose the survey in Paterson Inlet proposed Marine Reserve were a pilot

study.  The April 1998 data from within the Reserve site were used to estimate

how large a sample should be taken to estimate the mean of the average cod

length to within 10% of the true mean using a 90% confidence interval.  This is

often referred to as a margin of error of 0.1.  Using equation 8 and note that

the     ̂ ( )cv y  = 22.85/295.19 = 0.08 the approximate sample size should be

n = {1.642 (0.8/0.102) = 20.82 or 21 sites.

Equation (5) to (7) should be regarded as giving no more than a rough

indication of adequate sample sizes when they are used with guessed values

for standard deviations or coefficients of variation.  Nevertheless, as a general

principle it should be remembered that any effort spent in determining

appropriate sample sizes is better than no effort at all.

All of the discussion so far about sample sizes has been in terms of just one

variable of interest in a study but in most studies several different variables

have to be considered at the same time.  If all variables require sample sizes of

about the same magnitude then the size used can be the maximum required

for any variable.  However if this is not possible within the available resources

then some lower size may need to be used, and some variables may have to

be estimated with less precision than was originally desired.

2.6 Estimating Totals

In many situations estimates of the total of all values in a population, rather

than the mean per population unit is required.  For example, the total weight

of new growth of all the plants in a region might be more important than the

mean growth on individual plants.  Similarly, the total amount of a pollutant

may be more important than the average amount per sample unit.

The estimation of a population total is straightforward if the population size N

is known and an estimate of the mean is available.  The general equation is

the mean per unit, multiplied by the number of units,

    T̂ Ny= (9)

The sampling variance of an estimated total,     vâr( ˆ)T , is

    vâr( ˆ) vâr( )T N y= 2 (10)
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and its standard error,     SE( ˆ)T  is

    SE SE( ˆ) ( )( ( ))T N y= (11)

2.7 Stratified Sampling

A valid criticism of simple random sampling is that it leaves too much to

chance.  For example, consider a survey to estimate species diversity in Buller

Gorge Scenic Reserve where the locations of 100 plots were randomly assigned

over the study area. By chance all the plots could be located within the valleys

and none were on the upper slopes.  This survey may not be considered to be

“representative” of the population.  One way to overcome this problem while still

keeping the advantages of random sampling is to use stratified random sampling.

This involves dividing the units in the population into non-overlapping strata, and

selecting an independent simple random sample from each of these strata.  For

the Buller Gorge survey the strata may be altitude bands, e.g. the valley floors,

mid slopes and upper slopes could be considered strata.

In general there is nothing to loose by using stratified sampling over simple

random sampling and there are some potential gains.  Firstly, if the individuals

within strata are more similar than individuals in general then the estimate of the

overall population mean will have a smaller standard error than can be obtained

with the same simple random sample size.  This is because the estimate of the

sampling variance for stratified sampling is the weighted-sum of the sampling

variance within each stratum.  If the units within a stratum are similar the

sampling variance within the stratum will be small and the weighted sum will be

at least as small as the variance obtained by pooling the sample data together.

Secondly, there may be value in having separate estimates of population

parameters for the different strata.  Often interest is in not only the overall

population mean, but in differences among the strata.  Using the example of the

Buller Gorge survey the overall species diversity can be estimated.  With a

stratified design the species diversity in each stratum, and the differences among

strata, can be estimated.  A third advantage is that stratification makes it possible

to sample different parts of a population in different ways, which may make some

cost savings possible.  For practical reasons dividing the survey into separate

strata can make logistical planning easier.

Example: Deer Pellet Survey in the Murchison Mountains
Takahe Special Area (Appendix Data Set 9)
A survey to count the number of deer pellet groups in 2.5m radius plots was

conducted in 1998.  The survey design used 20 long lines along which there

were circular plots at regular intervals.  The lines ran at right angles to the

river and crossed between two strata - the valley floor and the valley sides.

The average number of pellet groups in plots along the 20 lines can be

summarised by strata by using SPSS.  The average number of pellet groups in

plots was greater on the valley sides (mean = 0.0425) compared with the

valley floor (mean = 0.0300).
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TABLE  2 . 3   SUMMARY STAT IST ICS  FOR THE  AVERAGE NUMBER OF  DEER

PELLET  GROUPS  IN  PLOTS  IN  THE  VALLEY  FLOOR AND VALLEY  S IDES  OF

THE TAKAHE SPEC IAL  AREA ,  MURCHISON MOUNTAINS ,  1998 .   THERE  WERE

20  L INES  WITH PLOTS  SPACED AT  REGULAR  INTERVALS  ALONG THE L INE .

STRATUM N MEAN STD. ERROR

valley-floor 20 0.03000 0.01469

valley-sides 20 0.04252 0.01238

Generally, the types of stratification that should be considered are those based

on: spatial location, i.e. areas within which the population is expected to be

uniform, and, the size of sampling units.  For example, to sample an animal

population over a large area a map could be used to partition the area into a

few apparently homogeneous strata based on factors such as altitude and

vegetation type.  In sampling insects on trees the population could be

stratified on the basis of small, medium and large tree diameters.  In sampling

households a town could be divided into regions within which the age and

class characteristics are relatively uniform.  Usually the choice of how to

stratify is just a question of common sense.

The question of how many strata should also be considered.  The aim in

stratified sampling is for the units within each stratum to be as similar as

possible.  At first it would seem to be sensible to create many small strata to

ensure that the within-stratum variance is low.  This is true to an extent, but if

too many strata are created then each may have only a small sample size.  The

problem with small sample sizes is that the SE can be quite large when n is

small (remember that     SE = s n/ .  Another problem with having too many

strata and small within-stratum sample sizes is that there maybe too few

sample units to allow for optimal allocation of effort among the strata.

Allocation of sample effort among strata is discussed below but if stratum-

sample sizes are too small it may be impossible to have sufficient “flexibility”

in the allocation of sample units to achieve an optimal design.  As a general

rule of thumb the minimum number of sample units in a stratum is five.  Be

warned that this rule is a guide only for the minimum and should not be used

as a rule to decide on the total sample size for the entire study area by

multiplying five by the number of strata!

Another useful rule is that the more information you have about the

population the more strata you can create, or more realistically, the less

information, the fewer the strata.  If you have very little information you

should consider simple random sampling (i.e. one stratum).  Dividing the

population into strata should be based on sound environmental reasoning,

and not on the will to make a survey “appear” to be sophisticated.  Having

said that a useful rule of thumb is five units per stratum there are examples of

well designed surveys with only two units per stratum, e.g. the US EPA

drinking well survey in 1990.  In this example there was a lot of information

on spatial variation in water quality to create a design with many strata.  A

sample size of two within a stratum is definitely the minimum stratum-sample

size because with any fewer it is not possible to estimate stratum variances.
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Assume that K strata have been chosen, with the ith of these having size N
i
 and

the total population size being   ΣN Ni = .  If a random sample with size n
i
 is

taken from the ith stratum the sample mean   yi
will be an unbiased estimate of

the true stratum mean µ
i
 with estimated variance

    
vâr( )y

s

n

n

N
i

i

i

i

1

2

1= −






where s
i
 is the sample standard deviation for the stratum.  These results follow

by simply applying the results discussed above for simple random sampling to

the ith stratum only.

An estimate of the overall population mean is the weighted average of the

stratum sample means,

    
y W ys i ii

K
=

=∑ 1

where W
i
 = N

i
 /N.  The estimated variance is

    
vâr( ) vâr( )y W ys ii

K

i=
=∑ 2

1
(13)

The estimated standard error,     SE( )ys
 is the square root of the estimated

variance, and an approximate confidence interval for the population mean is

given by

    y t ys n s± −α / , ( )2 1SE (14)

The estimate of a total with stratified sampling is     T̂ Nys s= .  Estimates of the

variance and standard error for a total when stratified sampling is used are

    vâr( ˆ ) vâr( ), ( ˆ ) ( )( ( ))T N y T N ys s s s= =2 SE SE .

2.8 Allocation of Sample Units to Strata

The simplest way to allocate survey effort among strata is to make the sample

sizes for the different strata to be proportional to the strata sizes:

n
i
 /n=N

i
 /N. (15)

This is called stratification with proportional allocation. The samples are self-

weighting in that the chance of an individual unit being selected is exactly the

same as in simple random sampling.  However, the chance of getting a “bad

sample” is less.  For example, consider a population with 2400 male fish and

1600 female fish that was stratified on gender.  If n = 400 then with stratified

sampling with proportional allocation 240 males and 160 females will be

selected.  The disadvantage of simple random sampling is that by chance, all

400 sample units could be male fish.

Although proportional allocation is often used because it is convenient, it is

not necessarily the most efficient use of resources.  Another method to

allocate effort among strata is to consider the costs of sampling.  Sampling

costs are usually considered to have two components - fixed and variable

costs.  Fixed costs include things like travel time to the site, set up costs,

equipment use etc.  Variable costs are the costs of sampling units within each
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stratum and include travel time within the site to get to the stratum, the cost of

measuring each sample unit etc. A general cost equation that can be used is,

Total Cost   = +F c ni iΣ ,

where c
i
 is the variable cost of sampling one unit from stratum i.

If the costs of sampling a unit within a stratum vary and there are differences

in how variable the strata are, optimal allocation of survey effort will be when:

    

n

n

s c

s c

i i i i

i i i

≡
W

W

/

( / )Σ
(16)

In general stratum sample sizes will be larger if:

(i) the stratum is large

(ii) it is more variable

(iii) sampling is cheaper.

If the cost/sample unit is the same for all strata than it is known as “Neyman

Allocation” and  
    

n

n

s

s
i i i

i i

≡ N

NΣ( )
 .

The Neyman Allocation is a special kind of optimal allocation.

2.9 Post-Stratification

With some populations that are suitable for stratification it is difficult to know

the stratum to which units belong until a survey has been conducted, although

the strata sizes are known accurately for the population.  For example, the

stratification of sample quadrats on the basis of habitat type may not be

possible until the quadrats have been visited. Information collected during the

sample can be used to post-stratify where a simple random sample of n is

taken from the population and the sampled units are classified into K strata.

Then the usual stratified sampling estimator can be used to estimate the

population mean.  Even if the stratum sizes are not known the final post-

stratified sample should be like stratified sampling with proportional

allocation if the sample is large enough.

Post-stratification should not be used as a technique to use to reduce sample

variance by creating artificial strata.  The strata should be based on sound

environmental reasons and not formed just to group similar sample units

together.

2.10 Systematic Sampling

Systematic sampling is a very useful design for environmental assessment.

Systematic sampling can be carried out whenever a population can be listed in

order or it covers a well-defined spatial area.  In the former case, every kth

item in the list can be sampled, starting at an item chosen at random from the

first k.  In the second case sampling points can be set out on a grid at equally

spaced intervals.
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There are two reasons why systematic sampling is sometimes used in preference

to random sampling.  First, systematic sampling is often easier to carry out than

random sampling. Second, it seems likely that a systematic sample will be more

‘representative’ than a random sample, and hence more precise, because it gives

uniform coverage of the whole of the population of interest.

Systematic sampling suffers from the disadvantage of not allowing any simple

determination of the level of sampling errors unless it is assumed that the items in

the population are in a more or less random order.  If that is the case then a

systematic sample can be treated as being effectively a simple random sample

and the various results given earlier for this type of sampling can all be used.

A common criticism of systematic sampling is that if the population has some

periodic trend that matches the spacing between sample units in the

systematic sample then using the formulae for simple random sampling will

underestimate the sampling variance, i.e. the sample will appear more precise

that it really it.  What critics often fail to mention is that the opposite is true

when the units within the systematic sample are highly variable and more

variable than the population.  A systematic sample may be more precise than

it appears, in other words, the estimate of precision is conservative.  This will

occur when there is a gradient or trend, or large areas with population units

with similar values (EPA 1989).  As an example if there were a sequential trend

up a mountain slope of reducing tree heights a systematic sample up the slope

at every 100m in altitude would produce a sample with highly variable sample

units.  The sample variance from using the simple random sampling formulae

would be an overestimate.  This concept is easiest understood by thinking

about what the sample means would be if there were many systematic

samples taken (using 100m spacing).  While each sample would have a lot of

variation among units within the sample and a large standard deviation, the

sample means would all be quite similar.  When all the potential sample

means are similar the survey has high precision (or low sampling variance).

In this example the true sampling variance would be low, but would appear to

be high because the estimator is based on the sample standard deviation.

If there are concerns with estimating the variance from systematic sampling

there are special analysis methods that can be used.  One of these methods is

to aggregate the adjacent sample points into groups and then treat each group

as a stratum in a stratified design (Yates 1961).  The groups should be created

on geographic boundaries not on the basis of their sample value.  Another

method is to use estimate precision from the pairs of adjacent sample points,

i.e. the standard error is calculated from the difference between the 1st and 2nd

sample points, the 2nd and 3rd sample points and so on.  This approach of

treating the sample points as a linear sequence is referred to as a serpentine

pattern (EPA 1989).

There are many modifications to systematic sampling that can be used. One is

called the interpenetrating systematic sample.  Despite its name it is quite a

simple design and is an effective way of dealing with a periodic trend

although estimation for this survey design is slightly more complex.  In this

design rather than taking say, a 1 in 20 survey where every 20th item is

selected, five 1 in 100 surveys are taken.  Five random start points are chosen

between 1 and 100 and every 100th item selected beyond each start point.
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Another design, two-dimensional systematic sampling, has one systematic

sampling at intervals along one axis and another at intervals along the other

axis that is at right-angles to the first.  With both these designs data are best

analysed as a cluster sample where each of the five systematic surveys is

considered a cluster (see some of the texts listed below for details on cluster

sampling).

It is worth revisiting the concept of the systematic interval matching an

underlying trend or spatial pattern because in environmental studies this trend

or pattern may be one of the variables of interest.  For example, in wildlife

studies gaining information on spatial pattern, such as size of home-ranges,

can be one of the purposes of the survey.  A systematic survey can be an

appropriate design with regular and close spacing between sample units.  One

way to use survey data would be to compare the correlation between sample

units at a range of spatial scales.  The change in correlation among spatial

scales can provide information on spatial patchiness.  However, if the sole

purpose of the survey is to estimate population means the systematic interval

needs to be carefully chosen so not to match environmental patterns.

2.11 Composite Sampling

Composite sampling is a technique where multiple samples collected in the

field are combined into a new sample.  The new sample is then mixed and

either all, or part, is analysed.  This approach has application in soil sampling

where the cost of collecting samples in the field is low relative to the cost of

analysing the samples in the laboratory.  The composite sample will give

estimates of the overall population average but because the individual

samples are “lost” will not give information on the smaller scale variation

among the original sample points.  The estimation for composite samples can

be complex.  Procedures are reviewed by Gilbert (1987) and Patil (1995a).

2.12 Rank-set Sampling

Rank-set sampling is not that commonly used in environmental science which

is surprising given the potential gains in precision.  In rank set sampling the

units are grouped into sets of m units based on e.g. their spatial location.

Typically sets are small, around three or four units.  Within the first set the

units are ranked by a quick estimate and the unit highest value is measured.

Within the second set the unit with the second highest value is measured and

so on up to the mth set.  The unit with the lowest value is measured in the mth

set.  The sequence is then repeated r times to give a total sample size of n =

rm.

The idea behind rank-set sampling is to use expert knowledge about the

environment.  As an example consider a survey for possum browse on trees in

a forest.  A sample of 20 trees is needed.  Trees are grouped into sets of four.

In the first step four sets of four trees are randomly selected.  The four trees in

the first set are quickly inspected and the one with the highest level of browse

is selected and more detailed browse measurements are recorded.  Then,

within the next set of four trees the tree with the second highest quick-

assessment score is measured, and so on up to the fourth set of four trees

where the tree with the lowest quick-assessment score is measured.  In the
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next step another four sets of four trees are randomly selected and the 16 trees

(four groups of four trees) are surveyed by the same method.  This process is

repeated in total five times to give a sample size, n = 20.  This design will give

a more precise estimate than if 20 trees were randomly selected.  If the

ordering of trees within each group were correct then efficiencies up to 300%

improvement over simple random sampling can be expected.  If the ordering

were entirely wrong, i.e. the quick-assessment score were nothing more than

a random guess than the sample precision will be what would be expected

from a random sample (Barnett and Moore 1997).  A rank set sample can be

analysed as a simple random sample but there are also more complicated

estimators that can be used (Patil 1995b).

2.13 What Sample Unit to Use

One of the decisions in planning a survey is choosing the sample unit.  What

is the appropriate sample unit is usually defined by the population, that is the

physical characteristics of the habitat and the type of organisms (Resh 1979).

For example, in surveys of low growing weeds a square plot (a quadrat) is

often used.  In freshwater fisheries surveys where electric fishing is used the

sample unit is a site, measured in metres.  Air samples may be units that are a

volume of air collected over a time period.  In marine fisheries surveys trawls

may be the sample unit.

The actual sampling device often determines the size of the sample unit, for

example, a trawl net is a fixed size and although the length of the tow may

vary, smaller, or larger nets may not be feasible.  However, plots, are not a

fixed physical unit and can be e.g. 1m2, or 0.25m2, or 10m2 etc. depending on

the population of interest.  One rule of thumb for plot size is that the plot

should be 20 times the size of the individual in the population (Green 1979).

In general, the larger the sample size the better.  For surveys that use plots

many, small plots rather than a few large, plots is recommended.  However

there must be a balance between the size of the sample and the size of the

unit within the sample.  For example, if the plot is so small that it is the same

size as the individuals in the population the sample will be highly variable

because it will consist of either plots of zero counts and plots with counts of

one.  At the other extreme, if the plots are very large the variability among

sample units will be low, but there will be few plots.

Often the best solution to what size sample unit to use is to conduct a pilot

survey with various sample unit sizes to give information on the precision and

total sample cost of each (Green 1979).  Other methods are to use a nested

design in the pilot survey where many small units are used.  Estimates of

precision and cost are calculated using the smallest sample unit size.  Then,

adjacent units are combined to give an effective sample unit size that is twice

as large and new estimates of precision and cost are calculated. These units

can be combined again, and so on, giving a range of successively larger

sample units and estimates of precision and cost can be compared between

the various sizes.

Another general rule for sample unit selection is that the size of the unit

should not match the scale of any patchiness in the environment.  For

example, if the plots used to sample the low growing weed were 1m2 and the
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weeds occurred in patches that were about 1m2 in size then some of the plots

would have very high counts (when the plot was located entirely within a

patch), and others would have very low counts (when the plot was located

entirely outside a patch).  The sample would have high variance, and low

precision.  The plot should either be very much larger than the scale of

patchiness, or very much smaller.

Example: Deer Pellet Survey in the Murchison Mountains
Takahe Special Area (Appendix Data Set 9)
Consider the survey in the Special Takahe Area in the Murchison Mountains in

1998 described above.  Data on the presence or absence of groups of deer

pellets were also collected from within the Chester Burn catchment from 493

plots.  Two plot sizes, 1.14m and 2.5m radius were set up from the same plot

centre.  In total there were 493 plot centres.  Of these 12 of the smaller 1.14m

radius plots had groups of deer pellets present but 30 of the 2.5 radius plots

had groups of pellets present.  Although the larger plots were 4.8 times the

size of the smaller plots there were only 2.5 times as many large plots with

pellets.  This difference may be due to patchiness in pellet distribution.  If

groups of pellet tended to occur in patches, or aggregates, then when there

was one group of pellets it was likely that there would be a second group near

by.  It appears from the data that the scale of this clustering of pellet groups

was at around 2 to 4m.  A cluster of pellet groups could contain only one large

plot but there could be many small plots.

One other consideration in using plots is their shape.  A long, thin rectangular

plot is an efficient shape because the plot “spreads” across more of the study

area.  This has the effect of minimising correlation between individuals within

the plot and therefore the plot is more informative.  A circular plot has less

spatial “spread” and higher correlation within the plot.  The advantage of a

circular plot is that it will have less edge than a long, thin rectangular plot.

The problem with a plot shape with a lot of edge is there is more chance of

mistakenly recording an individual is “in” the plot when in fact it is “out” and

vice versa.

2.14 Errors in Sample Surveys

In general there are four sources of error or variation in scientific studies

(Cochran, 1977):

a) There are sampling errors due to the variability between experimental

units and the random selection of units included in a sample.  Different

random samples will generally produce different estimates of population

parameters.  This variation reflects the sampling errors.

b) There may be measurement errors due to the lack of uniformity in the

manner in which a study is conducted.  The measurement procedure may

be biased, imprecise or both biased and imprecise.  This type of error

results solely from the manner in which the observations are made.  For

example, fisherman may report incorrect lengths and weights of fish

caught, human subjects may lie about their age or weight, etc.

c) There may be missing data due to the failure to measure some units in the

sample.
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d) Gross errors may be introduced in coding, tabulating, typing and editing

data.

An understanding of sampling errors and their effects is the basis of statistical

inference procedures.  The control of sampling errors is therefore primarily

the responsibility of the statistician.  Random measurement errors can be

modelled but their control and reduction must come from careful

experimental design.  In fact, in many fields of study the presence of

measurement error is barely recognised and its influence is played down.

Many statisticians follow the rule of thumb that the measurement error should

be small relative to the sampling error, especially in utilising statistical

procedures such as regression and correlation analysis.  Certainly for many

studies conducted in ecology measurement errors cannot be ignored and

standard analysis procedures such as regression analysis may not be

applicable until this source of error is under control.

2.15 Key Points in This Module

• Environmental data is typically only a sample from the population of

interest.

• The goal of sampling is to summarise the characteristics of the entire

population.

• The measures that are used to summarise a population are called

population parameters and the corresponding sample values are called

statistics.

• Whenever inferences are to made about population parameters on the

basis of the sample result the sample design must have some element of

random selection if statistical sampling theory is to be used.

• One of the typical features of environmental data is high variability.

• Estimates of population parameters should always be quoted with their

associated level of precision, and usually this is a confidence interval.

• An understanding of sampling errors and their effects is the basis of

statistical inference procedures.

2.16 Questions About This Module

After completing this module you should be able to give reasonable answers

to the following questions.

1. In a study in Otago of the fish diet the content of fish guts were analysed.

Data were collected on the prey species: species name, number of each

individual prey species and the head-length of each prey item.  At least ten

fish from seven streams were sampled.  What is the population of interest?

What is the sample population?  What population parameters can be

estimated?

2. Using the example above for the surveys of cod in the potential Patterson

Inlet Marine Reserve, what is your estimate of the sample size if estimate of

the mean of the average cod length was required to be within 20% of the

true mean using a 90% confidence interval?  What is your estimate of the
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sample size if the cv was twice as large, i.e. cv = 0.16?  What is the affect of

variation and desired precision on the required sample size?  Which has

more influence?

3. A possum control operation was estimated to achieve a residual trap catch

(rtc) of 10% with a 90% confidence interval from 2% and 18%.  The target

rtc is 5%.  The survey for estimating the rtc used data on the proportion of

traps that caught a possum after three nights of trapping.  The sample size

was five, i.e. there were five lines of traps.  One explanation for a rtc of

10% is that the control operation failed to reduce the possum population to

the desired low level.  What are some other explanations - think about the

sources of error.

4. An estimate is required of the number of a pingao on a section of

foreshore.  The beach foreshore area is some 8km long and defined as

being 1km wide.  Twenty randomly located plots, 50mx50m (= 0.0025km2)

in size were used.  The pingao habitat is variable and there are sections

where the plant numbers will be low and other sections where the plant

numbers will be high.  The foreshore is stratified into three strata on the

basis of habitat types: north, middle, and south.  The number of sections

surveyed within each stratum is proportional to the size of the stratum.

The northern stratum is 2km long, and the middle is 3.5km and the

southern 2.5km long.  Use proportional allocation to decide on how to

allocate the 20 sample plots among the three strata.

In a pilot study of the pingao area the survey results for the three strata

were:

  y 1
 = 17.2 plants, s

1
 = 1.2

  y 2
 = 20.5 plants, s

2
 = 6.3

  y 3
 = 12.1 plants, s

3
 = 2.4

where   y 1
 and s

1 
is the sample mean and standard deviation for the north

stratum.

How would you allocate the 20 sample plots using optimal allocation

(assume the costs of sampling each stratum are equal).

5. What are the advantages of using stratified sampling over simple random

sampling?
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Module 3: Designs for
Monitoring Schemes

S U M M A R Y

The objective of many monitoring schemes is to detect the effect of human

impacts.  What sites to monitor is usually a question of balancing the use of

the same sites over and over (which is good for detecting trends) or bringing

in new sites (which is better for estimating averages).  Augmented designs are

a way of combining these two approaches.  One of the key considerations in

designing a monitoring scheme is whether there will be sufficient statistical

power to detect trends in the population parameters of interest.  Several

factors affect power: sample size, variability of the samples, and magnitude of

the difference or trend to be detected.  Strategies to improve power include

reducing variation among and within sites, and matching treatment sites to

control sites.  Pseudoreplication is an example of confounding where

inferences to the wider population are made from the results of a study where

there is either no replication, or replication is at the wrong scale.

3.1 Introduction

The purpose of many monitoring schemes is to detect the effect of a human

impact on natural populations (Underwood 1992).  The appropriate analysis

therefore is to measure the change in an associated environmental variable.

However, natural populations display considerable temporal and spatial

variation so the sampling design and analysis must be capable of

distinguishing between what is normal variation and variation that may be

attributed to the human impact (Skalski and McKenzie 1982, Underwood

1994).

3.2 Choice of Monitoring Sites

There are a number of different decisions to make in designing a monitoring

scheme including what sites to select for the surveys and to analyse the data.

The scheme chosen should relate directly to the specific objectives of

monitoring.  For example, in designing a monitoring scheme for Karner blue

butterflies in Wisconsin, USA, the two objectives were to monitor: i) the

overall effectiveness of the conservation efforts by assessing regional trends;

and ii) the effectiveness of individual conservation strategies to allow

comparison among strategies (Brown and Boyce 1996).

The first objective required data collected over time from a sample of sites that

were representative of the Wisconsin State.  The purpose of statistical analysis

was to separate natural variation from variation and trends resulting from the

conservation efforts.  The second objective required data to be collected from

the areas managed under the conservation strategy of interest and for this to
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be compared with data from control sites that are governed by natural

ecological processes (Eberhardt 1976, Green 1979 p.29).

The special requirements of environmental monitoring schemes has led to

interest recently in more complicated designs that include aspects of random

sampling, good spatial cover, and the gradual replacement of sampling sites

over time (Skalski, 1990; Stevens and Olsen, 1991; Overton et al. 1991,

Urquhart et al. 1993).  Monitoring designs that are optimum in some sense

have also attracted interest in recent years (Fedorov and Mueller, 1989;

Caselton et al. 1992).

3.3 Temporal Replication of Sites - Monitoring over Time

Environmental monitoring typically requires a number of years of sampling to

be able to detect real biological trend (Barker and Sauer 1992).  There are four

general sources of pattern in population data:

i) trend resulting from a population change, i.e. the population trend that

we are wanting to detect in monitoring;

ii) irregular environmental perturbations e.g. unusual weather events;

iii) autocorrelation due to population processes, i.e. the population size in

one year is expected to be related to the population size in the previous

year; and

iv) stochasticity associated with sampling.

If too few years of data are collected it can be difficult to separate population

trends from these other sources of underlying environmental stochasticity.

There are many analysis techniques for trend detection, some of which are

discussed in later modules.  The appropriate analysis technique should be

chosen prior to sampling to ensure that sufficient data is collected, and that

the sampling design meets the assumptions of the analysis technique.  For

example, many techniques assume the samples are independent.  Other

techniques assume the sites are independent but require repeated samples to

be taken from the same site over time.

3.4 Spatial Replication of Sites - Purposely Chosen or
Randomly Chosen Monitoring Sites

For practical reasons often long-term monitoring sites are not randomly

chosen.  For example, the nine sites of the United Kingdom Environmental

Change Network (ECN) were chosen on the basis of:

i) good geographical distribution covering a wide range of environmental

conditions and the principal natural and managed ecosystems

ii) some guarantee of long-term physical and financial security

iii) a known history of consistent management reliable and accessible

records of past data, preferably for ten or more years; and,

iv) sufficient size to allow the opportunity for further experiments and

observations.
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The interest in the ECN is in monitoring the change in these sites and

therefore it does not matter that the sites were not initially all similar in their

status.  The ECN is attempting to relate the differences in the change in sites to

measured meteorological and geographical differences.

The alternative design to purposely choosing sites is to randomly select sites.

The potential problem with purposely chosen sites is that they may not be as

“representative” of the population as thought.  In some situations it may not

be possible to purposely choose sites because there is insufficient knowledge

about which sites to chose.  A random selection of sites ensures there is no

bias in the estimation of population parameters.  This attribute of random

selection was discussed in a previous module.

Even with randomly selected sites there is still the question of what to monitor

over time - do you measure the same sites at each time period, or randomly

reselect sites at time period?  The answer depends on the sampling objective.

• If the objective is to estimate the mean value following the most recent

survey, e.g. environmental status, then it is best to reselect a fresh sample

(i.e. new sample locations).

• If the objective is to estimate the change in population means, i.e. trends

in environmental status it is best to use the same sites for each survey

(Skalski 1990).

With the former case, by reselecting the sites each year the population

parameter will not be consistently over- or under-estimated.  With the later

case, resampling the same site each year will eliminate random variation

among sites that could confound the survey results.

3.5 Some Special Designs for Choosing Monitoring Sites -
Augmented Rotating Panel Design

Monitoring can often have both objectives described above - to detect status

as well as to detect trends.  Skalski (1990) suggested a rotating panel design

with augmentation for long-term monitoring.  This design combines both

ideas where some sites are sampled every year and others are rotated.

The design takes the form shown in Table 3.1 if there are eight sites that are

visited every year and four sets of ten sites that are rotated.  Site set 7, for

example, consists of ten sites that are visited in years 4 to 6 of the study.  The

number of sites in different sets is arbitrary.  Preferably, the sites will be

randomly chosen from an appropriate population of sites.

This design has some appealing properties: the sites that are always measured

can be used to detect long-term trends but the rotation of blocks of ten sites

ensures that the study is not too dependent on an initial choice of sites that

may be unusual in some respects.  However, Urquart et al. (1993) have

provided evidence that the serially alternating design that is discussed next is

more efficient because more sites are measured in the first few years of the

study.

The practical reasoning behind the rotating panel design is very sensible.

When there is limited information on an environmental impact it is difficult to

know where and when to monitor.  Without knowing the extent of the area
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effected by e.g. a coastal sewer out-fall the monitoring design should include

many sites that are situated from the out-fall in all directions (land and sea)

and for a good distance.  Such large spatial coverage is often beyond the

scope of most budgets.  This design provides a method to “add in” new sites

and allows for the dynamic nature of populations (human and non-human).

For example, monitoring of an out-fall in Akaroa Harbour may focus on the

areas where people live.  Over time the new housing developments may mean

that new monitoring sites should be added into the survey design.

TABLE  3 . 1  ROTATING PANEL  DES IGN WITH AUGMENTATION.   IN  THIS

EXAMPLE ,  EVERY YEAR  48  S ITES  ARE  V I S ITED .   OF  THESE ,  8  ARE  ALWAYS

THE SAME AND THE OTHER  40  S ITES  ARE  IN  FOUR BLOCK OF  S IZE  TEN ,

SUCH THAT EACH BLOCK OF  TEN REMAINS  IN  THE  SAMPLE  FOR FOUR

YEARS  AFTER  THE  IN IT IAL  START  UP  PER IOD.

SITE SET NUMBER YEARS

OF SITES 1 2 3 4 5 6 7 8 9 10 11 12

repeated   8 x x x x x x x x x x x x

1 10 x

2 10 x x

3 10 x x x

4 10 x x x x

5 10 x x x x

6 10 x x x x

7 10

..

..

14 10 x x

15 10 x

3.6 Some Special Designs for Choosing Monitoring Sites -
Serially Alternating, Augmented Rotating Panel Design

The name of this design says it all!  This design is similar to the design

discussed above but, using the example in Table 3.1, rather than surveying 30

out of 40 sites in the rotating panel the next year, each year a rotating

selection of 40 sites are surveyed (Table 3.2).  The US Environmental

Protection Agency Environmental Monitoring and Assessment Program

(EMAP) was based on this design.

TABLE  3 . 2  SER IALLY  ALTERNATING ROTATING PANEL  DES IGN WITH

AUGMENTATION.   IN  THIS  EXAMPLE ,  EVERY YEAR  48  S ITES  ARE  V I S ITED .

OF  THESE ,  E IGHT ARE  ALWAYS  THE  SAME AND THE OTHER  40  S ITES  ARE

FROM A  ROTATING PANEL

SITE SET NUMBER YEARS

OF SITES 1 2 3 4 5 6 7 8 9 10 11 12

repeated   8 x x x x x x x x x x x x

1 40 x x x

2 40 x x x

3 40 x x x

4 40 x x x
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The advantage of this serially alternating design is that more sites are visited.

Compare Table 3.1 and 3.2.  At the end of the first year 48 sites will have been

surveyed.  By the end of year 2 with the serially alternating design 88 sites will

have been visited, but with the design shown in Table 3.1 only 58 sites will

have been visited.  By the end of year 3, 128 will have been visited with the

serially alternating design and only 68 with the other design, and so on.  The

point is that with the serially alternating design more sites are visited, and

more information is collected from among the sites.  This is discussed further

in the next section on power, but generally it is better to collect information

from as many sites as possible.  With both designs eventually all 168 sites will

be surveyed.  With the serially alternating design this will take 4 years, but

with the other design it will take 13 years.

3.7 Some Special Designs for Choosing Monitoring Sites -
Optimal Designs

The concept of an optimal design has developed largely from the field of

spatial statistics.  The definition of optimal is based on the idea of minimising

variances of prediction models.  One example of a prediction model is the

prediction of SO
2
 levels in the eastern USA.  There are 34 long-term

monitoring sites in the area extending from Minnesota though to the east

coast.  Data from the weekly SO
2
 measurements is used to predict pollution

over the entire study area.  The optimal design is one that does “best” on

average, i.e. minimises the prediction error.  Another criterion is the optimal

design is one that has the smallest worst prediction error, i.e. it minimises the

worst case.  A third criterion is based on the concept of entropy (Cox et al

1997).

Designs for geostatistical analyses are usually most efficient if they are a

regular grid of sampling sites, when efficiency is measured by the average, or

maximum prediction variance (Cressie 1991).  Regular, or geometric designs

of triangular, square of hexagonal grids are often used.  The EMAP design was

based on a triangular grid, which was randomly located over the USA,

landmass.  The distance between grid points was 27km.

3.8 Statistical Power

One of the major considerations in designing a monitoring scheme is whether

you will be able to detect a true change, or trend, in the population parameter

of interest (Taylor and Gerrodette, 1993, Fairweather 1991).  This ability to

detect a trend, e.g. the effect of human-induced change, which occurs over

and above the amount of variation that natural populations exhibit is referred

to as power.

When planning a monitoring study the number of samples, the likely effect

that can be detected, and the number of years required to be able to detect a

trend are all considerations that relate to power.  Calculating the power of a

trend survey can be difficult because it requires estimates of variance and

until monitoring is undertaken there may not be any estimates of the variances

(Gerrodette 1987, Steidl et al. 1997).  However, approximations of likely

power can be made by using data from other studies and from pilot studies.
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In statistical terms the power of a test is the ability to reject the null hypothesis

when it is false, that is, it is the probability of correctly rejecting the null

hypothesis.  In trend detection power refers to the ability to detect a true

increasing or decreasing trend.  Several factors affect power, such as sample

size, variability of the samples, and magnitude of the difference or trend to be

detected.  Designs with small sample sizes and high variability will have low

power.  If the size of the difference or trend is small compared with the

natural population variability it will be difficult to detect any effect.

Example: What is the Power to Detect an Increase in the
Blue Cod from Paterson Inlet, Stewart Island? (Appendix
Data Set 5)
Using the example discussed in module 2 the average head length of blue cod

inside the proposed Marine Reserve at Paterson Inlet was estimated to be

295.1884 with a standard deviation of 22.8512 from a sample of size 6 in 1998.

Remember the sample units were the survey sites.  What is the power to

detect an increase in average head length of 10mm to 305.1884 using a 5%

significance level and with a sample size of 6?  The calculations are as follows.

1. The null and alternative hypotheses are

H
o
: µ = 295.1884

H
a
: µ > 295.1884

2. H
o
 is rejected if the t statistic exceeds the upper 5% of t

5
 = 2.015 (there

are 5 degrees of freedom).  The t statistic is:

    
t

y

s n
= − µ

/

      
= −y

s

295 1884

6

.

/

Therefore, when 
    
t

y

s
= − ≥295 1884

6
2 105

.

/
.   H

o
 will be rejected.

3. The choice of the s can be difficult when there is no data collected yet on

the future population.  The best estimate we have is the estimate from the

1998 survey, s = 22.8512.  Using this value and rearranging the above

equation we can calculate what size the sample mean needs to be for H
o

to be rejected,

    

y ≥


















+2 015
22 8512

6
295 1884.

.
.

      ≥ 313 9863.

4. The power is the probability that     y ≥ 313 9863.  when µ = 305.1884.

Using σ = 22.8512,

    

P y P z( ≥ = = ≥ −







313 9863 305 1884

313 9863 305 1884

22 8512 6
. .

. .

. /
µ
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This probability can be calculated by solving the right hand-side of the

equation,

    P ( . )≥ 0 9431
    =1-0.8264

    =0.1736

In this example the power is very low, there is only 17.36% chance that if

the population increased the average head length to 305.1884 mm that

this would be detected in a sample of six sites.

If the sample size were increased to 20 sites then the power would improve.

Reworking the above equations the power is now 0.5902.  In fact these

equations can be easily done on a spreadsheet such as EXCEL and the values

changed to explore the effect on power of larger effects (here the effect is

305.1884), smaller standard deviations, and larger sample sizes (Figure 3.1).

Power quickly improves by sampling more sites.  Power can also be improved

by reducing the sample standard deviation.  And finally, larger effects, that is,

larger increases in head length can be more easily detected.  This is discussed

more in the next section.

This example shows one way to estimate power.  For more complicated

designs and analysis, e.g. estimating the power of a multi-factor experiment

there are other techniques that can be used.  For example, one approach is to

simulate likely data sets from a statistical distribution on a computer.  Such

techniques are beyond the scope of this workbook.  Special software is

available for estimating power but all require a good understanding of the

principles of power analysis to be used properly.

Figure 3.1 Estimates of power with varying sample sizes for detecting an increase in the
average head length of cod from the 1998 estimate of 295.1884cm to 305.1884 and 315.1884cm
(effect = size of increased head length). Also shown is the effect on power of the standard
deviation, s = 22.8512 and s = 15.3103.  The sample unit is the survey site.
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3.9 How to Improve Power

Variation in data collected from monitoring studies is due to:

i) within-site variation which reflects the inexactness of the data collection,

ii) the variation among sites due to the environmental heterogeneity, and

iii) temporal variation.

(Millard and Lettenmaier 1986, Gerrodette 1987, Link et al. 1994).  The power

of monitoring, for example, the ability to detect if there is a true difference

between a treatment and a non-treatment site, or to detect a regional-

population trend, will improve if these sources of variation are reduced.

For trend detection sampling more units is generally preferable to increasing

sampling effort within a unit (Millard and Lettenmaier 1986, Link et al. 1994,

Brown and Miller 1998).  Millard and Lettenmaier (1986) found that in their

study to maximise power the optimal design was a spatially extensive one

with many sampling units.  With a design with many sample sites the among-

site variation is reduced.

Strategies to reduce within-site variation (or measurement error) are to have

strict guidelines of when and how sampling should be undertaken and to

sample a site more than once.  Modelling the environmental factors that effect

the observed sample values can also reduce within-site variation.  For

example, consider the example described above for monitoring Karner blue

butterflies in Wisconsin. Butterflies are less mobile and less detectable on cool

days compared with warm days.  Counts of butterflies seen during surveys

(i.e. the observed sample data) on cool days can be inflated to adjust for

differences in daily temperature.  In the above example for blue cod sampling

more fish within each survey site can decrease the within-site variation.

So far we have been discussing designs for long-term monitoring to detect

trends in population status.  Monitoring is also undertaken to detect a possible

change following some specific management action, e.g. to detect if a site has

been cleaned up after a remedial action, or to detect whether a rat population

has been reduced after a rat-poisoning operation.  In these situations one way

to improve power is to have “treatment” and “non-treatment” sites.  This is

addressed in more detail in later modules but the discussion of power is

relevant here.

With “treatment” and “non-treatment” sites the differences between the sites

can be compared over time.  The power to detect the difference between

trends in treatment and non-treatment sites will generally be higher than the

power to detect the individual trend at either site.  If the variation among time

intervals for the treatment sites was identical to the variation for the control

sites, by using the differences between the two, this source of variation would

be eliminated (Stewart-Oaten et al. 1986).  Even if the correlation is not

perfect, Stewart-Oaten argue that the variation in the differences over time

would be small compared to other sources of variation, particularly from

sampling error.
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3.10 Pseudoreplication

Pseudoreplication is defined as:

“the use of inferential statistics to test for treatment effects with data from

experiments where either treatments are not replicated or replicates are not

statistically independent.”  (Hurlbert 1984).

This concept was introduced in module 1.  Continuing with the example from

module 1, to assess diversity in grassland following burning a 1ha study area

was randomly located within a burnt and unburnt field. Within each of the 1ha

areas 15 - 1m2 quadrats were randomly located.  Does this design give 15

independent replicate samples from the burnt and unburnt area?  The answer

is no if the question is about the general effect of burning.  The problem is

that the “replicate” quadrats are not replicated at the correct scale.  The idea

of replication is to provide a measure of the intrinsic variability of the area

that has nothing to do with the treatment (in this example, the treatment is

burning) (Underwood 1997).  The observed differences in the burnt and

unburnt quadrats could be due site differences and not the effect of burning.

The observed differences are confounded by other differences.  Underwood,

in fact, uses the term confounding in preference to the term pseudoreplication

because it draws attention to what is needed;

“It is not replication as such that is the problem.  The difficulty is to separate out

the differences among treatments that are due to the experimental factor from

any differences due to other factors.  The logic of the experiment requires this,

so that any differences found can be unambiguously attributed to the process

proposed in the model.  Other differences confound such conclusions, making

logical interpretation impossible.”  (Underwood 1997).

As another example, in a study of the diurnal pattern of Hector’s dolphin in

Akaroa Harbour an observational design was used.  Each morning and

afternoon the direction the dolphins were swimming in when they were at the

harbour entrance was observed.  The basic sampling unit was the pods of

dolphins, not the individual dolphins.  The use of the individual dolphins as

the data points would be pseudoreplication because all dolphins within a pod

will be swimming in the same direction. The dolphin pods were the level at

which the sampling units are independent.  Using the individual dolphins as

the sample unit artificially inflates the sample size.

3.11 Two Levels of Pseudoreplication

Extension of the statistical (inductive) conclusions from an observational

design beyond the specific study areas/populations to other unstudied areas/

populations is one of the common forms of pseudoreplication (Hurlbert 1984,

Stewart-Oaten et al. 1986).  Consider an example of the accidental spill of oil

into Lyttelton Harbour.  Deductive inferences concerning general conclusions

of cause-and-effects of the oil (that extend beyond the specific study areas/

populations) may be possible if enough independent studies of different

discharges of the oil are observed to produce similar effects.  However,

statistical (inductive) inferences beyond the study areas/populations are not

possible using a simple observational study within the one harbour.
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Results of observational studies such as evaluation of environmental impacts

of accidental spills of oil or chemicals are often referred to a

pseudoreplication in the biological literature.  This use of the word is

misleading unless it is qualified by adding the comment that the subsampling

of treatment and non-treatment areas/populations is pseudoreplication if

statistical conclusions are extrapolated beyond the treatment and non-

treatment areas/populations.  In other words, random sampling within an

observational study is not pseudoreplication if the statistical inferences are

limited to the specific areas or populations studies.  It is the actual application

of inferential statistics to unreplicated treatments or dependent replicates that

causes “pseudoreplication.”  Single replicates per treatment or dependent data

are not necessarily bad, or avoidable in field studies.  However, it is

dangerous to extrapolate inductive conclusions from such data using

inferential statistics.

A second level of pseudoreplication occurs if dependent data from the basic

sampling units of observational studies are analysed as if they are

independent.  Essentially the “sample size” is artificially inflated by analysing

more than one datum per basic sampling unit.  The importance of identifying

and maintaining the integrity of data from the basic sampling units cannot be

overemphasised.  Things can get complicated.  A good rule to follow is that

statistical inferences should be based on only one value from each sample

unit (unless the dependent data are properly handled in the analysis).  For

example, if 5 quadrats are randomly located in a study area, then design/data-

based statistical inferences to the area should be based on 5 values; regardless

of the number of plants, organisms, split-samples, etc, which many be present

and measured or counted. The sample units for the analysis discussed above

for surveys of cod in Paterson Inlet are the six sites and not the individual fish.

If the purpose of the analysis were to compare variation within survey sites

then the sample units should be the fish.  Each site is then essentially a

replicate experiment.

As another example, heights of individual plants were recorded for all plants

in randomly located quadrats within a study area.  The variation from plant to

plant within a quadrat is an inappropriate measure of variation for statistical

comparisons of a pair of treatment and non-treatment sites.  A researcher

would be guilty of pseudoreplication if the within quadrat variance is used in

the statistical tests to compare mean height of plants in a particular pair of

assessment and control sites.

3.12 Identifying Pseudoreplication

Problems associated with incorrect identification of data from the sampling

units can give rise to incorrect statistical precision of estimated end-points.  A

simple example of pseudoreplication occurs if a single collection of material

(sediment, plant tissue, etc.) might be taken at one point in an area, and then

split several times in the laboratory.  Analyses of each subset of the material

might be conducted.  Variation among such “replicates” is proper for study of

the accuracy and precision of the laboratory measurement procedures, but

does not represent spatial or temporal variation in the area and/or variation

due to the field sampling.  Variation among such replicates is not the correct

measure of variation for comparison of assessment and control areas by
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statistical procedures.  This example of pseudoreplication is presented

because it is relatively easy to understand and has occurred in practice.  The

problem is usually easy to fix.  In this example, simply average the results of

the toxicity analyses on the subsets (split samples) to produce one number for

each location of collection in the field.  In general, use one datum per

sampling unit from the field in the statistical procedures.

Although Hurlbert (1984) states that pseudoreplication widely occurs in both

observational studies and manipulative experiments, he focuses the majority

of his review on manipulative experiments.  He also defines temporal

pseudoreplication to occur when multiple samples are taken sequentially over

time on the same sampling units (i.e. time series data), but the data are

analysed as if they are independent.  The experimenter should assume that

the potential for false treatment effects is high because successive samples

from a single unit taken over time are likely correlated.  For example, in the

study of growth of a weed, 30 successive measurements of the size of one

patch is not equivalent to relocations of 30 randomly sampled patches from

the population.  Hurlbert did not discuss the use of “repeated measurement

experimental designs” (the analysis of repeated measurements on the same

experimental units over time).  This theory has potential for solving many of

the temporal pseudoreplication problems in manipulative experiments (e.g.

Milliken and Johnson 1984).

Example: Sampling Vegetation Cover at Pupu Springs
(Appendix Data Set 14)
Data from three transects on the proportion of bare substrate has been

collected at Pupu Springs since 1991.  The data is recorded in 5m sections,

that is the proportion of bare substrate in the first 5m section of transect is

recorded, then the proportion in the next 5m section, and so on.  Two of the

transects are 35m in length and the third is 50m in length.  In total there are 24

- 5m sections.  Some of the data is displayed in Table 3.3.

TABLE  3 . 3  PROPORTION OF  BARE  SUBSTRATE  IN  THREE  TRANSECTS  AT

PUPU SPR INGS  RECORDED IN  5M SECT IONS  IN  1999 .

PROPORTION BARE SUBSTRATE - 1999

SECTION TRANSECT 1 TRANSECT 2 TRANSECT 3 OVERALL

0 0.3 0.1

5 0.5 0.1 0.85

10 0.35 0.5 0.5

15 0.35 0.4 0.25

20 0.55 0.2 0.3

25 0.6 0.05 0.8

30 0.4 0.1 0.15

35 0.02 0.3

40 0.2

45 0.3

Transect average 0.435714 0.195714 0.375 0.335476

Transect standard 0.114434 0.184739 0.260608 0.222674

deviation

Transect cv 0.262636 0.943923 0.694955 0.633838
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To answer the question “Is there a change in the proportion of bare substrate

over time”, the appropriate level of analysis is the transect averages or totals

(Figure 3.2).  The proportion of bare substrate from each 5m section of

transect is averaged over the number of sections within each transect.  The

sample size is therefore three since there are three transects.  There is no

obvious trend in increasing, or decreasing amounts of bare substrate over

time.  One test to see if the amounts change significantly among years would

be to conduct a repeated measures analysis.  An example of this using SPSS is

in the appendix.

This analysis used the transect averages and ignores information in the

variation of the bare substrate within transects.  For example, consider two

transects which both have on average 0.3 proportion of the surface area as

bare substrate.  On one transect the first seven 5m sections have no bare

substrate and then the last three sections are all bare.  On the other transect all

ten sections have 0.3 proportion bare substrate.  These two transects have

quite different coverage and the management implications differ.  In the first

transect perhaps there has been some disturbance in the end sections of the

transect, while in the second transect there may be the same level of

disturbance over all the transect.  To compare within-transect variation the

standard deviation and cv of the proportion of bare substrate within each

transect is calculated.  The average cv over the three transects is also shown in

Figure 3.2.

Figure 3.2 Average amount of the proportion of bare substrate in three transects at Pupu
Springs recorded in 5m sections from 1991 and 1999.  Also shown is the average amount of
within - transect variation in the proportion of bare substrate.  This is measured by the cv of
the 5m sections within each transect.
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3.13 Key Points in This Module

• The design of a monitoring scheme should relate directly to the specific

objectives of monitoring.

• Environmental data typically is highly variable.  Monitoring programmes

should be designed to separate population trends from underlying

environmental stochasticity.

• If the monitoring objective is to estimate the mean value following the

most recent survey, e.g. environmental status, then it is best to reselect a

fresh sample (i.e. new sample locations).  If the objective is to estimate

the change in population means, i.e. trends in environmental status it is

best to use the same sites for each survey. Augmented designs are a way

of combining these two approaches.

• Power is one of the crucial factors that should be considered in designing

a monitoring programme.

• Power can be improved by reducing variation among and within sites,

and matching treatment sites to control sites.

• Pseudoreplication is defined as the use of inferential statistics to test for

treatment effects with data from experiments where either treatments are

not replicated or replicates are not statistically independent.

3.14 Questions About This Module

After completing this module you should be able to give reasonable answers

to the following questions.

1 A study is being planned to monitor the long-term effects of a herbicide

on soil invertebrates within a special reserve.  The herbicide is only used

in the one reserve but there are many similar reserves in the region.

What sites would you select for the monitoring?  First define what the

monitoring objectives are.

2 To survey of birds timed bird counts are often used where the number of

birds heard singing during a time period are counted.  In designing such

a survey there are many levels that need to be considered in allocating

survey effort: how long should the count be conducted for (5 or 10

minutes), how many locations within a site should be surveyed, how

many sites should be surveyed, how many times should the survey be

repeated within a day, within a season, within a year and among years?

What factors should be considered in making these decisions?  What are

some likely survey objectives and for each, what measure of variation

should be used in the analysis?

3 Using the above example, a survey is designed where 5 minute counts

are taken at 10 locations within 5 sites in Canterbury.  The surveys are

repeated twice a day and over 5 days in summer for 2 years.  Therefore in

total there were 10 x 5 x 2 x 5 x 2 = 1000 surveys conducted.  Is the

sample size 1000?  What is the correct sample size?  Note the sample size

depends on the objective of the survey so chose a sensible definition

first.
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Module 4: Models for
Analysis

S U M M A R Y

An essential part of analysing many sets of data is choosing a model.  This

module covers a large number of topics related to this operation.  First, some

standard discrete and continuous statistical distributions are defined.  Then

one of the most popular models, the linear regression model, is described.

This leads on to the related models for one, two and three factor analysis of

variance.  Finally, a very flexible class of models called generalized linear

models, which are being used increasingly, is described.

4.1 Introduction

Many statistical analyses are based on a specific model for a set of data, where

this consists of one or more equations that describe the observations in terms

of parameters of distributions and random variables.  For example a simple

model for the measurement X made by an instrument might be

    X = + ∈θ ,

where θ is true value of what is being measured, and ε is a measurement error

which is equally likely to be anywhere in the range from    − +1
2

1
2

to .

In situations where a model is used, an important task for the data analyst is to

select a plausible model and to check, as far as possible, that the data are in

agreement with this model.  This includes both examining the form of the

equation assumed, and the distribution or distributions that are assumed for

the random variables.

To aid in this type of modelling process there are many standard distributions

available, the most important of which are mentioned here.  In addition, there

are some standard types of model that have been found to be useful in

practice for many sets of data.  These are also reviewed briefly in this module.

More on discrete and continuous distributions will be found in many

introductory statistics texts.  A useful summary of over the properties of over

30 distributions is in the @Risk Manual (Palisade, 1997, Appendix A).

4.2 Discrete Probability Distributions

A discrete distribution is one for which the random variable being considered

can only take on certain specific values, rather than any value within some

range.  By far the most common situation in this respect is where the random

variable is a count and the possible values are 0, 1, 2, 3, etc., possibly with no

upper limit.

It is usual to denote a random variable by a capital X and a particular

observed value by a lower case x.  A discrete distribution is then defined by a
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list of the possible values x
1
, x

2
, x

3
, ..., for X, and the probabilities P(x

1
), P(x

2
),

P(x
3
), ... for these values.  Of necessity,

P(x
1
) + P(x

2
) + P(x

3
) + ... = 1,

i.e. the probabilities must add to 1.  Also of necessity P(x
i
) ≥ 0 for all i, with

P(x
i
) = 0 meaning that the value x

i
 can never occur.  Often there is a specific

equation for the probabilities defined by

P(x) = Prob(X = x),

where P(x) is some function of x.

The following discrete distributions are the ones which occur most often in

environmental and other applications of statistics.

The Hypergeometric Distribution
The hypergeometric distribution arises when a random sample of size n is

taken from a population of  N units.  If the population contains R units with a

certain characteristic then the probability that the sample will contain exactly

x units with the characteristic is

P (x) = RC
x

N-RC
n-x 

/NC
n
, for x = 0, 1, ..., Min(n,R),

where AC
B
 denotes the number of combinations of A things taken B at a time.

The mean is µ = nR/N and the variance is σ2 = R(N - R)n/N2.

As an example of a situation where this distribution applies, suppose that a

grid is set up over a study area and the intersection of the horizontal and

vertical grid lines defines N possible sample locations.  Let R of these locations

have values in excess of a constant C.  If a simple random sample of n from

the N locations is taken then P(x) gives the probability that exactly x out of

the n sampled locations will have a value exceeding C. Figure 4.1(a) shows

some examples of probabilities for hypergeometric distributions.

The Binomial Distribution
Suppose that it is possible to carry out a certain type of trial and that when this

is done the probability of observing a positive result is always p, irrespective

of the outcome of any other trial.  Then if n trials are carried out the

probability of observing exactly x successes is given by

P (x) = nC
x 
px (1 - p)n-x, for x = 0, 1, 2, ..., n.

This is the binomial distribution.  The mean is µ = np and the variance is

σ2 = np(1 - p).

An example of this distribution occurs with the use of mark-recapture

methods to estimate survival rates of fish in rivers.  In that setting, if n fish are

tagged and released into a river and there is a probability p of being recorded

while passing a detection station downstream for each of the fish, then the

probability of recording a total of exactly x fish downstream is given by the

binomial distribution.

Figure 4.1(b) shows some examples of probabilities calculated for some

particular binomial distributions.
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(a) Hypergeometric Distributions

(b) Binomial Distributions

(c) Poisson Distributions

Figure 4.1  Examples of discrete probability distributions.

The Poisson Distribution
One derivation of the Poisson distribution is as the limiting form of the

binomial distribution as µ tends to infinity and p tends to zero, with the mean

µ = np remaining constant.  More generally, however, it is possible to derive it

as the distribution of the number of events in a given interval of time or a

given area of space when the events occur at random, independently of each

other at a constant mean rate.  The probability function is

P(x) = exp(-µ)µx/x!, for x = 0, 1, 2, ...,

where the mean and variance of the distribution are both equal to µ.

In terms of events occurring in time, the type of situation where a Poisson

distribution might occur is for counts of the number of occurrences of minor

oil leakages in a region per month, or the number of cases per year of a rare

disease in the same region.  For events occurring in space a Poisson

distribution might occur for the number of rare plants found in randomly

selected metre square quadrats taken from a large area.  In reality, though,

counts of these types often display more variation than is expected for the

Poisson distribution because of some clustering of the events.  Indeed, the

ratio of the variance of sample counts to the mean of the same counts, which

should be close to one for a Poisson distribution, is sometimes used as an

index of the extent to which events do not occur independently of each other.
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Figure 1(c) shows examples of probabilities calculated for some particular

Poisson distributions.

4.3 Continuous Statistical Distributions

Continuous distributions are described by a probability density function, f(x),

in such a way that the area under this function between two limits a and b

gives the probability of an observation within this range, as shown in Figure

4.2.  The following continuous distributions are ones that often occur in

environmental and other applications of statistics.

The Exponential Distribution
The probability density function for the exponential distribution with mean µ
is

ƒ(x) = (1/µ)exp(-x/µ), for x ≥ 0,

which has the form shown in Figure 4.3.  The standard deviation is equal to

the mean, µ. The main applications for this distribution is as a model for the

time until a certain event occurs, such as the failure time of an item being

tested, the time between the reporting of cases of a rare disease, etc.

Figure 4.2  The probability density function f(x) for a continuous distribution.  The
probability of a value between a and b is the area under the curve between these values, i.e.
the area between the two vertical lines at x = a and x = b.
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Figure 4.3  Examples of probability density functions for exponential distributions.

The Normal or Gaussian Distribution
The normal or Gaussian distribution with a mean of µ and a standard

deviation of F has the probability density function

ƒ(x) = {1/√(2πσ2)} exp{-(x - µ)2/(2σ2)}, for -∞ < x < +∞,

as illustrated by Figure 4.4.  Most of the distribution is within the range of the

mean plus and minus two standard deviations, and virtually all within the

range of the mean plus and minus three standard deviations.  To be more

precise, 68.3% of the distribution is within the interval µ ± σ, 95.4% of the

distribution is within the interval µ ± 2σ, and 99.7% of the distribution is

within the interval µ ± 3σ.

This is the ‘default’ that is often assumed for a distribution that is known to

have a symmetric bell-shaped form, at least roughly.  It is often observed for

biological measurements such as the height of humans, and it can be shown

theoretically (through something called the central limit theorem) that the

normal distribution will tend to result whenever the variable being considered

consists of a sum of contributions from a number of other distributions.  In

particular, mean values, totals, and proportions from simple random samples

will often be approximately normally distributed.
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Figure 4.4  The probability density function for the normal distribution with a mean of µ and a
standard deviation of σ.

The Lognormal Distribution
It is a characteristic of the distribution of many environmental variables that

they are not symmetric like the normal distribution.  Instead, there are many

fairly small values and occasional extremely large values.  Distribution of this

type are said to be skewed to the right.

Often with data like this only positive values can occur and it turns out that

the logarithm of the measurements has a normal distribution, at least

approximately.  In that case the distribution of the original measurements can

be assumed to be a lognormal distribution, with probability density function

ƒ(x) = [1/{x√(2πσ2)}]exp[-{log
e
(x) - µ}2/{2σ2}], for x > 0.

Here µ and F are the mean and standard deviation of the natural logarithm of

the original measurement. The mean and variance of the original

measurement itself are exp(µ - σ2) and exp(2µ - σ2){exp(σ2) - 1}, respectively.

Figure 4.5 shows some examples of probability density functions for some

lognormal distributions.

Figure 4.5  Examples of lognormal distributions with a mean of 1.0.  The standard deviations
are 0.5, 1.0 and 2.0.

  µ-4�          µ-3�          µ-2�           µ-�              µ            µ+�           µ+2�         µ+3�         µ+4�
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4.4  Linear Regression

Linear regression is one of the most frequently used statistical tools.  The

purpose is to relate a single observed variable (Y) to one or more other

variables (X
1
, X

2
, …, X

p
), in an attempt to account for the variation in the first

variable as a result of variation in the other variables.  With only one other

variable this is often referred to as simple linear regression.

The usual situation is that the data available consist of n observations y
1
, y

2
, ..., y

n

for the dependent variable Y, with corresponding values for the X variables.  The

model that is assumed is

y = ß
0
 + ß

1
x

1
 + ß

2
x

2
 + ... + ß

p
x

p
 + ε,

where ε is a random error with a mean of zero and a constant standard

deviation σ.  The model is estimated by finding the coefficients of the X values

that make the error sum of squares (SSE) as small as possible.  In other words,

if the estimated equation is

     ̂y  = b
0
 + b

1
x

1
 + b

2
x

2
 + ... + b

p
x

p
,

then the b values are chosen so as to minimise

SSE = Σ(y
i
 -     ̂y i

)2,

where the      ̂y i
 is the value given by the fitted equation that corresponds to the

data value y
i
, and the sum is over the n data values.  Statistical packages or

spreadsheets are readily available to do these calculations.

There are various ways that the usefulness of a fitted regression equation can

be assessed.  One involves partitioning the variation observed in the Y values

into parts that can be accounted for by the X values, and a part (SSE, above)

which cannot be accounted for.  To this end, the total variation in the Y values

is measured by the total sum of squares

SST = Σ(y
i
 -   y )2.

This is partitioned into the error sum of squares SSE and the sum of squares

accounted for by the regression, so that SST = SSR + SSE.  The proportion of

the variation in Y accounted for by the regression equation is then the

coefficient of multiple determination,

R2 = SSR/SST = 1 - SSE/SST,

which is a good indication of the effectiveness of the regression.

There are a variety of inference procedures that can be applied in the multiple

regression situation when the regression errors ε, are assumed to be

independent random variables from a normal distribution with a mean of zero

and constant variance σ2.  For example, a test for whether the fitted equation

accounts for a significant proportion of the total variation in Y can be based

on a technique called the analysis of variance, and the estimated regression

coefficients can also be tested individually to see whether they are

significantly different from zero using a t-test.  There is also sometimes value

in considering the variation in Y that is accounted for by a variable X
j
 when

this is included in the regression after some of the other variables are already

in, again using the analysis of variance.
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This has been an extremely brief introduction to the uses of multiple

regression, which is a widely used tool.  For a more detailed discussion see

Manly (1992, Chapter 4).  Some further aspects of the use of this method are

also considered in the following example.  All of the calculations can be done

either in Excel or SPSS.

Example: Caging and the Flowering of Woodrose (Appendix
Data Set 3)
As an example of the use of regression, consider Data Set 3 (Monitoring of

Dactylanthus taylorii near the summit of Mount Pirongia) from the Appendix

to these notes.  In brief, this data set gives information on various

characteristics of D. taylorii at eight locations from 1997 to 1999, where some

of the plants were caged and others uncaged.  Records are not available at all

locations in all years.  Here we consider the number of flowers per plant as

the dependent variable, which means that data can only be used from six

locations.

Table 4.1 gives a summary of the data used for the analysis.  There are 19

sample units, with each unit consisting of the plants at one location that were

either caged or not.  There are eight X variables used in the analysis, labelled

X1 to X8 in the table.  These require some explanation because they have

been set up to allow for differences between locations, years and the cage

status.  It is not valid to just use the code numbers for these variables in a

regression analysis because, for example, location 6 does not have six times

as much ‘location’ as location 1.

Variables LOC1 to LOC5 are indicator variables for the location.  Thus LOC1 is

1 for an observation at location 1 or is otherwise 0, LOC2 is 1 for an

observation at location 2 or is otherwise 0, and so on up to LOC5.  Actually,

there are six locations.  However, location 6 is not assigned an indicator

variable.  This means that location 6 becomes the ‘standard’ location, which

applies if LOC1 to LOC5 are all equal to 0.  Including LOC1 to LOC5 in a

regression equation has the effect of allowing the mean value of Y (the

number of flowers per plant) to vary from location to location.  This setting up

of indicator variables is done automatically by some regression programs for a

variable like location that is a code to indicate different categories of

something.  Unfortunately, this is not the case with the regression options in

Excel or SPSS.
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TABLE  4 . 1   REGRESS ION DATA FROM A  STUDY OF  THE  NUMBER  OF

FLOWERS  ON CAGED AND UNCAGED WOODROSE  PLANTS  IN  S IX

LOCATIONS ,  IN  1997  TO 1999 .

INDICATOR VARIABLES FOR EFFECTS1

LOCATIONS            YEARS CAGE

CASELOCATION2 YEAR3 CAGED4 LOC1 LOC2 LOC3 LOC4 LOC5 YEAR1 YEAR2 CAGE PLANTS FLOWERS Y5

1 1 2 2 1 0 0 0 0 0 1 1 3 14 4.67

2 1 3 1 1 0 0 0 0 0 0 0 3 21 7.00

3 1 3 2 1 0 0 0 0 0 0 1 2 22 11.00

4 2 1 1 0 1 0 0 0 1 0 0 8 18 2.25

5 2 2 1 0 1 0 0 0 0 1 0 1 16 16.00

6 2 2 2 0 1 0 0 0 0 1 1 8 46 5.75

7 2 3 1 0 1 0 0 0 0 0 0 2 3 1.50

8 2 3 2 0 1 0 0 0 0 0 1 7 32 4.57

9 3 1 1 0 0 1 0 0 1 0 0 9 3 0.33

10 3 2 1 0 0 1 0 0 0 1 0 10 0 0.00

11 3 3 1 0 0 1 0 0 0 0 0 6 16 2.67

12 3 3 2 0 0 1 0 0 0 0 1 8 101 12.63

13 4 3 1 0 0 0 1 0 0 0 0 3 0 0.00

14 4 3 2 0 0 0 1 0 0 0 1 5 55 11.00

15 5 3 2 0 0 0 0 1 0 0 1 2 10 5.00

16 6 1 1 0 0 0 0 0 1 0 0 6 6 1.00

17 6 2 1 0 0 0 0 0 0 1 0 6 1 0.17

18 6 3 1 0 0 0 0 0 0 0 0 2 8 4.00

19 6 3 2 0 0 0 0 0 0 0 1 4 42 10.50

Notes: 1See text for an explanation of the indicator variables.
2Locations are: 1, By hut; 2, Goblin Wood; 3, Hihikiwi, 4, South Hihikiwi; 5,
  Middle Bell track; and 6, North of Hihikiwi.
3Years are: 1, 1997; 2, 1998; and 3, 1999.
41 = uncaged, 2 = caged.
5Y = Flowers per Plant.

Variables YEAR1 and YEAR2 are indicator variables for the year, while CAGE

is an indicator variable for the cage status.  These are defined similarly to the

indicator variables for location: YEAR1 is 1 for 1997 or is otherwise 0, YEAR2

is 1 for 1998 or is otherwise 0, and CAGE is 1 for caged plants or is otherwise

0.  Hence 1999 becomes the ‘standard’ year (YEAR1 = YEAR2 = 0), and

uncaged plants become the standard type (CAGE= 0).

To examine the effects if any of caging on the number of flowers per plant,

consider the regression model including all of the X variables,

Y = β
0
 + β

1
LOC1 + ... +  β

5
LOC5 + β

6
YEAR1 + β

7
YEAR2 + β

8
CAGE + ε,

which claims that the mean number of flowers per plant may vary from

location to location (allowed for by including LOC1 to LOC5), the year

(allowed for by including YEAR1 and YEAR2), and whether or not plants are

caged or not (allowed for by including CAGE).

There is one further complication with this example.  The number of plants

for an observation varies from 1 to 10, and it can be expected that the random

error in a Y value will become less variable as the number of plants increases.
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In fact, since Y is a mean value it can be expected that its variance will be

proportional to 1/(Number of Plants).  This can be allowed for in the SPSS

regression module by using the number of plants as a regression weight.

There is an option for this on the main regression menu.

Part of the output from the SPSS regression module is shown in Table 4.2, with

some comments in italics.  The location variables were entered in a block, as

were the year variables and the cage variable (i.e. there were three blocks of

variables defined).  The remove option was then used in SPSS to allow these

blocks of variables to be removed if there effect is not significant.  For

example, this option allows the location variables LOC1 to LOC5 to be

removed if their combined relationship with the dependent variable is not

significant at the 10% level (the SPSS default).  As the output shows, the actual

operation of SPSS seems to be a bit different.  The cage variable ends up being

removed although it is highly significant (p = 0.003).

TABLE  4 . 2   SPSS  REGRESS ION ANALYS I S  FOR  THE  DATA IN  TABLE  4 . 1 ,  WITH

COMMENTS  IN  ITAL ICS .

Variables Entered/Removed

MODEL VARIABLES VARIABLES METHOD

ENTERED REMOVED

1 CAGE2, Enter

YEAR2,

LOC1, LOC5,

LOC4, LOC3,

YEAR1, LOC2

2 LOC2, LOC4, Remove

LOC3, LOC5,

LOC1

3 CAGE2 Remove

a  All requested variables entered.
b  All requested variables removed.
c  Dependent Variable: RATIO
d  Weighted Least Squares Regression - Weighted by PLANTS

In the last step the cage variable has been removed!  Only the year variables are

left in.
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Model Summary

MODEL R R SQUARE ADJUSTED R STD. ERROR OF

SQUARE THE ESTIMATE

1 .818 .669 .405 7.7470

2 .797 .635 .562 6.6457

3 .586 .344 .261 8.6308

a  Predictors: (Constant), CAGE2, YEAR2, LOC1, LOC5, LOC4, LOC3, YEAR1, LOC2
b  Predictors: (Constant), CAGE2, YEAR2, YEAR1
c  Predictors: (Constant), YEAR2, YEAR1
d  Dependent Variable: RATIO
e  Weighted Least Squares Regression - Weighted by PLANTS

ANOVA

MODEL SUM dfMEAN SQUARE F SIG.

OF SQUARES

1 Regression 1215.425 8 151.928 2.531 .085

Residual 600.154 10 60.015

Total 1815.579 18

2 Regression 1153.095 3 384.365 8.703 .001

Residual 662.484 15 44.166

Total 1815.579 18

3 Regression 623.732 2 311.866 4.187 .034

Residual 1191.847 16 74.490

Total 1815.579 18

a  Predictors: (Constant), CAGE2, YEAR2, LOC1, LOC5, LOC4, LOC3, YEAR1, LOC2
b  Predictors: (Constant), CAGE2, YEAR2, YEAR1
c  Predictors: (Constant), YEAR2, YEAR1
d  Dependent Variable: RATIO
e  Weighted Least Squares Regression - Weighted by PLANTS
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Coefficients

UNSTANDARDIZED STANDARDIZED t SIG.

COEFFICIENTS COEFFICIENTS

MODEL B STD. ERROR BETA

1 (Constant) 3.482 2.401 1.450 .178

LOC1 .939 3.389 .060 .277 .787

LOC2 -.929 2.477 -.095 -.375 .715

LOC3 .132 2.277 .014 .058 .955

LOC4 -.431 3.500 -.027 -.123 .904

LOC5 -4.600 5.977 -.151 -.770 .459

YEAR1 -2.038 2.486 -.200 -.820 .431

YEAR2 -2.984 2.043 -.311 -1.460 .175

CAGE2 6.118 2.049 .688 2.986 .014

2 (Constant) 3.481 1.437 2.423 .029

YEAR1 -2.308 1.996 -.226 -1.156 .266

YEAR2 -2.931 1.654 -.306 -1.772 .097

CAGE2 5.603 1.618 .631 3.462 .003

3 (Constant) 7.047 1.301 5.416 .000

YEAR1 -5.874 2.221 -.576 -2.645 .018

YEAR2 -4.296 2.086 -.448 -2.059 .056

a  Dependent Variable: RATIO
b  Weighted Least Squares Regression - Weighted by PLANTS

It is a mystery why CAGE2 was removed for model 3 because it is the most

significant variable - highly significant, in fact.  The best model seems to be

Model 2, including year and cage effect.

Excluded Variables

BETA IN t SIG. PARTIAL COLLINEARITY

CORRELATION STATISTICS

MODEL TOLERANCE

2 LOC1 .089 .549 .592 .145 .967

LOC2 -.091 -.531 .603 -.141 .875

LOC3 .057 .340 .739 .090 .932

LOC4 -.008 -.049 .962 -.013 .893

LOC5 -.143 -.891 .388 -.232 .959

3 LOC1 .121 .575 .574 .147 .971

LOC2 .096 .458 .654 .117 .979

LOC3 -.085 -.406 .690 -.104 .996

LOC4 -.013 -.060 .953 -.016 .893

LOC5 -.070 -.334 .743 -.086 .975

CAGE2 .631 3.462 .003 .666 .733

a  Predictors in the Model: (Constant), CAGE2, YEAR2, YEAR1
b  Predictors in the Model: (Constant), YEAR2, YEAR1
c  Dependent Variable: RATIO
d  Weighted Least Squares Regression - Weighted by PLANTS
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Residuals Statistics

MINIMUM MAXIMUM MEAN STD. DEVIATION N

Predicted 1.1726 7.0466 4.9887 2.5310 19

Value

Residual -7.0466 13.2489 .2765 4.6929 19

Std. Predicted - - - - 0

Value

Std. Residual - - - - 0

a  Not computed for Weighted Least Squares regression.
b  Dependent Variable: RATIO
c  Weighted Least Squares Regression - Weighted by PLANTS

The overall conclusion from this analysis is that a model including a year

effect and a cage effect seems appropriate for the data.  The effect of caging

seems to be to increase the number of flowers by about 5.6 per plant, with the

standard error of this estimate being 1.6.

A regression analysis is not complete without plots of the data and residuals to

ensure that the model being considered is reasonable.  With a weighted

regression SPSS does not provide these plots automatically for residuals, but

the output tells you what to do to get the graphs.  The ones in Figure 4.6 were

produced in a spreadsheet.  Apart from the fact that the residuals are all close

to zero in location 6 and year 1, quite likely due to small sample sizes, there

seems nothing unusual in these plots.

Figure 4.6  Plots of the number of flowers per plant and standardised residuals against
locations, years and the cage status, plus a plot of standardized residuals against the expected
number of flowers.
NB: Standardised residuals equals the difference between the observed number of flowers per
plant and the expected number from the fitted regression equation, divided by the estimated
standard error of the observed value. For a good model the standardized residuals will almost
all be in the range -2 to +2, with no relationship with what they are plotted against.
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4.5 Analysis of Variance

An important distinction in statistical modelling is that between variables and

factors.  A variable is something like the phosphorus concentration or

nitrogen concentration in lakes.  A factor, on the other hand, has a number of

levels and in terms of a regression model it might be thought plausible that

the response variable being considered has a mean level that changes with

these levels.   The location in the example just considered is therefore a factor.

Thus if an experiment is carried out to assess the effect of 1080 poison pellets

on invertebrate densities, then the density of invertebrates might be related by

a regression model to the level of 1080 in the pellets, perhaps at four

concentrations.  The 1080 level, would then be treated as a variable.  If the

experiment was carried out at three different locations, then the location

would be a factor, which could not just be entered as a variable.  The

locations could be labelled 1 to 3, and what would be required in the

regression equation is an allowance for the invertebrate density to vary with

the location, just like the number of flowers per plant was allowed to vary in

the example just considered.

The type of regression model that could then be appropriate would be

Y = β
1
X

1
 + β

2
X

2
 + β

3
X

3
 + β

4
X

4
 + ε,

where Y is the density of invertebrates, X
i
 for i = 1 to 3 are indicator variables

such that X
i
 = 1 if the location is i, or is otherwise 0, and X

4
 is the

concentration of 1080.  The effect of this formulation is that for location 1 the

expected invertebrate density with a 1080 concentration of X
4
 is β

1
 + β

4
X

4
, for

location 2 the expected invertebrate density with this concentration is β
2
 +

β
4
X

4
, and for location 3 the expected invertebrate density with this

concentration is β
3
 + β

4
X

4
.  Hence in this situation the location factor at three

levels can be allowed for by introducing three 0-1 variables into the

regression equation and omitting the constant term β
0
.  This is a slight

modification of the approach used in the previous example where a constant

term was left in the regression equation and the number of 0-1 indicators was

one less than the number of locations.

The equation above allows for a factor effect, but only on the expected

invertebrate density.  If the effect of the concentration of 1080 may also vary

with the location then the model can be extended to allow for this, by adding

products of the 0-1 variables for the location with the concentration variable

to give

Y = β
1
X

1
 + β

2
X

2
 + β

3
X

3
 + β

4
X

1
X

4
 + β

5
X

2
X

4
 + β

6
X

3
X

4
 + ε.

For locations 1 to 3 the expected invertebrate densities are then β
1
 + β

4
X

4
, β

2
 +

β
5
X

4
, and β

3
+ β

6
X

4
, respectively.  The effect is then that there is a linear

relationship between the invertebrate density and the concentration of 1080,

which may differ for the three locations.

When there is only one factor to be considered in a model it can be handled

reasonably easily by using dummy indicator variables as just described.

However, with more than one factor this gets cumbersome and it is more

usual to approach modelling from the point of view of what is called the

analysis of variance.  This is based on a number of standard models and the
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theory can get quite complicated.  Nevertheless, the use of analysis of

variance in practice can be quite straightforward using SPSS to do the

calculations. An introduction to experimental designs and their corresponding

analyses of variance is given by Manly (1992, Chapter 7).  Here only four

simple situations will be considered.  A number of texts have been written

covering mainly just the topics of linear regression and analysis of variance.

Three are those of Neter et al. (1983), Younger (1985) and Mead et al. (1993).

One factor Analysis of Variance
With a single factor the analysis of variance model is just a model for

comparing the means of I samples, where I is two or more.  This model can be

written as

x
ij
 = µ + a

i
 + ε

ij
,

where x
ij
 is the jth observed value of the variable of interest at the ith factor

level (i.e. in the ith sample), µ is an overall mean level, a
i
 is the deviation

from µ for the ith factor level with a
1
 + a

2
 + ... a

I
 = 0, and ε

ij
 is the random

component of x
ij
, which is assumed to be independent of all other terms in the

model, with a mean of zero and a constant variance.

To test for an effect of the factor an analysis of variance table is set up, where

this takes the form shown in Table 4.3.  Here the sum of squares for the factor

is just the sum of squares accounted for by allowing the mean level to change

with the factor level in a regression model, although it is usually computed

somewhat differently.  The F-test requires the assumption that the random

components ε
ij
 in the model have a normal distribution.

Two Factor Analysis of Variance
With a two factor situation there are I levels for one factor (A) and J levels for

the other factor (B).  It is simplest if m observations are taken for each

combination of levels, which is what will be assumed here.  The model can be

written

x
ijk

 = µ + a
i
 + b

j
 + (ab)

ij
 + ε

ijk
,

where x
ijk

 denotes the kth observation at the ith level for factor A and the jth

level for factor B, µ denotes an overall mean level, a
i
 denotes an effect

associated with the ith level of factor A, b
j
 denotes an effect associated with

the jth level of factor B, (ab)
ij
 denotes an interaction effect so that the mean

level at a factor combination does not have to be just the sum of the effects of

the two individual factors, and ε
ijk

 is the random part of the observation x
ijk

,

which is assumed to be independent of all other terms in the model, with a

mean of zero and a constant variance.
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TABLE  4 . 3   FORM OF  THE  ANALYS I S  OF  VAR IANCE  TABLE  FOR A  ONE

FACTOR MODEL ,  WITH I  LEVELS  OF  THE  FACTOR AND N OBSERVATIONS  IN

TOTAL .

SOURCE OF SUM OF DEGREES MEAN F3

VARIATION SQUARES1 OF FREEDOM SQUARE2

Factor SSF I - 1 MSF = SSF/(I - 1) MSF/MSE

Error SSE n - 1 MSE = SSE/(n - 1)

Total SST = ∑∑(xij -   x  )2 n - 1

1 SSF = sum of squares between factor levels, SSE = sum of squares for error (variation within
factor levels), and SST = total sum of squares for which the summation is over all
observations at all factor levels.

2 MSF= mean square between factor levels, and MSE = mean square error.
3 The F-value is tested for significance by comparison with critical values for the F-distribution

with I - 1 and n - 1 degrees of freedom.

Moving from one to two factors introduces the complication of deciding

whether the factors have what are called fixed or random effects.  With a fixed

effects factor the levels of the factor for which data are collected are regarded

as all the levels of interest.  The effects associated with that factor are then

defined to add to zero.  Thus if A has fixed effects then a
1
 + a

2
 + ... + a

I
 = 0

and (ab)
1j
 + (ab)

2j
 + ... + (ab)

Ij
 = 0, for all j.  If, on the contrary, A has random

effects then the values a
1
 to a

I
 are assumed to be random values from a

distribution with mean zero and variance σ2
A
, while (ab)

1j
 to (ab)

Ij
 are assumed

to be random values from a distribution with mean zero and variance σ2
AB

.

An example of a fixed effect is when an experiment is run with low, medium

and high levels for the amount of a chemical because in such a case the levels

can hardly be thought of as a random choice from a population of possible

levels.  An example of a random effect is when one of the factors in an

experiment is the brood of animals tested, where these broods are randomly

chosen from a large population of possible broods.  In this case the brood

effects observed in the data will be random values from the distribution of

brood effects that are possible.

The distinction between fixed and random effects is important because the

way that the significance of factor effects is determined depends on what is

assumed about these effects.  Some statistical packages allow the user to

choose which effects are fixed and which are random, and carries out tests

based on this choice.  The ‘default’ is usually fixed effects for all factors, in

which case the analysis of variance table is as shown in Table 4.4.

If there is only m = 1 observation for each factor combination then the error

sum of squares shown in Table 4.4 cannot be calculated.  In that case it is

usual to assume that there is no interaction between the two factors, and the

interaction sum of squares becomes the error sum of squares, and the factor

effects are tested using F-ratios that are the factor mean squares divided by

this error sum of squares.
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Three Factor Analysis of Variance
With three factors with levels I, J, and K, and m observations for each factor

combination, the analysis of variance model becomes

x
ijku

 = µ +  a
i
 + b

j
 + c

k
 + (ab)

ij
 + (ac)

ik
 + (bc)

jk
 + (abc)

ijk
 + ε

ijku
,

where x
ijku

 is the uth observation for level i of factor A, level j of factor B, and

level k of factor C, a
i
, b

j
 and c

k
 are the main effects of the three factors, (ab)

ij
,

(ac)
ik
 and (bc)

jk
 are terms that allow for first order interactions between pairs

of factors, (abc)
ijk

 allows for a three factor interaction (where the mean for a

factor combination is not just the sum of the factor and first order interaction

effects), and ε
ijku

 is a random component of the observation, independent of

all other terms in the model with a mean of zero and a constant variance.

TABLE  4 . 4   FORM OF  THE  ANALYS I S  OF  VAR IANCE  TABLE  FOR A  TWO

FACTOR MODEL  WITH F IXED EFFECTS ,  AND WITH I  LEVELS  FOR FACTOR A ,

j  LEVELS  FOR FACTOR B ,  m  OBSERVATIONS  FOR EACH COMBINATION OF

FACTOR LEVELS ,  AND n  =  I Jm  OBSERVATIONS  IN  TOTAL .

SOURCE OF SUM OF DEGREES MEAN F2

VARIATION SQUARES1 OF FREEDOM SQUARE

Factor A SSA I - 1 MSA = SSA/(I - 1) MSA/MSE

Factor B SSB J - 1 MSB = SSB/(J - 1) MSB/MSE

Interaction SSAB (I - 1)(J - 1) MSAB = SSAB/{(I - 1)(J - 1)} MSAB/MSE

Error SSE I J(m - 1) MSE = SSE/{I J(m - 1)}

Total SST = ΣΣΣ(xijk- x )2 N - 1

1  The sum for SST is over all levels for i, j and k, i.e. over all n observations.
2  The F-ratios for the factors are for fixed effects only.

The analysis of variance table generalises in an obvious way in moving from

two to three factors.  There are now sums of squares, mean squares and F-

ratios for each of the factors, the two factor interactions, the three factor

interaction, and the error term.  The interpretation of the analysis of variance

table depends on what assumptions are made about fixed and random effects.

Example: Poisoning and Bird Counts at Hurunui Mainland
Island (Appendix Data Set 12)
This is an example of a three factor analysis of variance done in SPSS.  Five

minute bird counts were conducted in the summers of 1995/96, 1996/97,

1997/98 and 1998/99 in two areas on Hurunui Mainland Island in October or

November, and then again in February (except in the 1998 summer, when the

second sampling was done in late November).  Between the first and second

sampling times in each summer there was a stoat poisoning operation in area

1 only, and there is interest in whether this affected bird numbers.
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The original data are in Data Set 12 in the Appendix.  For the purposes of this

example, only a summary will be used, as shown in Table 4.5.  This table

gives the mean counts of all bird species in two replicate sets of 40 5-minute

counts (Count 1 and Count 2), for the two study areas (control and treated),

for the two sample times (before and after poisoning), for the four summers

(1995/96 to 1998/99).

TABLE  4 . 5   MEANS  FROM 40  5 -M INUTE  B IRD COUNTS  (ALL  SPEC IES )  FROM

TWO REPL ICATE  COUNTS  IN  EACH OF  THE  TREATED AND CONTROL  AREAS ,

BEFORE  AND AFTER  STOAT POISONING IN  FOUR SUMMERS .

           1995/96                 1996/97                1997/98                  1998/99

AREA COUNT BEFORE AFTER BEFORE AFTER BEFORE AFTER BEFORE AFTER

Treated 1 12.50 17.78 7.93 7.28 12.38 8.70 11.38 10.08

2 11.70 14.30 5.45 4.08 11.15 8.10 5.98 7.93

Control 1 12.70 14.88 9.58 7.83 16.40 8.43 13.03 10.90

2 9.50 13.65 5.68 4.08 12.10 6.63 9.60 6.90

For the analysis of variance the factors are the area with two levels, the

summer with four levels, and the sample time in the summer with two levels.

This gives 2x4x2 = 16 factor combinations, with two counts that are treated as

replicates for each of these combinations, giving 32 observations altogether.

Table 4.6 shows part of the output from the analysis in SPSS, with comments

in italics.

TABLE  4 . 6   OUTPUT FROM SPSS  FOR THE  THREE  FACTOR ANALYS I S  OF

VAR IANCE  US ING THE  GENERAL  L INEAR  MODEL  OPT ION FOR FACTORIAL

DATA .

Between-Subjects Factors

N

AREA 1 16

2 16

SUMMER 1 8

2 8

3 8

4 8

TIME 1 16

2 16
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Descriptive Statistics

Dependent Variable: M_COUNT

AREA SUMMER TIME MEAN STD. DEVIATION N

1 1 1 12.1000 .5657 2

2 16.0400 2.4607 2

Total 14.0700 2.7018 4

2 1 6.6900 1.7536 2

2 5.6800 2.2627 2

Total 6.1850 1.7526 4

3 1 11.7650 .8697 2

2 8.4000 .4243 2

Total 10.0825 2.0215 4

4 1 8.6800 3.8184 2

2 9.0050 1.5203 2

Total 8.8425 2.3803 4

Total 1 9.8088 2.9004 8

2 9.7812 4.3206 8

Total 9.7950 3.5549 16

2 1 1 11.1000 2.2627 2

2 14.2650 .8697 2

Total 12.6825 2.3017 4

2 1 7.6300 2.7577 2

2 5.9550 2.6517 2

Total 6.7925 2.4112 4

3 1 14.2500 3.0406 2

2 7.5300 1.2728 2

Total 10.8900 4.3214 4

4 1 11.3150 2.4254 2

2 8.9000 2.8284 2

Total 10.1075 2.5635 4

Total 1 11.0738 3.2042 8

2 9.1625 3.6941 8

Total 10.1181 3.4833 16

Total 1 1 11.6000 1.4652 4

2 15.1525 1.8223 4

Total 13.3763 2.4391 8

2 1 7.1600 1.9633 4

2 5.8175 2.0188 4

Total 6.4887 1.9783 8

3 1 13.0075 2.3221 4

2 7.9650 .9232 4

Total 10.4862 3.1529 8

4 1 9.9975 3.0225 4

2 8.9525 1.8549 4

Total 9.4750 2.3878 8

Total 1 10.4412 3.0238 16

2 9.4719 3.8964 16

Total 9.9566 3.4659 32
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Tests of Between-Subjects Effects

Dependent Variable: M_COUNT

SOURCE TYPE III SUM df MEAN SQUARE F SIG.

OF SQUARES

Corrected Model 294.739 15 19.649 4.048 .004

Intercept 3172.260 1 3172.260 653.584 .000

AREA .835 1 .835 .172 .684

SUMMER 193.860 3 64.620 13.314 .000

TIME 7.518 1 7.518 1.549 .231

AREA * SUMMER 8.258 3 2.753 .567 .645

AREA * TIME 7.097 1 7.097 1.462 .244

SUMMER * TIME 74.365 3 24.788 5.107 .011

AREA * SUMMER * TIME 2.806 3 .935 .193 .900

Error 77.658 16 4.854

Total 3544.657 32

Corrected Total 372.397 31

a  R Squared = .791 (Adjusted R Squared = .596)

There are significant differences between summers, and a significant summer

by time interaction, i.e. differences between the sample times (before and

after poisoning) seem to vary from summer to summer.  The type III sums of

squares are the usual ones used for a balanced analysis like this.  They

represent the variation accounted for by the factor after adjusting for any

effects that do not contain the effect in question.

AREA * SUMMER * TIME

Dependent Variable: M_COUNT

MEAN STD. ERROR     95% CONFIDENCE INTERVAL

AREA SUMMER TIME LOWER UPPER

BOUND BOUND

1 1 1 12.100 1.558 8.798 15.402

2 16.040 1.558 12.738 19.342

2 1 6.690 1.558 3.388 9.992

2 5.680 1.558 2.378 8.982

3 1 11.765 1.558 8.463 15.067

2 8.400 1.558 5.098 11.702

4 1 8.680 1.558 5.378 11.982

2 9.005 1.558 5.703 12.307

2 1 1 11.100 1.558 7.798 14.402

2 14.265 1.558 10.963 17.567

2 1 7.630 1.558 4.328 10.932

2 5.955 1.558 2.653 9.257

3 1 14.250 1.558 10.948 17.552

2 7.530 1.558 4.228 10.832

4 1 11.315 1.558 8.013 14.617

2 8.900 1.558 5.598 12.202
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The variation in replicate counts seems fairly constant.

The key plot here is the one for the standardised residual against the predicted

values (the middle plot on the bottom row).  The assumption of a constant

variance seems reasonable.
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This is 1995/96.  The top line above is area 1 (treated) and the bottom line is

area 2 (control).  Bird numbers increased pretty much the same from before

and after poisoning in both areas.

This is 1996/1997.  The top line is area 2 (control) and the bottom line is area 1

(treated).  These are colour coded in the SPSS output.  There has been a

reduction in numbers in both areas from before to after poisoning, but more of

a reduction in the treated area.
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Here the top line at time 1 is area 2 (control) and the bottom line is area 1

(treated).  The bird numbers went down after poisoning in both areas, but more

in the control area.

Here the top line is area 2 (control) and the bottom line is area 1 (treated).  The

mean bird count decreased considerably in the control area after poisoning,

but increased slightly in the treated area.

It is the differences between the the last four graphs that have resulted in the

significant summer by time interaction.  They certainly do not indicate a

reduction in bird numbers due to poisoning in the treated area.
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Repeated Measures Designs
Many data sets that are collected by DOC scientists have a repeated measures

type of design.  An example would be vegetation monitoring where there are

three areas, one with no possum control, one with some possum control, and

one with intensive possum control.  Within each area five randomly placed

plots might be set up, and then the percentage foliage cover measured for six

years on those plots.  This would then result in data of the form shown in

Table 4.7.

In this example the area is a between plot factor at three levels, and the year

is a within plot factor.  There is a special option in SPSS to analyse data of this

type, which can have more than one between plot factor, and more than one

within plot factor.  This should not be analysed as a factorial design with three

factors (Area, Year and Plot), because that assumes that the plots in different

areas match up, e.g. plot 1 in areas 1, 2 and 3 have something similar about

them.  Generally, this will not be true.  On the other hand, the repeated

measurements on one plot in one area are assumed to possibly have some

similarity.

Multiple Comparisons and Contrasts
Many statistical packages for analysis of variance (including SPSS) allow the

user to make comparisons of the mean level of the dependent variable for

different factor combinations, with the multiple testing being allowed for in

various ways.  These tests are then intended to help users to understand how

mean levels differ with factor levels.  There are 18 different approaches that

can be used in SPSS, and the help information should be read carefully before

deciding which, if any, of these to use.  Use of a Bonferroni correction is one

possibility that is straightforward, although this may not have the power of

other methods.  What these multiple comparison methods do is to produce

confidence intervals for the difference between the means for different factor

levels.  If one such interval does not include zero, then there is evidence that

the population mean is not the same for the different factor levels.

Be warned that some statisticians do not like multiple comparison methods.

To quote one leading expert on the design and analysis of experiments (Mead,

1988, p. 310):

Although each of these methods for multiple comparisons was developed

for a particular, usually very limited, situation, in practice these methods

are used very widely with no apparent thought as to their appropriateness.

For many experimenters, and even editors of journals, they have become

automatic in the less desirable sense of being used as a substitute for

thought ... I recommend strongly that multiple comparison methods be

avoided unless, after some thought and identifying the situation for which

the test you are considering was proposed, you decide that the method is

exactly appropriate.

He goes on to suggest that simple graphs of means against factor levels will

often be much more informative than multiple comparison tests.

On the other hand, Mead (1988) does make use of contrasts for interpreting

experimental results, where these are linear combinations of mean values that

reflect some aspect of the data that is of particular interest.  For example, one
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contrast might be the mean value in year 1 compared to the mean value for all

other years combined.  Alternatively, a set of contrasts might be based on

comparing each of the other years with year 1.

The package SPSS allows these types of comparisons to be made easily.  As

for the multiple comparison methods, a good starting point for using contrasts

involves looking at the package’s help facility.

4.6 Generalized Linear Models

The regression and analysis of variance models described in the previous two

sections can be considered to be special cases of a general class of what are

called generalized linear models.  These were first defined by Nelder and

Wedderburn (1972), and used to develop GLIM, a computer program for

fitting these models to data (Francis et al 1993).  They include many of the

regression types of model that are likely to be of most use for analysing data.

A very thorough description of the models and the theory behind them is

provided by McCullagh and Nelder (1989).

The characteristic of generalized linear models is that there is a dependent

variable Y, which is related to some other variables X
1
, X

2
, ..., X

p
 by an

equation of the form

Y = ƒ(β
0
 + β

1
X

1
 + β

2
X

2
 + ... + β

p
X

p
) + ε,

where ƒ(x) is one of a number of allowed functions, and ε is a random value

with a mean of zero from one of a number of allowed distributions.  For

example, setting ƒ(x) = x and assuming a normal distribution for ε, just gives

the usual multiple regression model discussed in Section 4.4.

Setting ƒ(x) = exp(x) makes the expected value of Y equal to

E(Y) = exp(β
0
 + β

1
X

1
 + β

2
X

2
 + ... + β

p
X

p
).

Assuming that Y has a Poisson distribution then gives what is called a log-

linear model, which is a popular assumption for analysing count data (Manly,

1992, Section 8.5).  The description ‘log-linear’ comes about because the

logarithm of the expected value of Y is a linear combination of the X variables.



27Module 4: Models for Analysis

TABLE  4 . 7   THE  FORM OF  DATA FROM A  REPEATED MEASURES  EXPER IMENT

WITH F IVE  PLOTS  IN  EACH OF  THREE  D IFFERENT TREATMENT AREAS

MEASURED FOR S IX  YEARS .   A  MEASUREMENT OF  PERCENTAGE FOL IAGE

COVER  I S  INDICATED BY X .

AREA PLOT YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6

No possum control 1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

Low possum control 1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

High possum control 1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

Alternatively, setting ƒ(x) = exp(x)/{1 + exp(x)} makes the expected value of Y

equal to

E(Y) = exp(β
0
 + β

1
X

1
 + β

2
X

2
 + ... + β

p
X

p
)/{1 + exp(β

0
 + β

1
X

1
 + β

2
X

2
 + ... + β

p
X

p
)}.

This is the logistic model for a random variable Y that takes the value 0

(indicating the absence of a event) or 1 (indicating that an event occurs),

where the probability of Y = 1 is given as a function of the X variables on the

right-hand side of the equation.

There are many other possibilities for modelling within this framework,

although SPSS only includes the most commonly used options, which are

ordinary regression, logistic or probit regression for proportion data, log-

linear models for count data, and the Cox regression model for survival data.

Even then, the option within SPSS are limited and cannot handle the analysis

of many common types of data.

Generalized linear models are usually fitted to data using the principle of

maximum likelihood, i.e. the unknown parameter values are estimated as

those values that make the probability of the observed data as large as

possible.  The goodness of fit of a model is then measured by the deviance,

which is minus twice the maximized log-likelihood, with associated degrees

of freedom equal to the number of observations minus the number of

estimated parameters.

With models for count data with Poisson errors the deviance gives a direct

measure of the absolute goodness of fit.  If the deviance is significantly large

in comparison with critical values from the chi-squared distribution then the

model is a poor fit to the data.  Conversely, a deviance that is not significantly

large shows that the model is a reasonable fit.  Similarly, with data consisting
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of proportions with binomial errors the deviance is an absolute measure of the

goodness of fit when compared to the chi-squared distribution providing that

the numbers of trials that the proportions relate to are not too small, say

generally more than five.

With data from distributions other than the Poisson or binomial, or for

binomial data with small numbers of trials the deviance can only be used as a

relative measure of goodness of fit.  The key result then is that if one model

has a deviance of D
1
 with υ

1
 degrees of freedom and another model has a

deviance of D
2
 with υ

2
 degrees of freedom, and the first model contains all of

the parameters in the second model plus some others, then the first model

gives a significantly better fit than the second model if the difference D
2
 - D

1
 is

significantly large in comparison with the chi-squared distribution with υ
2
 - υ

1

degrees of freedom.  Comparing several models in this way is called an

analysis of deviance by analogy to the analysis of variance.  These tests using

deviances are approximate but they should give reasonable results, except

perhaps with rather small sets of data.

The individual estimates in a generalized linear model can also be tested to

see whether they are significantly different from zero.  This just involves

comparing the estimate divided by its standard error, z = β/SE(β),  with critical

values for the standard normal distribution.  Thus if the absolute value of z

exceeds 1.96 then the estimate is significantly different from zero at about the

5% level.

More about the theory and practice of generalized linear models can be found

in the books by Healy (1988), McCullagh and Nelder (1989) and Lindsey

(1989), as well as in the very comprehensive manual for the program GLIM

(Francis et al 1993).

Example:  Dolphin Bycatch in Trawl Fisheries
This example concerns the accidental bycatch of the common dolphin

(Delphinus delphis) and the bottlenose dolphin (Tursiops truncatus) in the

Taranaki Bight trawl fishery for jack mackerel (Trachurus declivis, T. novae

zealeandiae, and T. murphyi) off the west coast of New Zealand.

The New Zealand Ministry of Fisheries puts official observers on about 10% of

fishing vessels to monitor dolphin bycatch, and Table 4.8 shows a summary of

the data collected by these observers for the six fishing seasons 1989/90 to

1994/95, as originally published by Baird (1996, Table 3).  The table shows the

number of observed trawls and the number of dolphins accidentally killed

categorised by eight conditions for each fishing year: the fishing area (the

northern or southern Taranaki Bight), the gear type (bottom or midwater), and

the time (day or night).  Excluding five cases where there were no observed

trawls, this gives 43 observations on the bycatch under different conditions, in

different years.  Some results from fitting a generalized linear model to these

data are also shown in the last two columns of the table.

Because the dependent variable (the number of dolphins killed) is a count, it

is reasonable to try fitting the data using a log-linear model with Poisson

errors.  A simple model of that type for the ith count is

Y
i
 = T

i
exp{α(ƒ

i
) + β

1
X

i1
 + β

2
X

i2
 + β

3
X

i3
} + ε

i
,

^ ^
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where T
i
 is the number of tows involved; α(ƒ

i
) depends on the fishing year ƒ

i

when the observation was collected in such a way that α(f
i
) = α(1) for

observations in 1989/90, α(ƒ
i
) = α(2) for observations in 1990/91, and so on

up to α(ƒ
i
) = α(6) for observations in 1994/95; X

i1
 is 0 for North Taranaki and

1 for South Taranaki; X
i2
 is 0 for bottom trawls and 1 for mid-water trawls; and

X
i3
 is 0 for day and 1 for night.  The fishing year is then being treated as a

factor at six levels while the three X variables indicate the absence and

presence of different particular conditions.  The number of trawls is included

as a multiplying factor in the equation for the model because, other things

being equal, the amount of bycatch is expected to be proportional to the

number of trawls made.

The model was fitted using GLIM4 (Francis et al. 1993) to produce the

estimates that are shown in Table 4.9.  There is a log-linear model option in

SPSS but it is designed for a very restricted type of data consisting of counts in

contingency tables, with one line of data for every time that a certain event

occurs.

The estimates for the effects of different years that are shown in Table 4.8 are

not easy to interpret because their estimated standard errors are quite large.

Nevertheless there are significant differences between years from an analysis

of deviance.  The other coefficients are very significantly different from zero.

TABLE  4 . 8   BYCATCH OF  DOLPHINS  IN  THE  TARANAKI  B IGHT TRAWL

F ISHERY FOR JACK MACKEREL .

OBSERVED      DOLPHINS KILLED

SEASON AREA GEAR TYPE TIME TOWS OBSERVED FITTED RATE1

1989-90 North Bottom Day 40 0 0 0.1

North Bottom Night 6 0 0 0.6

North Mid-water Night 1 0 0 3.9

South Bottom Day 139 0 0.6 0.4

South Mid-water Day 6 0 0.2 2.8

South Bottom Night 6 0 0.2 3.6

South Mid-water Night 90 23 21.9 24.4

1990-91 North Bottom Day 2 0 0 0

South Bottom Day 47 0 0 0

South Mid-water Day 110 0 0 0

South Bottom Night 12 0 0 0

South Mid-water Night 73 0 0 0

1991-92 North Bottom Day 101 0 0.4 0.4

North Mid-water Day 4 0 0.1 2.8

North Bottom Night 36 2 1.3 3.6

North Mid-water Night 3 5 0.7 24.3

South Bottom Day 74 1 1.9 2.5

South Mid-water Day 3 0 0.5 17.1

South Bottom Night 7 5 1.5 22.1

South Mid-water Night 15 16 22.6 150.4
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OBSERVED      DOLPHINS KILLED

SEASON AREA GEAR TYPE TIME TOWS OBSERVED FITTED RATE1

1992-93 North Bottom Day 135 0 0.1 0.1

North Mid-water Day 3 0 0 0.5

North Bottom Night 22 0 0.1 0.6

North Mid-water Night 16 0 0.7 4.2

South Bottom Day 112 0 0.5 0.4

South Bottom Night 6 0 0.2 3.9

South Mid-water Night 28 9 7.4 26.3

1993-94 North Bottom Day 78 0 0 0

North Mid-water Day 19 0 0 0.2

North Bottom Night 13 0 0 0.2

North Mid-water Night 28 0 0.4 1.6

South Bottom Day 155 0 0.2 0.2

South Mid-water Day 20 0 0.2 1.1

South Bottom Night 14 0 0.2 1.4

South Mid-water Night 71 8 6.8 9.6

1994-95 North Bottom Day 17 0 0 0.1

North Mid-water Day 80 0 0.3 0.4

North Bottom Night 9 0 0 0.5

North Mid-water Night 74 0 2.5 3.4

South Bottom Day 41 0 0.1 0.4

South Mid-water Day 73 6 1.8 2.4

South Bottom Night 13 0 0.4 3.1

South Mid-water Night 74 15 15.8 21.3

1Dolphins expected to be captured per 100 tows according to the fitted model.

Table 4.10 shows the analysis of deviance table obtained by adding effects

into the model one at a time.  All effects are highly significant in terms of the

reduction in the deviance that is obtained by adding them in.  The final model

gives a reasonable fit to the data (chi-squared = 42.08 with 34 degrees of

freedom, p = 0.161).  Finally, the last two columns of Table 4.7 show the

expected counts of dolphin deaths to compare with the observed counts, and

the expected number of deaths per 100 tows.  The expected number of deaths

per 100 tows is usually fairly low but has the very large value of 150.4 for mid-

water tows, at night, in South Taranaki, in 1991/92.  In summary, it seems

clear that bycatch rates seem to have varied greatly with all of the factors

considered in this example
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TABLE  4 . 9   EST IMATES  FROM F ITT ING A  LOG-L INEAR  MODEL  TO THE  DATA

IN  TABLE  4 . 8 .

PARAMETER ESTIMATE STANDARD ERROR

“(1), year effect 1989/90 -7.328 0.59

“(2), year effect 1990/91 -17.52 21.38

“(3), year effect 1991/92 -5.509 0.537

“(4), year effect 1992/93 -7.254 0.612

“(5), year effect 1993/94 -8.26 0.636

“(6), year effect 1994/95 -7.463 0.551

Area effect (south v north) 1.822 0.411

Gear effect (mid-water v bottom) 1.918 0.443

Time effect (night v day) 2.177 0.451

TABLE  4 . 10   ANALYS I S  OF  DEVIANCE  FOR A  LOG-L INEAR  MODEL  F ITTED TO

THE DATA IN  TABLE  4 . 8 .

                                     CHANGE

DEGREES OF DEGREES OF

EFFECT DEVIANCE  FREEDOM DEVIANCE  FREEDOM

No effects 334.331 42

58.482 5

+ Year 275.851 37

60.712 1

+ Area 215.141 36

139.162 1

+ Gear type 75.981 35

33.912 1

+ Time 42.07 34

1 Significantly large at the 0.1% level, indicating that the model gives a poor fit to the data.
2 Significantly large at the 0.1% level, indicating that bycatch is very strongly related to the

effect added to the model.
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4.7 Data Transformations

Data transformations are usually made for one or more of the following

reasons: (a)  to make the variance the same for all values of the mean, (b) to

make the data more normally distributed, and (c) to ensure that the effects of

different factors or variables are additive.  With luck, all of these objectives

will be achieved at the same time, at least to a reasonable approximation.

Sometimes the choice of a transformation to achieve the first two objectives

(normality and constant variance) is straightforward, because there are some

standard rules that can be applied.  For example:

• With count data the square root transformation gives a more normal

distribution with approximately constant variance if the original counts

have Poisson distributions.  In this case, replace the data values X by √X

before running an analysis.

• With data consisting of proportions (X successes out of n trials), the arc

sine transformation should give a more normal type of distribution with

an approximately constant variance.  In this case, replace the observed

proportion p = X/n by arcsin(√p), before running an analysis.

• If the original data are positively skewed, with the standard deviation

being proportional to the mean, then a logarithmic transformation may

produce a more normally distributed variable with a more constant

variance.  In this case replace the data value X with log(X) using

logarithms to base 10 or base e.

There are variations on these standard transformations, for example using

√(X + 0.5) instead of √X, that are discussed in some statistics texts.  There is

also the possibility of choosing what transformation to use from a whole

range of possible transformations.  For example, a Box-Cox transformation is

one for which a data value is replaced by (X τ - 1)/τ if τ > 0, or log(X) if τ = 0,

with τ chosen to make the data as normally distributed as possible (Box and

Cox, 1964; Madansky, 1988, p. 158).

Having said all this, there are good arguments for avoiding transformations as

much as possible.  These days log-linear models can be used to analyse count

data, and logistic or probit regression can be used to analyse proportions.

Approximate methods for handling these types of data are therefore now

usually unnecessary.

The logarithmic transformation is however a special case.  It often happens

that the effects of a factor can be expected to operate multiplicatively rather

than additively, in which case it is very appropriate to use logarithms in place

of the original values in an analysis.  In such a case it may well be found, for

example, that an analysis of variance on logarithms produces a simpler

regression or analysis of variance model, with residuals that have better

properties than the residuals from an analysis on the original data.
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4.8 Power

An important question that should be considered before any data are

collected is whether the sample sizes planned will be large enough to detect

effects that are of interest.  With complicated data analysis methods such as an

analysis of variance with several factors, or log-linear modelling it may not be

easy to answer this question, in which case it may be best to collect some data

and see whether this seems to be enough to detect reasonable effects.  If not,

then obviously more data need to be collected.

An alternative approach, which can always be used, involves producing

simulated data sets and then running the proposed analysis on each of these.

The simulated data might then be based on previous studies, possibly with

bootstrapping to produce the new data sets (Manly, 1992, p. 329).  If no past

data are available then it is necessary to imagine what type of data might

occur (e.g. a log-normal distribution with the same standard deviation for

each factor combination).

The basic principle behind this type of empirical power study is to make up

data sets that are as similar as possible to what might occur in reality and see

how often an effect of interest is detected for a range of possible sample sizes.

The percentage of sets of data for which an effect is significant is an estimate

of the power for the proposed analysis with the particular sample size being

used.
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4.9 Key Points in This Module

• Statistical models describe observations on variables in terms of

parameters of distributions and the nature of the random variation

involved.

• The properties of discrete random variables are briefly described, and the

hypergeometric, binomial, and Poisson distributions are defined.

• The properties of continuous random variables are briefly described, and

the exponential, normal, and lognormal distributions are defined.

• The theory of linear regression is summarised for relating the values of a

variable Y to the corresponding values of some other variables X
1
, X

2
, ...,

X
p
.

• An example on effectiveness of caging to protect woodrose flowers from

browsing by possums is used to illustrate the use of multiple regression.

• The difference between factors and variables is described.  The models

for one, two and three factor analysis of variance are defined.

• What is meant by a repeated measures design is explained.

• A three factor example on the effect of stoat poisoning on bird counts is

used to illustrate analysis of variance, where the three factors are the

summer (1995/96 to 1998/99), two types of area (control and treated),

and the time of counting (before and after poisoning).

• The use of multiple comparison methods and contrasts in conjunction

with analysis of variance is discussed.

• The structure of generalized linear models is defined.

• The use of a generalized linear model is illustrated by an example where

the number of dolphins accidentally killed during commercial fishing

operations is related to the year of fishing, the type of fishing gear used,

and the time of day of fishing.  A log-linear model with the number of

dolphins killed assumed to have a Poisson distribution is found to give a

good fit to the data.

• Reasons for transforming data before an analysis, and some of the

transformations that might be used, are discussed.

• A method for determining the power of a data analysis for different levels

of sample sizes using simulated data is briefly covered.
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4.10 Questions About This Module

After completing this module you should be able to give reasonable answers

to the following questions:

1. What is the difference between a discrete and a continuous random

variable?

2. Under what circumstances might each of the following distributions be

used: hypergeometric, binomial, Poisson, exponential, normal, and

lognormal?

3. Describe a set of data that you are familiar with where it is interesting to

relate the values of a variable Y to other variables X
1
 to X

p
 using multiple

regression.  Why exactly would the results be interesting to you?

4. Again for a situation that you are familiar with, explain how you would

set up an experimental or observational study with either a two factor or

a three factor factorial design.  How would you ensure random sampling

of replicate values within factor combinations?  What would the analysis

of variance table look like for your experimental results?

5. What is the difference between a factorial design and a repeated

measures design?

6. Describe situations that you are familiar with where (i) a log-linear

model, and (ii) logistic regression would give a useful data analysis.

7. When would you consider using each of the following transformations:

square root, arcsine, and logarithmic?

8. Suppose that you have to design a study in which logistic regression will

be used to analyse the results.  You are required to demonstrate in

advance that your proposed sample size will give a reasonable power to

detect an effect of interest if it exists.  How would you do this?
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Module 5: Detection of
Trends and Change Points

S U M M A R Y

This module is concerned with various aspects of the detection of changes in

environmental variables.  Two situations are considered:

• Measurements are taken on an environmental variable at one location at

various points in time, so that a single time series is available for analysis.

There is interest in whether the mean level changes abruptly at any time,

or whether there are gradual changes in the mean of the series.

• Measurements on an environmental variable are taken at a number of

fixed sites in a spatial region at various points in time, so that several

time series are available.  There is interest in whether there are changes

with time in the distribution of the variable (the mean, the standard

deviation, etc.) over the sampled area.

A range of statistical methods are presented for handling these situations,

ranging from the setting up and fitting of multiple linear regression models to

non-parametric tests that require the minimum of assumptions for a valid

analysis.

5.1 Introduction

The primary reason for many monitoring schemes is the detection of abrupt

changes and gradual trends in important variables.  There are many statistical

tools available for this purpose, of which only a few will be mentioned here.

To begin with, it will be assumed that values of a variable are measured at

equally-spaced points in time at one location to form a time series, and that it

is the analysis of this single time series that is of interest.  The situation with

several time series from different monitoring sites is considered later in the

module.

Serial correlation is always a possibility with time series data.  When present,

this is usually positive so that values in the series tend to be similar when they

are close in time.  Serial correlation complicates analyses.  At moderate to

high levels it should not be ignored because if it is then the result tends to be

an excessive number of significant results on statistical tests.  With some of

the methods described here references for modifications to allow for serial

correlation are provided.  If there is no mention of serial correlation then it is

assumed to be absent.

5.2 The Change-Point Problem

Suppose that a variable is observed at a number of points of time, to give a

time series x
1
, x

2
, ..., x

n
. The change point problem is then to detect a change

in the mean of the series if this has occurred at an unknown time between two
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of the observations.  The problem is much easier if the point where a change

might have occurred is known, which requires what is sometimes called an

intervention analysis.

A formal test for the existence of a change point seems to have first been

proposed by Page (1955) in the context of industrial process control.  Since

that time a number of other approaches have been developed, as reviewed by

Jandhyala and MacNeill (1986), and methods for detecting a change in the

mean of an industrial process through control charts and related techniques

have been considerably developed (Montgomery, 1991).  Bayesian methods

have also been investigated (Carlin et al., 1992), and Sullivan and Woodall

(1996) suggest a useful approach for examining data for a change in the mean

and/or the variance at an unknown time.

It is not valid to look at the time series, decide where a change point may

have occurred, and then test for a significant difference between the means

for the observations before and after the change.  This is because the

maximum mean difference between two parts of the time series may be quite

large by chance alone and is liable to be statistically significant if it is tested

ignoring the way that it was selected.

A Randomization Test for a Change-Point
One way to overcome the problem of not knowing where a change may have

occurred before looking at the data involves using a randomization test

(Manly, 1997, Chapter 1).  Suppose therefore that there is interest in testing for

a change in the mean between two unspecified observations against the null

hypothesis that the series consists of independent observations from the same

distribution.  This test is not valid when there is serial correlation in the series

being considered.

Consider the first i observations in the series and suppose that these have the

mean   x 1i
 and variance s

1i
2, taking s

1i
2 = 0 if i = 1.  Similarly, consider the last

n - i observations in the series and let these have mean and variance   x 2i
 and

s
2i

2.  An appropriate test statistic is then t
 max

, the maximum of the t-statistics

t
 1
, t

 2
, ..., t

n-1
 where

    
t x x s i n ii i i1 1 2 1 1= − + −/{ { / ( )} ,

is the usual t-statistic for comparing the means of the first i and last n-i

observations, with

    s i s n i s ni i i

2

1

2

2

2
1 1 2= − + − − −{( ) ( ) } /( )

being the usual pooled estimate of the variance.  The test then involves

comparing t
max

 with the distribution that is generated by computing the same

statistic using the series values in a random order.

To be precise, suppose that the observed value of t
max

 is t
max,1

, and R-1 random

orderings of the series yield values of t
max,2

, to t
max,R

.  Then if t
max,1

 is included

among the largest 100α% of the values t
 max,1

 to t
max,R

 it can be declared to be

significantly large at the 100α% level.  The justification for this is that if the

null hypothesis is true then the observed ordering of values in the series is just

another random order so that the probability of it yielding one of the largest

100α% of the set of values is exactly α (assuming that there are no ties).
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The reason for using t
i
 to measure the difference between the first i values in

the series and the rest is that this measure will have approximately the same

distribution for all i.  This is ensured by dividing the mean difference between

  x 1i
 and   x i

 by the estimated standard error of this difference.  Using   x 1i
 -   x 2i

directly, for example, would mean that large differences would tend to be at

one or other end of the series and these differences would often dominate t
max

.

Example: Flow Variation in a South Island River
As an example of the randomization test just described, consider the data

shown in Table 5.1, and displayed graphically in Figure 5.1.  These data were

collected at one point along a South Island river in order to determine

whether flow rates have become more variable in recent years.  This question

is important to users of the river for irrigation as fast changes in the flow rate

are different are averages for the first, second, third and fourth quarters of the

year 1987 to 1996, and the first two quarters of 1997.  With these quarterly

observations there is little indication of seasonal effects or serial correlation.

TABLE  5 . 1  MEAN VALUES  FOR THE  VAR IAB IL ITY  OF  FLOW RATES ,

MEASURED AS  ABSOLUTE  PERCENTAGE CHANGES  IN  FLOW RATES  IN  A

SOUTH I SLAND R IVER  FROM 1987  TO 1997 .

QUARTER 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 MEAN

1 5.80 5.74 3.84 3.98 3.12 3.41 3.20 4.18 3.51 4.48 8.25 4.50

2 4.66 6.98 4.92 4.22 3.54 4.48 4.01 5.18 4.68 5.02 9.68 5.22

3 4.15 6.20 3.65 3.65 4.00 1.30 3.13 3.41 5.52 7.08 4.21

4 5.37 3.48 5.56 3.89 4.27 4.08 4.45 4.70 5.02 10.38 5.12

The calculations needed can be carried out using a computer program called

CHANGEPT.EXE, available from BFJM (Brian F.J.Manly).  The input and output

are shown in Table 5.2.  It is found that the largest absolute t value for a

difference in means between two stretches of the series is 7.96 for the difference

between the periods before and after the middle of 1996.  This is therefore t
max,1

.

When 9999 random permutations of the series were made to generate t
max,2

 to

t
max,10000

 it was found that t
max,1

 was never equalled or exceeded with the

randomized sets of data.  Therefore, the test statistic for the observed series is

significantly different from zero at the 1 in 10000, or 0.01% level.  There is very

strong evidence that the mean was not constant from 1987 to 1997.

The test just carried out allows for multiple testing.  If the individual t-statistics

are tested then it is found that there is a significant difference at the 5% level

if the time series is split between any of the last 18 observations.
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Figure 5.1  Mean values for the variability of flow rates, measured as absolute percentage
changes in flow rates in a South Island river from 1987 to 1997.  Time is 1 for the first quarter
in 1987, increasing to 42 for the second quarter in 1997.  The horizontal line is at the overall
mean.

TABLE  5 . 2   INPUT  AND OUTPUT FOR THE  PROGRAM FOR A

RANDOMIZAT ION TEST  FOR A  CHANGEPOINT  IN  THE  AMOUNT OF

VARIAT ION IN  FLOW RATES  IN  A  SOUTH I SLAND R IVER .

Input to CHANGEPT.EXE

South Island River Variability
42
5.80  4.66  4.15  5.37  5.74  6.98  6.20  3.48  3.84  4.92
3.65  5.56  3.98  4.22  3.65  3.89  3.12  3.54  4.00  4.27
3.41  4.48  1.30  4.08  3.20  4.01  3.13  4.45  4.18  5.18
3.41  4.70  3.51  4.68  5.52  5.02  4.48  5.02  7.08 10.38
8.25  9.68

Output from the Program

##############################################################
#                        CHANGEPT                            #
# Program to test for a change point in a time series by     #
# testing the maximum t-statistic for a difference between  #
# values in two parts of the series.                         #
#                                                            #
#                Version 1.0 (August, 1997)                  #
##############################################################

Date:  2/10/1999  Time: 16:43

Data: South Island River Variability (Year, Quarter, Time, %
Change)

Length of series =   42

Observations
5.8    4.7    4.2    5.4    5.7    7.0    6.2    3.5    3.8    4.9
3.7    5.6    4.0    4.2    3.7    3.9    3.1    3.5    4.0    4.3
3.4    4.5    1.3    4.1    3.2    4.0    3.1    4.4    4.2    5.2
3.4    4.7    3.5    4.7    5.5    5.0    4.5    5.0    7.1   10.4
8.2    9.7

Random number seed =    666

For the observed series maximum t =   7.96

Values for changes after times 1, 2, 3, etc.
0.61 0.39 0.11 0.28 0.52 1.06 1.35 0.98 0.73 0.73
0.48 0.63 0.46 0.35 0.13 -0.03 -0.33 -0.55 -0.68 -0.77
-1.02 -1.07 -1.75 -1.90 -2.24 -2.44 -2.87 -3.00 -3.23 -3.21
-3.74 -3.93 -4.63 -5.00 -5.06 -5.49 -6.57 -7.96 -7.53 -4.22
-3.22
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Significance level for maximum t-value (% of randomizations
giving absolute values as large or larger than the observed
value) =    0.01

Significance levels for individual times of change
42.36  66.57  91.52  79.02  61.88  29.03  17.32  33.70  48.37  48.36
64.28  54.25  65.26  73.94  90.06  97.48  74.37  59.98  51.26  46.21
32.62  29.89   8.86   6.17   2.88   1.82   0.52   0.42   0.28   0.29
0.04   0.05   0.01   0.01   0.02   0.01   0.01   0.01   0.01   0.32
4.62

5.3 Trend Detection

A common problem in terms of examining changes in an environmental time

series is the detection of a monotonic trend (Taylor and Loftis, 1989;

Zetterqvist 1991; Harcum et al, 1992).   Complications include seasonality and

serial correlation in the observations.

When considering the evidence for a trend in a time series it is most important

to define the time scale that is of interest.  As pointed out by Loftis et al.

(1991), in most analyses that have been conducted in the past there has been

an implicit assumption that what is of interest is a trend over the time period

for which data happen to be available.  For example, if 20 yearly results are

known, then a 20 year trend has implicitly been of interest.  This then means

that an increase in the first ten years followed by a decrease in the last ten

years to the original level has been considered to give no overall trend, with

the intermediate changes possibly being thought of as due to serial

correlation.  This is clearly not appropriate if systematic changes over a five

year period (say) are thought of by managers as being ‘trend’.

Regression Methods
When serial correlation is negligible, regression analysis provides a very

convenient framework for testing for trend.  In simple cases, a regression of

the measured variable against time will suffice, with a test to see whether the

coefficient of time is significantly different from 0.  In more complicated cases

there may be a need to allow for seasonal effects and the influence of one or

more exogenous variables.  Thus, for example, if the dependent variable is

measured monthly then the type of model that might be investigated is

Y
ij
 = ß

1
M

1j
 + ß

2
M

2j
 + ... + ß

12
M

12j
 + αX

ij
 + θt

ij
 + ε

ij

where Y
ij
 is the observation in month j of year i, M

kj
 is a month indicator that

is 1 when j = k or otherwise 0, X
ij
 is a relevant covariate in month j in year i,

t
ij
 is the time in months from the start of the series, and ε

ij
 is random noise.

Then the parameters ß
1
 to ß

12
 allow for differences in Y values related to

months of the year, the parameter α allows for an effect of the covariate, and

θ is the change in Y per month after adjusting for any seasonal effects and

effects due to differences in X from month to month.  If the estimate of θ
obtained by fitting the regression equation is significant then this provides the

evidence for a trend.

A small change can be made to the model in order to test for the existence of

seasonal effects.  One of the month indicators (say the first or last) can be

omitted from the model and a constant term introduced.  A comparison

between the fit of the model with just a constant in and the model with the
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constant and month indicators then shows whether the mean value appears to

vary from month to month.

If a regression equation such as the one above is fitted to data then a check

for serial correlation in the error variable ε
ij
 should always be made using the

Durbin-Watson (1951) test (Manly, 1992, p. 108).  If serial correlation may be

present then the model can still be used.  However, it should be fitted using a

method that is more appropriate than ordinary least-squares.  Edwards and

Coull (1987), Judge et al. (1988, pp. 388-93 and 532-8), Neter et al. (1983,

Chapter 13) and Zetterqvist (1991) all describe how this can be done.  There is

more than one method available and the calculations can be done in a

standard package like SPSS with some manipulation of the data.

The Mann-Kendall Test
Researchers in the area of environmental monitoring have tended to favour

non-parametric tests for monotonic trends in recent years because of the need

to analyse large numbers of series with a minimum amount of time devoted to

considering the special needs of each series.  Thus transformations to

normality, choosing the order of autoregressive models etc. are to be avoided

if possible.  The non-parametric methods that currently appear to be most

useful are the Mann-Kendall test, the seasonal Kendall test, and the seasonal

Kendall test with a correction for serial correlation (Taylor and Loftis, 1989;

Harcum et al. 1992).  Unfortunately, these tests are generally missing from

standard statistical packages, including SPSS, although they are part of

packages designed specifically for analysing water quality data.

The Mann-Kendall test is appropriate for data that do not display seasonal

variation, or for seasonally corrected data.  For a series X
1
, X

2
, ..., X

n
 the test

statistic is the sum of the signs of the differences between all pairwise

observations,

    
S = sign x xi j

j

i

i

n

( )−
=

−

=
∑∑

1

1

2

where sign(z) is -1 for z < 0, 0 for z = 0, and +1 for z > 0.  For a series of

values in a random order the expected value of S is zero and the variance is

Var(S) = n(n-1)(2n+5)/18.

To test whether S is significantly different from zero it is best to use a special

table if n is ten or less and S is not close to zero in comparison with its

standard deviation (Helsel and Hirsch, 1992, p. 469).  For larger values of

n Z
S
 = S/√Var(S) can be compared with critical values for the standard normal

distribution.

To accommodate seasonality in the series being studied, Hirsch et al. (1982)

introduced the seasonal Kendall test.  This involves calculating the statistic S

separately for each of the seasons of the year (weeks, months, etc.) and uses

the sum for an overall test.  Thus if S
j
 is the value of S for season j, then on the

null hypothesis of no trend S
T
 = ΣS

j
 has an expected value of 0 and a variance

of Var(S
T
) = ΣVar(S

j
).  The statistic Z

T
 =S

T
/√Var(S

T
) can therefore be used for an

overall test of trend by comparing it with the standard normal distribution.
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Apparently the normal approximation is good providing that the total series

length is 25 or more.

An assumption with the seasonal Kendall test is that the statistics for the

different seasons are independent.  When this is not the case an adjustment

for serial correlation can be made when calculating Var(ΣS
T
) (Hirsch and

Slack, 1984; Zetterqvist, 1991).  An allowance for missing data can also be

made in this case.

Example: CPUE at Lake Taupo (Appendix Data Set 10)
As an example of testing for trend using the Mann-Kendall statistic consider

the data in Table 5.3 that were obtained from surveys of anglers at Lake Taupo

for the summers of 1991/92 to 1998/99 (Data Set 10 from Appendix 3).  The

catch per unit effort (CPUE) for trout is the total number of fish kept for all

surveyed anglers, divided by the total fishing time of these anglers.  The

Mann-Kendall test can be used to test for trend in the CPUE series.

TABLE  5 . 3  TOTAL  HOURS  F I SHED ,  TROUT KEPT,  AND CATCH PER  UNIT

EFFOR T  (CPUE)  AT  LAKE  TAUPO.

SUMMER FISHING HOURS FISH KEPT CPUE

1991/92 321.7 47 0.146

1992/93 260.3 63 0.242

1993/94 1493.5 366 0.245

1994/95 1840.6 410 0.223

1995/96 3185.9 481 0.151

1996/97 3358.8 633 0.188

1997/98 2387.4 425 0.178

1998/99 3087.7 516 0.167

The calculation of S is shown in Table 5.4.  The observed value is S = -6,

suggesting a downward trend.  With a series of length n = 8 a special table

sometimes has to be used to decide whether or not the result is significant.

However, in the present case the standard error associated with S is 8.1.

Clearly, therefore, the observed value of -6 is not significantly different from

zero.  It follows that the Mann-Kendall test gives no evidence of a trend.
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TABLE  5 . 4   CALCULAT ION OF  THE  MANN-KENDALL  TEST  STAT IST IC  FOR

TEST ING FOR TREND IN  THE  CPUE .

SUMMER

1 2 3 4 5 6 7 8

SUMMER CPUE 0.146 0.242 0.245 0.223 0.151 0.188 0.178 0.167

1 0.146

2 0.242 1

3 0.245 1 1

4 0.223 1 -1 -1

5 0.151 1 -1 -1 -1

6 0.188 1 -1 -1 -1 1

7 0.178 1 -1 -1 -1 1 -1

8 0.167 1 -1 -1 -1 1 -1 -1

S = -6

Var(S) = 65.3

SE(S) = 8.1

NB. The body of the table shows values for sign(x
i
 - x

j
) for rows i and columns

j.  The sum is S = -6, with standard error 8.1.

Decomposition of Seasonal Series
Many statistical packages, including SPSS, have an option to decompose a

seasonal time series into a trend component, seasonal components, and a

random, ‘unexplained’ part.  Either an additive or a multiplicative model is

used, where the additive model assumes that

X
i
 = T

i
 + S

i
 + e

i

and the multiplicative model assumes that

X
i
 = T

i
 (S

i
 + e

i
)

where, in both cases, X
i
 is the ith observation in the series, which is expressed

in terms of the trend T
i
, the seasonal component S

i
, and the unexplained part

e
i
 of the series.  The trend is estimated by a moving average of the appropriate

length.  For example, a moving average of 12 is used for a monthly series

because in this way all average values include all months of the year.  Hence

seasonal effects are assumed to be eliminated with a moving average of this

length.

A disadvantage of this way of analysing a time series is that there is no guide

to the accuracy or the significance of the different components in the model.

Nevertheless, this type of analysis may be interesting for an initial look at

data.

Example: Seasonal Decomposition of Flow Variation Series
The seasonal decomposition option in SPSS was used with the variability of

flow rate data in Table 5.1  The output obtained is shown in Table 5.5 and

plots of the components of the series are shown in Figure 5.2.  According to

this analysis, the mean of the series changed from 1987 to 1997, first

decreasing, and then increasing (see the trend plot in Figure 5.2).  The



10 Module 5:  Detection of Trends and Change Points

seasonal pattern is estimated to be quite distinct, with the series increasing

from quarter 1 to quarter 2, then decreasing in quarter 3, and then increasing

again (see the seasonal factors plot in Figure 5.2).

TABLE  5 . 5  SEASONAL  DECOMPOS IT ION OF  THE  FLOW VAR IAB IL ITY  DATA

IN  TABLE  5 . 1  US ING THE  SPSS  OPT ION FOR THIS  PURPOSE ,  ASSUMING AN

ADDIT IVE  MODEL .   THE  VAR IABLE  I S  CALLED ‘CHANGE ’ .

Results of SEASON procedure for variable CHANGE.
Additive Model.  Equal weighted MA method.  Period = 4.

                                      Seasonally Smoothed
Moving Seasonal adjusted trend- Irregular

DATE_ CHANGE averages Ratios factors series cycle component

Q1 1987 5.800 . . -.421 6.221 5.300 .921
Q2 1987 4.660 . . .364 4.296 5.021 -.725
Q3 1987 4.150 4.995 -.845 -.396 4.546 4.938 -.392
Q4 1987 5.370 4.980 .390 .453 4.917 5.231 -.314
Q1 1988 5.740 5.560 .180 -.421 6.161 5.855 .306
Q2 1988 6.980 6.073 .908 .364 6.616 5.923 .693
Q3 1988 6.200 5.600 .600 -.396 6.596 5.500 1.097
Q4 1988 3.480 5.125 -1.645 .453 3.027 4.663 -1.636
Q1 1989 3.840 4.610 -.770 -.421 4.261 4.288 -.027
Q2 1989 4.920 3.973 .947 .364 4.556 4.268 .288
Q3 1989 3.650 4.493 -.842 -.396 4.046 4.458 -.412
Q4 1989 5.560 4.528 1.032 .453 5.107 4.514 .592
Q1 1990 3.980 4.353 -.373 -.421 4.401 4.358 .043
Q2 1990 4.220 4.352 -.132 .364 3.856 4.112 -.256
Q3 1990 3.650 3.935 -.285 -.396 4.046 3.852 .194
Q4 1990 3.890 3.720 .170 .453 3.437 3.613 -.176
Q1 1991 3.120 3.550 -.430 -.421 3.541 3.588 -.047
Q2 1991 3.540 3.638 -.098 .364 3.176 3.628 -.452
Q3 1991 4.000 3.733 .268 -.396 4.396 3.838 .558
Q4 1991 4.270 3.805 .465 .453 3.817 3.911 -.094
Q1 1992 3.410 4.040 -.630 -.421 3.831 3.717 .114
Q2 1992 4.480 3.365 1.115 .364 4.116 3.427 .689
Q3 1992 1.300 3.318 -2.018 -.396 1.696 3.114 -1.418
Q4 1992 4.080 3.265 .815 .453 3.627 3.253 .374
Q1 1993 3.200 3.148 .053 -.421 3.621 3.403 .218
Q2 1993 4.010 3.605 .405 .364 3.646 3.651 -.004
Q3 1993 3.130 3.698 -.567 -.396 3.526 3.787 -.261
Q4 1993 4.450 3.943 .508 .453 3.997 4.079 -.082
Q1 1994 4.180 4.235 -.055 -.421 4.601 4.307 .294
Q2 1994 5.180 4.305 .875 .364 4.816 4.390 .427
Q3 1994 3.410 4.368 -.957 -.396 3.806 4.231 -.424
Q4 1994 4.700 4.200 .500 .453 4.247 4.150 .097
Q1 1995 3.510 4.075 -.565 -.421 3.931 4.293 -.362
Q2 1995 4.680 4.603 .077 .364 4.316 4.606 -.290
Q3 1995 5.520 4.682 .838 -.396 5.916 4.927 .989
Q4 1995 5.020 4.925 .095 .453 4.567 4.923 -.356
Q1 1996 4.480 5.010 -.530 -.421 4.901 5.171 -.270
Q2 1996 5.020 5.400 -.380 .364 4.656 5.913 -1.257
Q3 1996 7.080 6.740 .340 -.396 7.476 7.241 .236
Q4 1996 10.380 7.683 2.698 .453 9.927 8.450 1.477
Q1 1997 8.250 8.848 -.598 -.421 8.671 9.305 -.634
Q2 1997 9.680 . . .364 9.316 9.421 -.105
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Figure 5.2 Components of the change time series as estimated from the seasonal
decomposition option in SPSS.
In order from the top to the bottom plot these are (a) the original series, (b) the seasonally
adjusted series, which is the original series minus the estimated seasonal factors, (c) the
estimated seasonal factors, (d) the estimated trend in the series, which is the seasonally
adjusted values after smoothing, and (e) the part of the original series which is not accounted
for by the trend or the seasonal effects.

The problem with the analysis just done is that we have no idea how accurate

the results are.  For example, there is no way of knowing whether the

seasonal variation that is apparently present could actually be what is

estimated for a series with no seasonal variation at all.  Regression analysis is

distinctly better in this respect.  Therefore the data will now be reanalysed

using a regression model.

Regression Model for Flow Variation Series
The model used is

Change = β
0
 + β

1
Qtr1 + β

2
Qtr2 + β

3
Qtr3 +β

4
T1 + β

5
T2 + β

6
T3 + ε

where Change is the flow variation, Qtr1 to Qtr3 are quarter indicators such

that Qtr
i
 is 1 for an observation in quarter i or is otherwise 0, and T1 to T3 are

the time, time squared, and time cubed, where time is 1 for the first

observation and 42 for the last observation.

The output from a regression analysis done using SPSS is shown in Table 5.6.

It is apparent that T1 to T3 are all needed in the model but there is no
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evidence of the existence of seasonal effects.  It seems, therefore, that there

was a non-linear trend in the mean level of the series, but little if any variation

associated with the time of the year.

This example would benefit from more diagnostic tests of assumptions.

However, these tests will not be done here.  One thing that it is worth noting,

however, is that the Durbin-Watson statistic (which measures the degree of

autocorrelation displayed by the regression residuals) has the value 2.012.

With no autocorrelation at all the expected value of this statistic is

approximately 2.0.  Therefore, there is certainly no evidence for

autocorrelation with this data set.

It is values of the Durbin-Watson statistic less than 2.0 that indicate positive

autocorrelation (a tendency for observations that are close in time to have

similar values for the unexplained part of observations).  Details of how to see

whether an observed value is significant are provided by Manly (1992, Section

4.9).  Methods for dealing with autocorrelation if this is necessary have been

referenced above.

TABLE  5 . 6   OUTPUT FROM A  REGRESS ION ANALYS I S  ON THE  FLOW

VARIAT ION DATA CARR IED OUT US ING SPSS .

Variables Entered/Removed

MODEL VARIABLES VARIABLES METHOD

ENTERED REMOVED

1 T1 . Enter

2 T2 . Enter

3 T3 . Enter

a  All requested variables entered.
b  Dependent Variable: CHANGE

Model Summary

R R SQUARE ADJUSTED R STD. ERROR OF CHANGE STATISTICS DURBIN-WATSON
SQUARE THE ESTIMATE

MODEL R SQUARE CHANGE F CHANGE df1 df2 SIG. F CHANGE

1 .290 .084 .061 1.6592 .084 3.662 1 40 .063

2 .768 .589 .568 1.1253 .505 47.957 1 39 .000

3 .830 .689 .665 .9913 .100 12.254 1 38 .001 2.012

a  Predictors: (Constant), T1
b  Predictors: (Constant), T1, T2
c  Predictors: (Constant), T1, T2, T3
d  Dependent Variable: CHANGE
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 ANOVA

MODEL SUM OF SQUARES df MEAN SQUARE F SIG.

1 Regression 10.082 1 10.082 3.662 .063

Residual 110.118 40 2.753

Total 120.200 41

2 Regression 70.813 2 35.406 27.959 .000

Residual 49.388 39 1.266

Total 120.200 41

3 Regression 82.855 3 27.618 28.103 .000

Residual 37.345 38 .983

Total 120.200 41

a  Predictors: (Constant), T1
b  Predictors: (Constant), T1, T2
c  Predictors: (Constant), T1, T2, T3
d  Dependent Variable: CHANGE

Coefficients

UNSTANDARDIZED STANDARDIZED t SIG.      95% CONFIDENCE INTERVAL FOR B

COEFFICIENTS COEFFICIENTS

MODEL B STD. ERROR BETA LOWER BOUND UPPER BOUND

1 (Constant) 3.897 .521 7.475 .000 2.843 4.951

T1 4.042E-02 .021 .290 1.914 .063 -.002 .083

2 (Constant) 6.785 .547 12.409 .000 5.679 7.891

T1 -.353 .059 -2.532 -6.026 .000 -.472 -.235

T2 9.159E-03 .001 2.910 6.925 .000 .006 .012

3 (Constant) 5.150 .671 7.677 .000 3.792 6.508

T1 7.760E-02 .134 .556 .581 .565 -.193 .348

T2 -1.561E-02 .007 -4.959 -2.177 .036 -.030 -.001

T3 3.840E-04 .000 4.942 3.501 .001 .000 .001

a  Dependent Variable: CHANGE
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Excluded Variables

BETA IN t SIG. PARTIAL CORRELATION COLLINEARITY STATISTICS

MODEL TOLERANCE

1 T2 2.910 6.925 .000 .743 5.967E-02

T3 1.910 7.953 .000 .786 .155

QTR1 .092 .604 .549 .096 .997

QTR2 -.137 -.906 .370 -.144 1.000

QTR3 .046 .297 .768 .048 .997

2 T3 4.942 3.501 .001 .494 4.102E-03

QTR1 .091 .883 .383 .142 .997

QTR2 -.135 -1.327 .192 -.210 1.000

QTR3 .044 .426 .672 .069 .997

3 QTR1 .120 1.336 .190 .215 .989

QTR2 -.135 -1.517 .138 -.242 1.000

QTR3 .016 .175 .862 .029 .989

a  Predictors in the Model: (Constant), T1
b  Predictors in the Model: (Constant), T1, T2
c  Predictors in the Model: (Constant), T1, T2, T3
d  Dependent Variable: CHANGE

Casewise Diagnostics

CASE NUMBER STD. RESIDUAL CHANGE PREDICTED VALUE RESIDUAL

1 .592 5.80 5.2127 .5873

2 -.591 4.66 5.2462 -.5862

3 -1.113 4.15 5.2531 -1.1031

4 .136 5.37 5.2356 .1344

5 .549 5.74 5.1962 .5438

6 1.859 6.98 5.1371 1.8429

7 1.149 6.20 5.0605 1.1395

8 -1.502 3.48 4.9689 -1.4889

9 -1.033 3.84 4.8645 -1.0245

10 .172 4.92 4.7496 .1704

11 -.985 3.65 4.6266 -.9766

12 1.072 5.56 4.4976 1.0624

13 -.389 3.98 4.3651 -.3851

14 -.011 4.22 4.2314 -1.1385E-02

15 -.453 3.65 4.0987 -.4487

16 -.080 3.89 3.9693 -7.9282E-02

17 -.732 3.12 3.8455 -.7255

18 -.191 3.54 3.7298 -.1898

19 .379 4.00 3.6242 .3758

20 .745 4.27 3.5313 .7387

21 -.044 3.41 3.4532 -4.3155E-02

22 1.097 4.48 3.3922 1.0878

23 -2.069 1.30 3.3507 -2.0507

24 .756 4.08 3.3310 .7490

25 -.137 3.20 3.3354 -.1354

26 .649 4.01 3.3662 .6438

27 -.298 3.13 3.4256 -.2956
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CASE NUMBER STD. RESIDUAL CHANGE PREDICTED VALUE RESIDUAL

28 .942 4.45 3.5160 .9340

29 .545 4.18 3.6398 .5402

30 1.393 5.18 3.7991 1.3809

31 -.591 3.41 3.9963 -.5863

32 .470 4.70 4.2337 .4663

33 -1.012 3.51 4.5136 -1.0036

34 -.160 4.68 4.8384 -.1584

35 .312 5.52 5.2102 .3098

36 -.617 5.02 5.6315 -.6115

37 -1.639 4.48 6.1045 -1.6245

38 -1.626 5.02 6.6315 -1.6115

39 -.136 7.08 7.2148 -.1348

40 2.545 10.38 7.8568 2.5232

41 -.312 8.25 8.5597 -.3097

42 .357 9.68 9.3259 .3541

a  Dependent Variable: CHANGE

Residuals Statistics

MINIMUM MAXIMUM MEAN STD. DEVIATION N

Predicted Value 3.3310 9.3259 4.7660 1.4216 42

Residual -2.0507 2.5232 -4.5466E-16 .9544 42

Std. Predicted Value -1.009 3.208 .000 1.000 42

Std. Residual -2.069 2.545 .000 .963 42

a  Dependent Variable: CHANGE

5.4 Use of Control Charts

Control charts are used to monitor industrial processes (Montgomery, 1991)

and they can be used equally well with environmental data.  An advantage of

this approach is that the graphs are relatively easy to interpret, and wide

experience has demonstrated their effectiveness.  The program SPSS includes

an option for producing Shewhart control charts (the ‘usual’ type), but it is not

very flexible.  It may therefore be better to set up control charts in a

spreadsheet rather than use this option.

Example: Ring Widths of Andean Alders
As an example, consider the data Table 5.7 (kindly provided by Dr Alfredo

Grau of Invermay Agricultural Centre, Mosgiel, New Zealand).  These are

yearly ring widths for samples of six Andean alders (Alnus acuminanta) taken

from Taficillo Ridge at about 1700 m altitude, in Tucuman, Argentina, every

year from 1970 to 1989.  A question here is whether there is evidence of

changes in the mean width from year to year, which can be addressed by

constructing control charts for the sample means and ranges (maximum values

- minimum values), as shown in Figure 5.3.
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TABLE  5 . 7   R ING WIDTHS  FOR SAMPLES  OF  ANDEAN ALDERS  TAKEN FROM

TAF IC I LLO R IDGE ,  TUCUMAN,  ARGENTINA AT  AN ALT ITUDE OF  ABOUT

1700  M .

              Ring Widths
---------------------------------------------
Year  1    2    3    4    5    6   Mean Range
70  1.8  7.3  1.1  3.3  5.0  5.5   4.00   6.2
71  2.7  2.6  4.0  1.4  1.0  3.0   2.45   3.0
72  4.0  4.0  3.6  3.0  2.0  4.4   3.50   2.4
73  5.0  3.5  2.0  5.4  6.0  1.3   3.87   4.7
74  5.7  0.5  4.6  4.7  3.5  2.8   3.63   5.2
75  5.1  3.4  8.4  3.5  4.5  4.0   4.82   5.0
76  2.6  3.3  7.4  4.2  5.8  6.3   4.93   4.8
77  7.5  4.7  1.0  7.4  2.6  8.8   5.33   7.8
78  8.5  5.5  4.3  3.3  4.7  2.4   4.78   6.1
79  3.0  2.0  4.7  3.0  4.1  3.6   3.40   2.7
80  4.0  3.9  2.5  3.0  2.6  0.7   2.78   3.3
81  3.8  2.9  4.8  3.9  2.4  2.0   3.30   2.8
82  2.6  4.0  2.0  2.9  2.7  1.1   2.55   2.9
83  4.9  1.2  3.5  2.4  2.2  0.9   2.52   4.0
84  6.0  6.6  3.1  1.8  6.0  3.1   4.43   4.8
85  0.2  0.7  1.3  1.5  3.6  0.5   1.30   3.4
86  2.5  2.9  0.5  1.3  0.8  0.3   1.38   2.6
87  4.1  4.1  2.6  0.9  0.5  2.4   2.43   3.6
88  0.6  3.4  2.5  0.3  2.3  0.6   1.62   3.1
89  1.7  0.5  0.4  0.8  0.9  0.8   0.85   1.3
---------------------------------------------
                              Mean 3.19   4.0

The method for constructing the control chart for sample means, which is

often referred to as an   x  chart, involves the following stages:

(a) Assuming that the mean did not change over the 20 year period, this is

estimated by the overall mean of 3.19.  Similarly, the standard deviation

of ring widths is assumed to have remained constant and this is estimated

on the basis of a known relationship between the mean range and the

standard deviation for samples of size six from a normal distribution.

From Table 5.8, this relationship is σ = 0.395W, where W is the sample

mean range, giving in the present case   x  ≈ 0.395x4.0 = 1.58.  A similar

result holds for other sample sizes but with the sample mean range

multiplied by a different factor.

(b) The standard error of the mean for samples of size 6 is estimated to be

SÊ(  x ) = 1.58/√6 = 0.65.

(c) Warning limits are set at the mean plus and minus 1.96 standard errors,

i.e. at 3.19 ± 1.96x0.65, or 1.92 and 4.46.  If the mean and standard

deviation were constant over time then only about one in 20 (5%) of

sample means should be outside one of these limits.  Control limits are

set at the mean plus and minus 3.09 standard errors, i.e. 3.19 ± 3.09x0.65,

or 1.18 and 5.20.  Only about one in 500 (0.2%) of sample means should

plot outside these limits.

The rationale behind constructing the   x  chart in this way is that it shows the
changes in the sample means with time, and, furthermore, the warning and
control limits indicate whether these changes are too large to be due to
sampling errors if the mean ring width remained constant over the 20 year
period.  In fact, the chart indicates very clearly that the mean ring width was
not constant.  It seems that the mean increased from 1971 until 1977, at which
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point the upper control limit was crossed.  The mean then decreased until

1989, at which point the lower control limit was crossed.

With control charts it is conventional to measure process variability using

sample ranges on the grounds of simplicity, although standard deviations or

variances could be used instead.  Like   x  charts, range charts can have

warning limits placed so that the probability of crossing one of these is 0.05

(5%), assuming that the level of variation is stable.  Similarly, control limits

can be placed so that the probability of crossing one of them is 0.002 (0.2%)

when the level of variation is stable.  The setting of these limits requires the

use of tabulated values that are provided and explained in Table 5.8.  The

limits from this table are not symmetric about the mean range, and are more

accurate than the symmetric limits produced by the SPSS  control chart option.

Figure 5.3  Control charts for means and ranges for ring widths for samples of Andean alders.
NB. Abbreviations for the lines shown on the charts are: UCL, upper control limit (0.2%);
UWL, upper warning limit (2.5%); LWL, lower warning limit (2.5%); and LCL, lower control
limit (0.1%).  The percentages in parenthesis here are the probabilities of crossing the lines if
the distribution of annual ring widths was constant over time.

The range chart is included in Figure 5.3.  From this chart it can be seen that

the variability in annual ring widths seems to some extent to have mirrored

the changes in the mean.  In particular, the variability appears to have been

lower at the end of the 20 year period than it was at the beginning, although

none of the plotted points is outside a control limit.  As is the case here, it is

often the pattern in the points that are plotted on a control chart that is

meaningful rather than the number of points outside the control limits.
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TABLE  5 . 8   CONTROL  CHART  L IM ITS  FOR SAMPLE  RANGES ,  ASSUMING

SAMPLES  FROM NORMAL  D ISTR IBUT IONS .

NB .  TO F IND THE  L IM ITS  ON THE  RANGE CHART,  MULT IPLY  THE  MEAN

RANGE BY THE  TABULATED VALUE .   FOR  EXAMPLE ,  FOR  SAMPLES  OF  S IZE

N =  5  THE  LOWER ACT ION L IMIT  I S  0 . 16W,  WHERE  W I S  THE  MEAN RANGE .

WITH A  STABLE  D ISTR IBUT ION A  WARNING L IMIT  I S  CROSSED WITH

PROBABIL ITY  0 . 05  ( 5%)  AND A  CONTROL  L IM IT  WITH PROBABIL ITY  0 . 002

(0 . 2%) .   THE  LAST  COLUMN I S  THE  FACTOR THAT THE  MEAN RANGE MUST

BE  MULT IPL IED BY TO OBTAIN  THE  STANDARD DEVIAT ION .   FOR

EXAMPLE ,  FOR  SAMPLES  OF  S IZE  3  THE  STANDARD DEVIAT ION I S  0 . 591W.

SOURCE :  TABLES  G1  AND G2  OF  DAVIES  AND GOLDSMITH (1972 ) .

 Sample       Lower Limits         Upper Limits           SD
   Size    Control   Warning    Warning   Control     Factor
———————————————————————————————————————————————————————————
      2       0.00      0.04       2.81      4.12      0.887
      3       0.04      0.18       2.17      2.99      0.591
      4       0.10      0.29       1.93      2.58      0.486
      5       0.16      0.37       1.81      2.36      0.430
      6       0.21      0.42       1.72      2.22      0.395
      7       0.26      0.46       1.66      2.12      0.370
      8       0.29      0.50       1.62      2.04      0.351
      9       0.32      0.52       1.58      1.99      0.337
     10       0.35      0.54       1.56      1.94      0.325

5.5 Cumulative Sum (CUSUM) Methods

Cumulative sum (CUSUM) methods were introduced for industrial quality

control with the idea that the graphs used are better for displaying changes

than ordinary control charts.  Here two different types of CUSUM method are

considered.  The first is the ‘standard’ method that is described in many

textbooks and available in some computer programs.  This applies when there

is a single time series being considered.  The second method is not so widely

known.  It can be used when there are observations at a number of sampling

stations for several different times.

The Standard CUSUM Method
As an example of the usual CUSUM method, suppose that 50 monthly samples

are available for the phosphorus concentration (µgL-1) in a lake.  Suppose that

it can be assumed that level was stable for the first half of the period.  Are

there changes in the underlying mean of X in the second half of the series?

For the present the potential complications of seasonal variation,

autocorrelation in time, etc. can be ignored.  Figure 5.4(a) shows a

comparison between a plot of the original observations and a CUSUM plot.

The latter is obtained by plotting the cumulative sum of deviations from the

mean

CUSUM(i) = {X(1) - Mean} + {X(2) - Mean} + ... + {X(i) - Mean}

against the observation number, i.  The mean that is used is that for the first 25

observations, where the true mean is supposed to have been constant.

It can be seen that high observations (30-40) have given a positive slope on

the CUSUM.  In general, an increasing CUSUM plot indicates that observations

tend to be above the target, and a decreasing plot indicates that observations

tend to be below the target.  The idea is that the CUSUM emphasises this more

than a plot of the original values.
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Figure 5.4(b) shows plots using logarithms of the original observations, which

might be preferred because of the skewed nature of the distribution of the

variable being considered.  The CUSUM plot looks quite similar for either the

original or the transformed data.

A useful general reference is MacNally and Hart (1997).  They discuss the use

of CUSUM methods for monitoring water storage facilities.  Programs for

CUSUM methods include AARDVARK for water quality analyses (Van Dijk and

Ellis, 1995), WQSTAT also for water quality analysis (Intelligent Decision

Technologies, 1998), and are included in some general purpose statistical

packages like MINITAB (Minitab, Inc., 1994).

(a) Original Observations Plotted

 (b) Logarithms Plotted

Figure 5.4 Plot of 50 monthly observations of phosphorus and the derived CUSUM plot using
the mean of the first 25 observations as the target.
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Another CUSUM Type Method
With the second CUSUM method to be considered, the situation is where there

are a number of sampling sites in a region (perhaps 5-100), and observations

on a variable on some or all of the sites at a number of sample times (perhaps

3-50).  Interest is in whether there are any overall consistent patterns of

change at the sampled sites.  This is examined by making a CUSUM plot for

each sample time, which indicates how the distribution of the variable

compares with the distribution at other times, and carrying out some tests,

which show whether the differences between sample times could be due to

chance.  The approach was originally developed for monitoring examination

marks of students for different subjects, but was then extended to use with

environmental monitoring (Manly, 1988, 1994).

Suppose that there are n sample units measured at m different times.  Let x
ij

be the measurement on sample unit i at time t
 j
, and let   x i

 be the mean of all

the measurements on the unit.  Assume that the units are numbered in order

of their values for   x i
, so that   x 1

 is the smallest mean and   x n
 is the largest

mean.  Then it is possible to construct m cumulative sum (CUSUM) charts (one

for each sample time) by calculating

S
ij
 = (x

1j
 -  x 1

) + (x
2j
 -  x 2

) + ... + (x
 ij
 -   x i

),

for j from 1 to m and i from 1 to n, and plotting the S
ij
 values against i.

Missing values are easily handled.

The CUSUM chart for time t
j
 indicates the manner in which the observations

made on units at that time differ from the average values for all sample times,

with a positive slope for the CUSUM showing that the values for time period j

are higher than the average values for all periods - a CUSUM slope of D over

a series of observations (the rise divided by the number of observations)

indicates that those observations are on average D higher than the

corresponding means for the sample units.  Thus a constant difference

between the values on a sample unit at one time and the mean for all times is

indicated by a constant slope of the CUSUM going either up or down from left

to right.  On the other hand, a positive slope on the left-hand side of the graph

followed by a negative slope on the right-hand side indicates that the values

at the time being considered were high for units with a low mean but low for

units with a high mean.

Randomization methods can be used to decide whether the CUSUM plot for

time t
j
 indicates systematic differences between the data for this year and the

average for all years.  Three approaches based on the null hypothesis that the

values for each sample unit are in a random order are:

(a) A large number of randomized CUSUM plots can be constructed, where

for each one of these the observations on each sample unit are randomly

permuted.  Then for each value of i the maximum and minimum values

obtained for S
ij
 can be plotted on the CUSUM chart.  This gives an

envelope within which any CUSUM plot for real data can be expected to

lie: if the real data plot goes outside the envelope then there is clear

evidence that the null hypothesis is not true.

(b) Using the randomizations it is possible to determine whether S
ij
 is

significantly different from 0 for any particular value of i.
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(c) A statistic (Z
max

) that measures the maximum extent to which a CUSUM

plot differs from what is expected on the basis of the null hypothesis can

be calculated and the randomizations can be used to see whether the

value obtained is likely to occur by chance.

See Manly (1994) for more details about how these tests are carried out.

This CUSUM method can be modified to allow for autocorrelation in the

observations taken at one location (Manly and MacKenzie, 1999).  A Windows

program CAT (CUSUM Analysis Tool) is available from BFJM to do the

calculations.

Example: Foliage Cover in Whareorino Forest (Appendix
Data Set 4)
The data shown in Table 5.9 were extracted from Data Set 4 in Appendix 3.

They are the percentage foliage cover browse on 99 plots sampled in

Whareorino forest from 1995 to 1999.  For the purpose of this example the

plots will be considered as 99 sites, and it will be assumed that spatial

correlation is negligible, although this has not been checked.  In fact, the 99

plots are on nine lines and the plots along one line may not give truly

independent data.

TABLE  5 . 9   FOL IAGE  COVER  FOR 99  PLOTS  IN  THE  WHAREORINO FOREST,

1995  TO 1999 .   VALUES  OF  - 1  INDICATE  THAT NO VALUE  I S  AVAILABLE  FOR

A PART ICULAR  PLOT FOR THE  YEAR  IN  QUEST ION .

YEAR

PLOT 95 96 97 98 99

1 63 63 68 58 53

2 50 55 60 50 50

3 12 22 42 48 45

4 35 40 45 35 45

5 21 33 43 29 41

6 65 75 65 65 65

7 35 35 45 25 30

8 58 58 58 48 45

9 35 75 85 75 85

10 32 48 55 45 42

11 15 35 35 25 15

12 52 68 65 52 35

13 55 65 65 53 55

14 55 55 60 60 65

15 65 70 75 60 65

16 65 65 55 45 55

17 69 69 65 55 70

18 45 60 65 60 70

19 35 45 55 65 65

20 60 60 65 60 60

21 35 35 55 35 15

22 48 62 62 45 65

23 75 75 75 55 65

24 46 62 68 62 67

25 62 62 68 55 58

26 67 63 65 61 49

27 25 20 15 10 10
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YEAR

PLOT 95 96 97 98 99

28 62 62 65 55 55

29 65 65 65 65 55

30 75 75 75 65 75

31 55 55 70 65 75

32 65 65 75 65 65

33 72 68 75 65 72

34 50 30 45 45 65

35 80 70 85 75 80

36 5 15 35 35 55

37 35 35 35 35 35

38 43 54 60 54 57

39 33 35 50 48 50

40 45 48 65 63 58

41 18 22 45 52 58

42 82 82 85 75 68

43 75 75 70 65 65

44 53 45 55 45 60

45 70 65 60 63 65

46 62 63 67 68 68

47 22 24 44 36 42

48 35 27 50 53 65

49 30 15 45 40 35

50 50 50 65 50 60

51 50 45 70 65 70

52 57 55 61 47 55

53 68 58 65 58 60

54 75 65 65 55 55

55 80 75 65 65 65

56 67 67 69 59 55

57 15 15 31 15 18

58 58 55 68 62 65

59 25 32 45 48 45

60 -1 20 40 40 45

61 -1 20 40 40 50

62 -1 72 75 65 68

63 -1 45 50 50 50

64 -1 32 45 42 35

65 42 48 52 48 42

66 62 65 68 58 68

67 75 75 75 65 65

68 35 40 35 35 45

69 55 55 55 45 55

70 75 70 -1 65 60

71 55 65 75 65 70

72 15 15 25 15 25

73 65 65 65 63 63

74 -1 -1 68 62 68

75 -1 -1 70 65 68

76 -1 -1 65 58 62

77 -1 -1 48 42 42

78 -1 -1 58 48 55

79 -1 -1 60 58 63

80 -1 -1 43 43 55

81 -1 27 49 49 57

82 -1 23 43 43 53

83 -1 40 68 67 73

84 60 65 65 50 60

85 75 65 65 58 62

86 70 60 55 50 45

87 75 65 65 55 60
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YEAR

PLOT 95 96 97 98 99

88 40 45 45 35 40

89 55 55 -1 65 65

90 70 65 75 55 60

91 45 45 50 35 35

92 65 65 65 60 55

93 -1 -1 36 38 29

94 -1 -1 68 62 65

95 -1 -1 62 62 72

96 -1 -1 68 70 75

97 -1 -1 51 40 49

98 -1 -1 43 45 45

99 -1 -1 35 40 55

Figure 5.5. CUSUM plots of foliage cover for the years 1995 to 1996, each compared to the

mean for all years.

Figure 5.5 shows the CUSUM plots for the years 1995 to 1999, each compared
to the mean for all years.  There is a great deal of evidence that the
distribution of foliage cover varied from year to year, with 1995 and 1996
being years with relatively low cover, and 1997 and 1999 being years with
relatively high cover.  For 1998 the CUSUM plot is not very unusual in
comparison with randomized plots, but if anything the foliage was low for
plots where the mean for all years was high.  The overall test for differences

between years also gives a highly significant result (p = 0.001).
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5.6 Another Method for Detecting Change in a Distribution

Stehman and Overton (1994) describe a set of tests for a change in a

distribution, which they suggest will be useful as a screening device.  These

tests can be used whenever observations are available on a random sample of

units at two times.  If the first observation in a pair is x and the second one is

y, then y is plotted against x and three chi-squared calculations are made, as

shown on Figure 5.6.

The first test compares the number of points above a 45 degree line with the

number below, as indicated in Figure 5.6(a).  A significant difference indicates

an overall shift in the distribution either upwards (most points above the 45

degree line) or downwards (most points below the 45 degree line).  In Figure

6(a) there are 30 points above the line and 10 points below.  The expected

counts are both 20 if x and y are from the same distribution.  Hence there is a

chi-squared statistic of (30-20)2/20 + (10-20)2/20 = 10.00 with 1 degree of

freedom (df).  This is significantly large at the 1% level, giving clear evidence

of a shift in the general level of observations.  Because most plotted points are

above the 45 degree line the observations tend to be higher at the second

sample time.

The second test uses a shifted line at 45 degrees such that equal numbers of

points are above and below it and counts the number of points in four

quadrats, as shown in Figure 5.6(b).  The counts then form a 2x2 contingency

table for which a significant result indicates a change in shape of the

distribution from one time period to the next.  In Figure 5.6(b) the observed

counts are as shown in Table 5.10.  These are exactly equal to the expected

counts on the assumption that the probability of a point plotting above the

line is the same for high and low observations, leading to a chi-squared value

of zero with 1 df..  There is therefore no evidence of a change in shape of the

distribution.

TABLE  5 . 10   COUNTS  ABOVE AND BELOW THE 45  DEGREE  L INE  IN  F IGURE

5 . 6 (B ) .

LEFT RIGHT TOTAL

Above line 10 10 20

Below line 10 10 20

20 20 40

Finally, the third test involves dividing the points into quartiles, as shown in

Figure 5.6(c).  The counts in the different parts of the plot now make a 4x2

contingency table for which a significant chi-squared statistic indicates a

change in distribution.  The contingency table from Figure 5.6 (c) is shown in

Table 5.11.  The chi-squared statistic is 0.80 with 3 df, again giving no

evidence of a change in shape of the distribution.
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TABLE  5 . 11   COUNTS  IN  QUART ILES  ABOVE AND BELOW THE 45  DEGREE

L INE  IN  F IGURE  5 . 6 (C ) .

                  QUARTILE

1 2 3 4 TOTAL

Above line 5 5 6 4 20

Below line 5 5 4 6 20

10 10 10 10 40

(a) (b)

(c)

Figure 5.6  Stehman and Overton’s screening tests for a change in the distribution of a
monitored variable: (a) test for a shift in the distribution; (b) test for a change in shape of the
distribution; (c) extension of test (b) with more division of points.

5.7 Use of Analysis of Variance

This module has not discussed analysis of variance types of approach for

detecting trends and change points.  In practice these may be the easiest

approach to use, particularly if missing values are not a problem.  Anyone

confronted with analysing monitoring data should therefore consider whether

a straightforward analysis of variance should be used before considering

alternatives that may be more difficult to carry out.
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5.8 Key Points in This Module

• The change-point problem concerns deciding whether the mean of a

time series has changed and, if so, where that change occurs.  A

randomization test for a change-point based on t-tests is described.

• Two methods for detecting a trend in a series are a regression test and

the Mann-Kendall test.  The Mann Kendall test is popular because it

makes few assumptions.  The seasonal Mann-Kendall test also makes an

allowance for serial correlation.

• A useful initial analysis of a time series involves decomposing it into

trend, seasonal components, and unexplained variation.

• Control charts as used for industrial processes are also useful with

environmental series.

• The standard cumulative sum (CUSUM) method is an alternative to the

normal control charts that may show changes more clearly.

• A different type of CUSUM method is suggested for situations where

observations are taken on a variable at a number of different locations on

several occasions and the problem is to detect systematic differences

between different sample times.

• A chi-squared testing procedure is described for comparing the

distribution of a variable at two different times or two different places.

5.9 Questions About This Module

1. How does the change point problem differ from the problem of trend

detection?

2. Why is there a multiple testing problem with identifying a change point

in a time series?

3. Supposing you have a monthly time series which may include trend and

seasonal variation.  What type of regression model would you consider

for describing it?

4. Why is the Mann-Kendall test popular for detecting trend among some

environmental scientists?

5. Under what circumstances would you consider using Shewhart control

charts or a CUSUM chart for monitoring a process?

6. What advantages are there in using the non-standard CUSUM method

described in this module, with the associated randomization tests,

instead of regression for example?

7. Under what circumstances would you consider using Stehman and

Overton’s test for a change in a distribution between two sample times?
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Module 6: BACI Designs

S U M M A R Y

Before-After/Control-Impact (BACI) designs are used in environmental

monitoring to compare the environmental status in treatment sites and control

sites in the period prior to and the period after an “impact”.  Environmental

parameters, such as species abundance, vary naturally through time and

among spatial locations.  A BACI design can be used to separate these sources

of natural variation from variation due to the impact of an activity.  The idea

behind BACI can still be used when data is not available on the “before-

impact” period, or from control sites.

6.1 Before-After/Control-Impact (BACI)

A design advocated by Green (1979) for environmental monitoring is to

compare the environmental status in treatment sites and control sites in the

period prior to and the period after an “impact”.  Examples of an “impact”

activities are the beginning of a new management strategy; a new property

development; or change in the protective status of some land.  The idea is that

an impact can be assessed as the change in ratio between pre- and post-

impact.  These designs are commonly known as BACI designs and there is a

large body of relevant literature (e.g. Skalski and McKenzie 1982, Bernstein

and Zalinski 1983, Stewart-Oaten et al. 1986, Underwood 1991, 1992, 1994,

Skalski and Robson 1992).

The BACI design was developed in response to two major problems of study

design (Marine Review Committee 1991).  First, environmental effects, such as

the abundance of plant species, or nutrient loading in a water body, vary

naturally through time.  Any change observed in an assessment area between

the pre- and post-incident periods could conceivably be unrelated to the

activity.  Large natural changes are expected during any extended study

period.

Second, there are always differences in the environment between any two

areas.  Simply observing a difference between assessment and control areas

following the impact does not necessarily mean that the activity was the cause

of the difference.

The BACI design may overcome these difficulties.  By collecting data at both

control and assessment areas using exactly the same protocol during both pre-

impact and post-impact periods questions can be asked such as: Did the

average difference in abundance between the control areas and the area of

the oil spill change after the incident?  The name BACI refers to the common

use of the terms Before After Control Impact.  The term Impact can be

misleading as it has a negative meaning.  An “impact” can be an event that has

positive effects on the environment.  The term Control is also confusing

especially in association with pest control.  The Control site is the “non-
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treatment” site, or the reference site.  Although the use of these terms can be

confusing in this module Before After Control Impact are used to be

consistent with literature on this subject and for ease of notation.

Figure 6.1 contains a simplified sketch of point estimates of a BACI design

with two periods of data collection before and following an incident.

Significant impact due to an incident is judged to have occurred if there is a

statistically significant change in the ratio (or difference) of the assessment

area to the control area.  If there were no significant environmental impact the

response curves for the assessment and references area would be

approximately parallel.  The more data collection periods before and after an

incident the better the scientific confidence in assessment of impacts.

Some principles of design apply to all BACI experiments.  The study is

essentially an observational study and the application of the findings to other

populations should be done cautiously.  Usually though the impact being

considered is specific to the activity and location and the only population of

interest is the one being studied.  Another principle is that it is preferable to

take equally spaced observations through time to minimise serial correlation

and to maximise the amount of useful information (e.g. sample when the

species is most abundant) (Stewart-Oaten et al. 1986).  Thirdly, it is always a

good idea to initially plot the data on graphs and charts.  Such “exploratory

data analysis” is no substitute for formal inference because the underlying

variation in the data can not be separated from the variation due to the

impact, and conclusions can not be supported by estimates of confidence.

Figure 6.1 Survey data from control and impact areas collected over 4 sample dates.  The
impact occurred immediately after time 2.

6.2 Replication - temporal and spatial

One of the key features of a BACI design is replication of reference areas over

time (Underwood 1994) for “...better guidance for detection of human

disturbances.”  Compare Figure 6.2 with Figure 6.1.  In Figure 6.2 point

estimates of an indicator variable indicate recovery from injury by the fifth

time period following the incident.  Confidence would be gained in the

assessment if the responses curves were approximately parallel for multiple

years after the incident.
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Figure 6.2 Survey data from control and impact areas collected over 7 sample dates.  The
impact occurred immediately prior to time 2.

It is also desirable to have spatial replication, i.e. more than one control area

to compare to the impact area (Underwood 1994).  It can be difficult to find a

single site that is suitable to act as control sites for comparison with impact

areas.  The idea of having multiple control sites can help overcome this.

Replicate control sites should be chosen randomly. Underwood (1994) argues

it is not necessary for them to mimic the impact area perfectly.  Rather, sites

should be a sample from a representative range of habitats similar to the

habitat in the impact area.

One problem with choosing spatial replicates is deciding on the scale for the

replication.  The effect of the impact event is usually not known prior to the

event and therefore it is difficult to decide where the control sites should be.

For example, consider an estuary with a new sewage out-fall.  Should the

control sites be selected within the same estuary but say 100m away or, is the

scale of the impact likely to be larger and control sites should be in estuaries

say 10km away?  Underwood (1994) recommends, for this example, sampling

at two scales - both at the scale of within the estuary and among estuaries.

6.3 Differences between Control and Impact Sites

An early criticism of the BACI design was that repeated samples of the same

site over time would be correlated (pseudoreplication) if the samples are

analysed as independent replicates (Hurlbert 1984).  If the designs have

control and impact sites that are sampled at the same time then the difference

between the control and impact can be used in the analysis (Stewart-Oaten et

al. 1986).  The differences between the sites may be uncorrelated, even if the

successive samples are not.

Statistical analysis of these designs depends on the sampling procedures used

for selection of sites and the amount of information collected on site-specific

variables.  For example, the differences in the average of the impact and

control sites in each time period can be used.  The average of these average-

differences before the impact can be compared with those after the impact:

Effect size = ∆
B.
 - ∆

A. .
(1)

where ∆
B.
 is the average of ∆

Bi
 over i sampling dates.  The ∆

Bi
 is the difference

between the control site and the impact site at the i th sampling date in the
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Before period.  Similarly, ∆
A.
 is the average of ∆

Ai
 over i sampling dates in the

After period.  In a matched design the control and impact sites are paired.

The effect size is an estimate of the magnitude of the environmental impact

(Osenburg et al. 1994).

With multiple control or impact sites the average of the control sites and the

average of the impact sites are first calculated, for each sampling date.  The ∆
Bi

is then the difference between the average of the control sites and the average

of the impact sites at the i th sampling date in the Before period.  Multiple

control or impact sites are spatial replicates that can be used to estimate

variation among locations.  This variance is not the primary variance of

interest.  What is of primary interest in assessing an impact is the temporal

variation in the control-impact differences.  The variance of the effect size (1)

is estimated from the differences among the ∆
Bi
 and the differences among the

∆
Ai
.  Therefore the variance of the effect size incorporates within-site sampling

error, but not among site variation.  Note that the variation among replicate

control, or impact, sites at any one time period may still be of interest

especially if there are large differences between the control site spatial

variation and the impact site spatial variation.

The matching of control and impact sites is called a Control-Treatment Paired

(CTP) design (Skalski and Robson 1992: Chapter 6) or a Before/After-Control/

Impact-Pairs (BACIP) design (Stewart-Oaten et al. 1986).

Example: Invertebrate Feeding on Pellets in Rangataua
Forest (Appendix Data Set 1)
Data on the proportion of pellets fed on by inveterbrates in a Control and

Impact areas, Before and After a simulated pest control operation was

collected in a study in Rangataua Forest in 1997.  There were four survey

times before the impact and two survey times after the impact.  The “survey

time” was in fact three nights, i.e. the data on the proportion of baits fed on

was collected over three nights at each survey time.  Only data where the

control and impact areas were surveyed on the same nights is shown (Table

6.1).  Note, for this analysis there was a single control and single impact site.
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TABLE  6 . 1  PROPORTION OF  PELLETS  FED ON BY INVETERBRATES  IN  A

CONTROL  AND IMPACT  AREA ,  BEFORE  AND AFTER  A  S IMULATED PEST

CONTROL  OPERAT ION WAS  COLLECTED IN  A  STUDY IN  RANGATAUA

FOREST  IN  1997

BEFORE CONTROL SURVEY PELLETS BEFORE CONTROL SURVEY PELLETS

/AFTER  /IMPACT  TIME LEFT FED ON PROPORTION /AFTER  /IMPACT  TIME LEFT FED ON PROPORTION

b c 1 98 33 0.34 b i 1 98 24 0.24

b c 1 94 54 0.57 b i 1 26 13 0.5

b c 1 87 24 0.28 b i 1  0  0 .

b c 2 100 33 0.33 b i 2 95 18 0.19

b c 2 83 35 0.42 b i 2 33 5 0.15

b c 2 75 27 0.36 b i 2 13 1 0.08

b c 3 99 49 0.49 b i 3 97 34 0.35

b c 3 90 61 0.68 b i 3 41 24 0.59

b c 3 84 43 0.51 b i 3 11 3 0.27

b c 4 98 65 0.66 b i 4 84 38 0.45

b c 4 97 79 0.81 b i 4 24 13 0.54

b c 4 87 36 0.41 b i 4  0  0 .

a c 1 100 37 0.37 a i 1 100 18 0.18

a c 1 90 29 0.32 a i 1 100 26 0.26

a c 1 88 26 0.30 a i 1 100 33 0.33

a c 2 100 46 0.46 a i 2 100 16 0.16

a c 2 89 38 0.43 a i 2 100 29 0.29

a c 2 86 40 0.47 a i 2 100 22 0.22

The data for the three nights within each survey time was not considered to be

independent.  The average of the proportions of pellets fed on within each 3

night survey time was calculated (Table 6.2)

TABLE  6 . 2  AVERAGE ,  OVER  THREE  N IGHTS ,  OF  THE  PROPORTION OF  BA ITS

FED ON IN  THE  CONTROL  AND IMPACT  AREA ,  BEFORE  AND AFTER  A

S IMULATED PEST  CONTROL  OPERAT ION IN  RANGATAUA FOREST.

NB .  THE  D IFFERENCE  BETWEEN THESE  AVERAGED PROPORTIONS  IN

CONTROL  AND IMPACT  AREAS  IN  THE  BEFORE  AND AFTER  PER IODS  I S  IN

THE TWO R IGHT-HAND COLUMNS .

                BEFORE                         AFTER                       DIFFERENCE

CONTROL IMPACT CONTROL IMPACT BEFORE AFTER

0.395688 0.372449 0.329226 0.256667 0.023239 0.072559

0.370562 0.139304 0.450694 0.223333 0.231258 0.227361

0.561544 0.40287 0.158674

0.630497 0.497024 0.133473

A t-test can be used to compare the before and after-differences.  In this
example there is no evidence of a “difference in the differences” between the
control and impact sites prior to the pest operation compared with after the
pest operation, t = -0.16585, P = 0.876 (the t-test was done in SPSS). In Figure
6.3 the control and impact lines are roughly the same distance apart in both
the before and after impact period.  Notice that despite the considerable
variation in the average proportion of bait fed on, the difference between the

two lines, shown as the dashed line in Figure 6.3, has little variation.
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Figure 6.3 Survey data from control and impact areas collected over 7 sample dates.  The
difference between the control and impact area is shown as a dashed line.

6.4 Impact-Control Designs

Often an environmental impact can occur but there is no baseline “before”

data for either the impact area or the control area.  Because the BACI design

cannot be used, such studies are called “after-only” or Impact-Control designs.

In these designs data collected following the incident is compared between

the impact and control areas.  The obvious problem with such designs is the

possibility of the confounding effects of natural factors on any observed

difference between impact and control areas.  Such designs typically have low

power (Osenberg et al. 1994).

Figure 6.4 Survey data from control and impact areas collected over 5 sample dates.  The
impact occurred immediately prior to the first survey.

With designs that have no “before impact” data the analysis focuses on finding

evidence of an area-time interaction.  An area-time interaction means that the

differences between the areas (impact and control) are different among the

sampling dates.  For example, in Figure 6.4 there are large differences

following an impact but over time these differences decrease and become

more or less constant when the response curves are parallel.

6.5 Before-After Designs

In this design data is available from the impact area prior to the incident.

Examples of this situation are where long term monitoring has been occurring

and an accidental impact occurs.  With Before-After designs where there are

no control sites there is a risk that any observed difference is due to some

natural environmental fluctuation.  Just as with the Impact-Control design,

confounding from natural factors can occur.  The observed change in mean
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abundance of a species after an impact maybe due to some other factor and

occurred, by chance, at the same time of the disturbance event.  In the

example in Figure 6.5 the magnitude and abruptness of the perturbation can

be evidence of an impact.

Figure 6.5 Survey data from an impact area collected over 8 sample dates.  The impact
occurred immediately prior to time 3.

6.6 Analysis of BACI Designs

Analysis of BACI designs can become quite complex.  The simplest approach

is the one suggested by Stewart-Oaten et al. (1986) where t-tests of differences

are conducted.  This method was used in the example above.  However, there

are some limitations with this approach.  One is that the test assumes effects

are “additive” when in fact, for many biological systems, effects are

multiplicative - the difference between control and impact sites tends to be

greater when species are abundant than when they are sparse (Stewart-Oaten

et al. 1986).  One way to overcome this problem of non-additive effects is to

transform the data, e.g. with a log transformation.  Another problem is that the

analysis assumes that in the difference between the control and impact sites

there is no obvious trend in the period before the onset of the impact event,

i.e. the impact and control areas should not be changing relative to each other

prior to the impact.

Underwood’s 1991, 1992 and 1994 papers describe various alternative analysis

methods based on ANOVA models.  He discusses further some limitations with

the Stewart-Oaten et al. approach.  The analyses presented by Underwood can

be quite complex and often use nested (or hierarchical) ANOVA designs.  The

simplest of Underwood’s methods are described here.  The range of papers

should be reviewed for more complex designs.

• Before-After

For a design where there is only Before sample data collected at t times

and After sample data collected at t times at a single site the appropriate

ANOVA would be, using the notation of Underwood (1991):

SOURCE OF VARIATION df F

Before vs After   B 1 MS B / MS T(B)

Time(Before vs After)  T(B) 2(t-1)

Residual 2t(n -1)

Total 2tn - 1
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The factor Time(Before vs After) means Time is nested in the factor

Before vs After.  This factor is measuring whether the average abundance

of the organism being measured differed over time within the Before

period and differed over time within the After period.  The number of

replicate samples at the site at each time is n.

• Before-After-Control-Impact - One Control site and One Impact site - One

survey Before and One survey After

When a single Control and a single Impact site are surveyed once Before

and once After (i.e. there are only two sites and two survey times)

Underwood (1991) recommends a simple two factor ANOVA:

SOURCE OF VARIATION df F

Before vs After   B 1

Control vs Impact   L 1

Interaction   B x L 1 MS B x L / MS Residual

Residual 4(n -1)

Total 4n - 1

In this design the interest is in the interaction B x L which is the

interaction between the Before and After times (factor B) and the Control

vs Impact sites (factor L).  The interpretation of a significant interaction is

that the difference between the averages of the Control and Impact

survey data are not the same in the Before period as in the After period.

• Before-After-Control-Impact - One Control site and One Impact site -

Repeat surveys Before and Repeat surveys After

The next design is where a single Control and single Impact site are

sampled more than once, i.e. there is more than one survey before and

more than one after the impact.  Again a nested design is used.  Note that

in this analysis the surveys of the Control and Impact sites are assumed to

occur at the same time.

SOURCE OF VARIATION df F

Before vs After   B 1

Control vs Impact   L 1

Interaction   B x L 1 MS B x L / MS L x T(B)

Time(Before vs After)  T(B) 2(t - 1)

Interaction    L x T(B) 2(t - 1) MS L x T(B) / MS Residual

L x T(B)-Before t - 1 MS L x T(B)  Before / MS Residual

L x T(B)-After t - 1 MS L x T(B) After  / MS Residual

Residual 4t(n -1)

Total 4tn - 1

The partitioning of the interaction of location and time into the Before and

After components is to allow testing of whether the differences in the Impact

and Control sites varied over time Before the impact.  Similarly it allows

testing of whether the differences in the Impact and Control sites varied over

time After the impact and for comparison of these two effects.  If there were
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variation over time in the difference between the Control and Impact sites this

would confound the detection of difference between before and after the

impact.

More complex analysis, e.g. using use asymmetrical variances for designs with

multiple control sites are discussed in Underwood (1992).

6.7 Comparison of Variances in a BACI Design

The BACI analysis described above relies on comparison of averages - long

term running averages between impact and control sites.  In some situations

the focus on “averages” is not appropriate and the interest is more in the

variation, e.g. after disturbance does the fish community fluctuate in time

more or less than what it was doing previous to the disturbance?  Questions

may be asked about the rate and magnitude of fluctuations.

The ability to detect temporal fluctuations depends on the temporal scale of

the surveys.  For example, if surveys are conducted once a year, unusual

fluctuations within the year will not be detected (Figure 6.6).

Figure 6.6 Survey data from an impact area collected over years.
NB The four annual sample dates are indicated by the , show little variation.  However the
fluctuations between each annual sample date vary among the four sample dates.  If sampling
had occurred more frequently this level of variation would have been detected.

To detect if there is similar variation over time after an impact event compared

with the period before the event it may be necessary to sample at different

temporal scales. The idea is similar to having spatial replication at varying

scales.  For example, control and impact sites are surveyed in three time

periods before and after the impact event, e.g. a survey is done in March over

3 years before and 3 years after the impact event.  Within each survey period

there are three survey times, e.g. at weekly intervals.  The appropriate

analysis would be using nested design where Before vs After is the major

source of variation, survey periods are nested within the factor Before vs After

and times nested within survey periods (Underwood 1991).
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6.8 Key Points in This Module

• Before-After/Control-Impact (BACI) designs are a very useful design in

environmental monitoring to assess the effect of an activity.

• Environmental status in treatment sites and control sites are compared in

the period prior to and the period after an “impact”.

• Environmental effects, such as species abundance vary naturally through

time and among spatial locations.  A BACI design can be used to separate

these sources of natural variation from variation due to the impact of an

activity.

• When an environmental impact occurs and there is no baseline “before”

data for either the impact area or the control area an “after-only” or

Impact-Control design can be used.  Data collected following the

incident is compared between the impact and control areas.

• When data is available from the impact area prior to the incident a

Before-After designs can be used.

• With both the Impact-Control and Before-After designs there is a risk that

any observed difference is confounded by natural environmental

fluctuation.

6.9 Questions About This Module

After completing this module you should be able to give reasonable answers

to the following questions.

1. The long-term impact on forest bird populations of a new predator

programme is to be assessed.  The programme is to begin next month.

How would you design the monitoring of such a programme, e.g. how

would you choose control sites and impact sites?  What spatial and

temporal replication would you have?  What variables would you

measure?

2. In the above scenario what is the crucial feature of the design that is

lacking to make it a true BACI design?

3. To assess the impact of a new marine reserve data were collected from a

control site and the “impact” site both before and after the establishment

of the marine reserve at three survey times (i.e. there were three survey

times before and three after the reserve was established).  The analysis

used the factor L where L = control or impact, the factor B where B =

before or after and the factor T where T = survey time 1, 2 or 3.  There

was a significant interaction between B and L.  What is the interpretation

of this result?

4. There was also a significant interaction for the marine reserve example,

between the factors L and T(B) in the Before period.  Would you be

confident about using the changes in the differences between the Control

and Impact sites Before and After impact to assess the effect of the

marine reserve?
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O U T P U T  F R O M  S P S S  L O G I S T I C
R E G R E S S I O N

        Total number of cases:      1000 (Unweighted)
      Number of selected cases:   1000
      Number of unselected cases: 0

      Number of selected cases:                 1000
      Number rejected because of missing data:  0
      Number of cases included in the analysis: 1000

Dependent Variable Encoding:

Original       Internal
Value          Value
       0       0
       1       1

                               Parameter
                 Value   Freq  Coding
                                (1)    (2)    (3)    (4)    (5)    (6)    (7)
NATION
                     2     36  1.000   .000   .000   .000   .000   .000   .000
                     3     13   .000  1.000   .000   .000   .000   .000   .000
                     6     56   .000   .000  1.000   .000   .000   .000   .000
                     7     28   .000   .000   .000  1.000   .000   .000   .000
                     8     38   .000   .000   .000   .000  1.000   .000   .000
                     9    311   .000   .000   .000   .000   .000  1.000   .000
                    10     44   .000   .000   .000   .000   .000   .000  1.000
                    11    420   .000   .000   .000   .000   .000   .000   .000
                    12     38   .000   .000   .000   .000   .000   .000   .000
                    13     16   .000   .000   .000   .000   .000   .000   .000

                          (8)    (9)
NATION
                     2   .000   .000
                     3   .000   .000
                     6   .000   .000
                     7   .000   .000
                     8   .000   .000
                     9   .000   .000
                    10   .000   .000
                    11  1.000   .000
                    12   .000  1.000
                    13   .000   .000

                               Parameter
                 Value   Freq  Coding
                                (1)    (2)    (3)    (4)    (5)    (6)    (7)
TARGET
                    1     98  1.000   .000   .000   .000   .000   .000   .000
                    2     13   .000  1.000   .000   .000   .000   .000   .000
                    3    599   .000   .000  1.000   .000   .000   .000   .000
                    4    276   .000   .000   .000  1.000   .000   .000   .000
                    5      2   .000   .000   .000   .000  1.000   .000   .000
                    6      6   .000   .000   .000   .000   .000  1.000   .000
                    7      1   .000   .000   .000   .000   .000   .000  1.000
                    8      1   .000   .000   .000   .000   .000   .000   .000
                    9      4   .000   .000   .000   .000   .000   .000   .000

                          (8)
TARGET
                    1   .000
                    2   .000
                    3   .000
                    4   .000
                    5   .000
                    6   .000
                    7   .000
                    8  1.000
                    9   .000
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                               Parameter
                 Value   Freq  Coding
                                 (1)    (2)    (3)    (4)
FYEAR
                     2    177  1.000   .000   .000   .000
                     3    179   .000  1.000   .000   .000
                     4    282   .000   .000  1.000   .000
                     5    132   .000   .000   .000  1.000
                     6    230   .000   .000   .000   .000
TDAY
                     1    144  1.000   .000   .000
                     2    350   .000  1.000   .000
                     3    324   .000   .000  1.000
                     4    182   .000   .000   .000
SEASON
                     1    225  1.000   .000   .000
                     2    637   .000  1.000   .000
                     3     12   .000   .000  1.000
                     4    126   .000   .000   .000
GEAR
                     1    469  1.000
                     2    531   .000

Dependent Variable.   SLION

Beginning Block Number  0.  Initial Log Likelihood Function

-2 Log Likelihood   164.06795

* Constant is included in the model.

Estimation terminated at iteration number 6 because
Log Likelihood decreased by less than .01 percent.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +——----—+—----——+
   0     0   I  984  I    0  I  100.00%
             +——----—+—----——+
   1     1   I   16  I    0  I     .00%
             +——----—+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable           B      S.E.     Wald    df      Sig       R    Exp(B)

Constant     -4.1190     .2520 267.1209     1    .0000

Beginning Block Number  1.  Method: Backward Stepwise (LR)

Variable(s) Entered on Step Number
1.        NATION
          FYEAR
          SEASON
          TARGET
          GEAR
          TDAY
          LOGDUR
          LOGWT

Estimation terminated at iteration number 11 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      137.165
 Goodness of Fit        546.123
 Cox & Snell - R^2         .027
 Nagelkerke - R^2          .175

                     Chi-Square    df Significance
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 Model                   26.903    30        .6283
 Block                   26.903    30        .6283

 Step                    26.903    30        .6283

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +—----——+—----——+
   0     0   I  984  I    0  I  100.00%
             +——----—+—----——+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

NATION                            2.8404     9    .9703   .0000
 NATION(1)     1.7187  130.1639    .0002     1    .9895   .0000    5.5773
 NATION(2)     -.7126  163.0693    .0000     1    .9965   .0000     .4904
 NATION(3)     2.8515  130.1622    .0005     1    .9825   .0000   17.3132
 NATION(4)     4.3086  130.1666    .0011     1    .9736   .0000   74.3360
 NATION(5)      .2544  137.3739    .0000     1    .9985   .0000    1.2897
 NATION(6)    -2.8388  151.2774    .0004     1    .9850   .0000     .0585
 NATION(7)     1.5056  130.1580    .0001     1    .9908   .0000    4.5069
 NATION(8)     1.5253  130.1533    .0001     1    .9906   .0000    4.5967
 NATION(9)     1.4325  130.1482    .0001     1    .9912   .0000    4.1891
FYEAR                             3.7931     4    .4347   .0000
 FYEAR(1)      -.1283    1.0043    .0163     1    .8984   .0000     .8796
 FYEAR(2)       .2121    1.0923    .0377     1    .8461   .0000    1.2362
 FYEAR(3)     -1.4848    1.1092   1.7921     1    .1807   .0000     .2265
 FYEAR(4)       .6962     .9089    .5868     1    .4437   .0000    2.0062
SEASON                             .5231     3    .9138   .0000
 SEASON(1)    -9.2818   28.3422    .1072     1    .7433   .0000     .0001
 SEASON(2)    -1.0949    1.6646    .4326     1    .5107   .0000     .3346
 SEASON(3)     -.0406  148.2897    .0000     1   1.0000   .0000     .9602
TARGET                            5.8606     8    .6628   .0000
 TARGET(1)   -11.2995   68.4538    .0272     1    .8689   .0000     .0000
 TARGET(2)    -5.5347  141.9855    .0015     1    .9689   .0000     .0039
 TARGET(3)    -3.9655    1.6413   5.8376     1    .0157  -.1529     .0190
 TARGET(4)      .8315   77.8882    .0001     1    .9915   .0000    2.2968
 TARGET(5)   -11.7876  315.0652    .0014     1    .9702   .0000     .0000
 TARGET(6)   -15.1836  169.4920    .0080     1    .9286   .0000     .0000
 TARGET(7)   -12.2337  446.5065    .0008     1    .9781   .0000     .0000
 TARGET(8)   -10.2162  446.5098    .0005     1    .9817   .0000     .0000
GEAR(1)         .8943    1.5218    .3453     1    .5568   .0000    2.4455
TDAY                               .1643     3    .9831   .0000
 TDAY(1)       -.4074    1.0231    .1586     1    .6905   .0000     .6654
 TDAY(2)       -.1912     .7936    .0581     1    .8096   .0000     .8260
 TDAY(3)       -.1485     .7934    .0350     1    .8516   .0000     .8620
LOGDUR          .8999     .7030   1.6385     1    .2005   .0000    2.4593
LOGWT           .1535     .2117    .5260     1    .4683   .0000    1.1659
Constant      -2.1904  130.1786    .0003     1    .9866

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

NATION         -69.972        2.780     9           .9724
FYEAR          -70.850        4.535     4           .3385
SEASON         -72.251        7.337     3           .0619
TARGET         -72.203        7.241     8           .5109
GEAR           -68.772         .379     1           .5384
TDAY           -68.666         .167     3           .9827
LOGDUR         -69.508        1.851     1           .1737
LOGWT          -68.861         .557     1           .4555
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Variable(s) Removed on Step Number
2.       TDAY

Estimation terminated at iteration number 11 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      137.332
 Goodness of Fit        533.282
 Cox & Snell - R^2         .026
 Nagelkerke - R^2          .174

                     Chi-Square    df Significance

 Model                   26.736    29        .5859
 Block                   26.736    27        .4781
 Step                     -.167     3        .9827

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +—----——+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+—----——+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-
Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

NATION                            3.0595     9    .9619   .0000
 NATION(1)     1.7068  130.4966    .0002     1    .9896   .0000    5.5114
 NATION(2)     -.6976  163.5953    .0000     1    .9966   .0000     .4978
 NATION(3)     2.9082  130.4950    .0005     1    .9822   .0000   18.3239
 NATION(4)     4.4016  130.4992    .0011     1    .9731   .0000   81.5776
 NATION(5)      .2525  137.7086    .0000     1    .9985   .0000    1.2872
 NATION(6)    -2.5373  151.4391    .0003     1    .9866   .0000     .0791
 NATION(7)     1.5708  130.4911    .0001     1    .9904   .0000    4.8106
 NATION(8)     1.5925  130.4864    .0001     1    .9903   .0000    4.9161
 NATION(9)     1.4776  130.4818    .0001     1    .9910   .0000    4.3823
FYEAR                             3.7412     4    .4422   .0000
 FYEAR(1)      -.1572     .9997    .0247     1    .8750   .0000     .8545
 FYEAR(2)       .1587    1.0844    .0214     1    .8837   .0000    1.1719
 FYEAR(3)     -1.4790    1.1009   1.8047     1    .1791   .0000     .2279
 FYEAR(4)       .7296     .8906    .6711     1    .4127   .0000    2.0743
SEASON                             .5079     3    .9172   .0000
 SEASON(1)    -9.2962   28.3265    .1077     1    .7428   .0000     .0001
 SEASON(2)    -1.0735    1.6627    .4169     1    .5185   .0000     .3418
 SEASON(3)     -.0636  148.6784    .0000     1   1.0000   .0000     .9384
TARGET                            6.5049     8    .5909   .0000
 TARGET(1)   -11.0542   68.9532    .0257     1    .8726   .0000     .0000
 TARGET(2)    -5.6795  142.2226    .0016     1    .9681   .0000     .0034
 TARGET(3)    -3.8453    1.5104   6.4814     1    .0109  -.1653     .0214
 TARGET(4)      .7270   77.9652    .0001     1    .9926   .0000    2.0689
 TARGET(5)   -11.7091  315.7234    .0014     1    .9704   .0000     .0000
 TARGET(6)   -14.9458  169.6856    .0078     1    .9298   .0000     .0000
 TARGET(7)   -11.9333  446.5059    .0007     1    .9787   .0000     .0000
 TARGET(8)    -9.9625  446.5093    .0005     1    .9822   .0000     .0000
GEAR(1)         .8857    1.5091    .3444     1    .5573   .0000    2.4246
LOGDUR          .8994     .7030   1.6368     1    .2008   .0000    2.4581
LOGWT           .1405     .2074    .4589     1    .4981   .0000    1.1508
Constant      -2.5387  130.5083    .0004     1    .9845

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR
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NATION         -70.128        2.925     9           .9672
FYEAR          -70.906        4.480     4           .3449
SEASON         -72.409        7.486     3           .0579
TARGET         -72.288        7.245     8           .5105
GEAR           -68.854         .376     1           .5396
LOGDUR         -69.583        1.835     1           .1756
LOGWT          -68.908         .484     1           .4867

Variable(s) Removed on Step Number
3.       NATION

Estimation terminated at iteration number 11 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      140.257
 Goodness of Fit        637.485
 Cox & Snell - R^2         .024
 Nagelkerke - R^2          .156

                     Chi-Square    df Significance

 Model                   23.811    26        .5868
 Block                   23.811    18        .1613
 Step                    -2.925     9        .9672

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +—----——+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+——----—+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)
FYEAR                             3.0484     4    .5498   .0000
 FYEAR(1)      -.0387     .9036    .0018     1    .9658   .0000     .9620
 FYEAR(2)       .4691     .9288    .2551     1    .6135   .0000    1.5985
 FYEAR(3)     -1.0835     .9681   1.2525     1    .2631   .0000     .3384
 FYEAR(4)       .4934     .7399    .4447     1    .5048   .0000    1.6379
SEASON                             .3305     3    .9542   .0000
 SEASON(1)    -8.9025   28.6449    .0966     1    .7560   .0000     .0001
 SEASON(2)     -.7998    1.6185    .2442     1    .6212   .0000     .4494
 SEASON(3)     -.0317  134.5831    .0000     1   1.0000   .0000     .9688
TARGET                            7.1639     8    .5191   .0000
 TARGET(1)   -13.1684   45.3041    .0845     1    .7713   .0000     .0000
 TARGET(2)    -9.9016  121.4454    .0066     1    .9350   .0000     .0001
 TARGET(3)    -3.9273    1.4792   7.0485     1    .0079  -.1754     .0197
 TARGET(4)    -4.3347    1.9875   4.7567     1    .0292  -.1296     .0131
 TARGET(5)   -11.6958  315.7219    .0014     1    .9704   .0000     .0000
 TARGET(6)   -13.8142  168.1613    .0067     1    .9345   .0000     .0000
 TARGET(7)   -11.9537  446.5059    .0007     1    .9786   .0000     .0000
 TARGET(8)    -9.8930  446.5091    .0005     1    .9823   .0000     .0001
GEAR(1)         .1488     .7522    .0392     1    .8431   .0000    1.1605
LOGDUR         1.0156     .6692   2.3028     1    .1291   .0430    2.7610
LOGWT           .1607     .2042    .6187     1    .4315   .0000    1.1743
Constant       -.5792    2.2150    .0684     1    .7937

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

FYEAR          -71.911        3.564     4           .4682
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SEASON         -73.289        6.322     3           .0970
TARGET         -74.500        8.743     8           .3644
GEAR           -70.148         .040     1           .8422
LOGDUR         -71.441        2.626     1           .1051
LOGWT          -70.456         .655     1           .4184

Variable(s) Removed on Step Number
4.       GEAR

Estimation terminated at iteration number 11 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      140.296
 Goodness of Fit        630.102
 Cox & Snell - R^2         .023
 Nagelkerke - R^2          .155

                     Chi-Square    df Significance

 Model                   23.772    17        .1258
 Block                   23.772    17        .1258
 Step                     -.040     1        .8422

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +——----—+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+——----—+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

FYEAR                             3.0081     4    .5565   .0000
 FYEAR(1)      -.0822     .8770    .0088     1    .9253   .0000     .9211
 FYEAR(2)       .4156     .8922    .2169     1    .6414   .0000    1.5152
 FYEAR(3)     -1.1329     .9385   1.4573     1    .2274   .0000     .3221
 FYEAR(4)       .4394     .6921    .4032     1    .5255   .0000    1.5518
SEASON                             .3492     3    .9505   .0000
 SEASON(1)    -8.9156   28.6545    .0968     1    .7557   .0000     .0001
 SEASON(2)     -.8273    1.6129    .2631     1    .6080   .0000     .4372
 SEASON(3)     -.0586  134.5702    .0000     1   1.0000   .0000     .9431
TARGET                            7.2049     8    .5147   .0000
 TARGET(1)   -13.2688   45.3291    .0857     1    .7697   .0000     .0000
 TARGET(2)   -10.0246  121.1020    .0069     1    .9340   .0000     .0000
 TARGET(3)    -3.9253    1.4812   7.0228     1    .0080  -.1750     .0197
 TARGET(4)    -4.4387    1.9165   5.3639     1    .0206  -.1432     .0118
 TARGET(5)   -11.6848  315.7207    .0014     1    .9705   .0000     .0000
 TARGET(6)   -13.8068  168.0045    .0068     1    .9345   .0000     .0000
 TARGET(7)   -11.9653  446.5059    .0007     1    .9786   .0000     .0000
 TARGET(8)    -9.8454  446.5090    .0005     1    .9824   .0000     .0001
LOGDUR         1.0091     .6698   2.2696     1    .1319   .0405    2.7431
LOGWT           .1699     .1995    .7251     1    .3945   .0000    1.1852
Constant       -.4101    2.0466    .0401     1    .8412

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

FYEAR          -71.928        3.560     4           .4688
SEASON         -73.315        6.333     3           .0965
TARGET         -74.705        9.113     8           .3329
LOGDUR         -71.444        2.592     1           .1074
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LOGWT          -70.533         .769     1           .3805

Variable(s) Removed on Step Number
5.       FYEAR

Estimation terminated at iteration number 11 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      143.857
 Goodness of Fit        614.567
 Cox & Snell - R^2         .020
 Nagelkerke - R^2          .132

                     Chi-Square    df Significance

 Model                   20.211    16        .2109
 Block                   20.211    13        .0901
 Step                    -3.560     4        .4688

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +——----—+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+——----—+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

SEASON                             .0858     3    .9935   .0000
 SEASON(1)    -8.2121   29.2084    .0790     1    .7786   .0000     .0003
 SEASON(2)     -.1300    1.4286    .0083     1    .9275   .0000     .8781
 SEASON(3)     -.3545  134.6901    .0000     1    .9979   .0000     .7015
TARGET                            7.7160     8    .4617   .0000
 TARGET(1)   -12.3447   45.7997    .0727     1    .7875   .0000     .0000
 TARGET(2)    -9.5700  124.0746    .0059     1    .9385   .0000     .0001
 TARGET(3)    -3.9043    1.4418   7.3326     1    .0068  -.1803     .0202
 TARGET(4)    -4.6617    1.8466   6.3727     1    .0116  -.1633     .0095
 TARGET(5)   -11.6680  315.7275    .0014     1    .9705   .0000     .0000
 TARGET(6)   -12.6488  172.7638    .0054     1    .9416   .0000     .0000
 TARGET(7)   -11.7706  446.5058    .0007     1    .9790   .0000     .0000
 TARGET(8)   -10.3763  446.5084    .0005     1    .9815   .0000     .0000
LOGDUR         1.0630     .6622   2.5766     1    .1085   .0593    2.8951
LOGWT           .0973     .1951    .2487     1    .6180   .0000    1.1022
Constant      -1.1563    1.8694    .3826     1    .5362

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

SEASON         -74.823        5.790     3           .1223
TARGET         -75.986        8.115     8           .4223
LOGDUR         -73.414        2.972     1           .0847
LOGWT          -72.057         .258     1           .6116

Variable(s) Removed on Step Number
6.       LOGWT

Estimation terminated at iteration number 11 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      144.114
 Goodness of Fit        620.919
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 Cox & Snell - R^2         .020
 Nagelkerke - R^2          .131

                     Chi-Square    df Significance

 Model                   19.954    12        .0680
 Block                   19.954    12        .0680
 Step                     -.258     1        .6116

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +——----—+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+—----——+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

SEASON                             .0824     3    .9939   .0000
 SEASON(1)    -8.1911   29.2414    .0785     1    .7794   .0000     .0003
 SEASON(2)     -.1027    1.4273    .0052     1    .9427   .0000     .9024
 SEASON(3)     -.3705  134.8933    .0000     1    .9978   .0000     .6904
TARGET                            7.6832     8    .4650   .0000
 TARGET(1)   -12.2040   45.7859    .0710     1    .7898   .0000     .0000
 TARGET(2)    -9.5701  123.8916    .0060     1    .9384   .0000     .0001
 TARGET(3)    -3.8436    1.4315   7.2092     1    .0073  -.1782     .0214
 TARGET(4)    -4.7218    1.8386   6.5952     1    .0102  -.1674     .0089
 TARGET(5)   -11.7049  315.7263    .0014     1    .9704   .0000     .0000
 TARGET(6)   -12.4077  176.6772    .0049     1    .9440   .0000     .0000
 TARGET(7)   -11.5754  446.5057    .0007     1    .9793   .0000     .0000
 TARGET(8)   -10.5996  446.5081    .0006     1    .9811   .0000     .0000
LOGDUR         1.0785     .6549   2.7118     1    .0996   .0659    2.9403
Constant      -1.1503    1.8653    .3803     1    .5374

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

SEASON         -74.946        5.777     3           .1230
TARGET         -76.047        7.981     8           .4354
LOGDUR         -73.646        3.178     1           .0746

Variable(s) Removed on Step Number
7.       TARGET

Estimation terminated at iteration number 10 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      152.095
 Goodness of Fit        735.359
 Cox & Snell - R^2         .012
 Nagelkerke - R^2          .079

                     Chi-Square    df Significance

 Model                   11.973    11        .3657
 Block                   11.973     4        .0176
 Step                    -7.981     8        .4354

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.
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Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +—----——+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+—----——+
   1     1   I   16  I    0  I     .00%
             +——----—+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

SEASON                            1.4589     3    .6918   .0000
 SEASON(1)    -6.4525   17.9576    .1291     1    .7194   .0000     .0016
 SEASON(2)     1.1753    1.0416   1.2732     1    .2592   .0000    3.2392
 SEASON(3)    -6.2300   77.7780    .0064     1    .9362   .0000     .0020
LOGDUR          .6661     .5560   1.4352     1    .2309   .0000    1.9467
Constant      -5.7567    1.3115  19.2657     1    .0000

———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

SEASON         -81.699       11.303     3           .0102
LOGDUR         -76.888        1.682     1           .1947

Variable(s) Removed on Step Number
8.       LOGDUR

Estimation terminated at iteration number 10 because
Log Likelihood decreased by less than .01 percent.

 -2 Log Likelihood      153.777
 Goodness of Fit        763.003
 Cox & Snell - R^2         .010
 Nagelkerke - R^2          .068

                     Chi-Square    df Significance

 Model                   10.291     3        .0162
 Block                   10.291     3        .0162
 Step                    -1.682     1        .1947

Note:  A negative Chi-Square value indicates that the Chi-Square
       value has decreased from the previous step.

Classification Table for SLION
The Cut Value is .50
                 Predicted
                  0       1      Percent Correct
                  0  I    1
Observed     +—----——+—----——+
   0     0   I  984  I    0  I  100.00%
             +—----——+—----——+
   1     1   I   16  I    0  I     .00%
             +—----——+—----——+
                        Overall  98.40%

——————————— Variables in the Equation ———————————-

Variable            B      S.E.     Wald    df      Sig       R    Exp(B)

SEASON                            1.3086     3    .7271   .0000
 SEASON(1)    -6.3746   18.0825    .1243     1    .7244   .0000     .0017
 SEASON(2)     1.1034    1.0374   1.1313     1    .2875   .0000    3.0145
 SEASON(3)    -6.3746   78.1851    .0066     1    .9350   .0000     .0017
Constant      -4.8283    1.0040  23.1276     1    .0000
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———————— Model if Term Removed —————————

Term        Log                              Significance
Removed     Likelihood    -2 Log LR    df    of Log LR

SEASON         -82.034       10.291     3           .0162

——————— Variables not in the Equation ————————-
Residual Chi Square     21.539 with     27 df     Sig =  .7604

Variable           Score    df      Sig       R

NATION            3.3108     9    .9507   .0000
 NATION(1)         .0297     1    .8632   .0000
 NATION(2)         .1061     1    .7446   .0000
 NATION(3)         .0059     1    .9389   .0000
 NATION(4)        2.2056     1    .1375   .0354
 NATION(5)         .3592     1    .5489   .0000
 NATION(6)         .1506     1    .6979   .0000
 NATION(7)         .0005     1    .9830   .0000
 NATION(8)         .0032     1    .9552   .0000
 NATION(9)         .0443     1    .8332   .0000
FYEAR             2.4202     4    .6590   .0000
 FYEAR(1)          .0977     1    .7546   .0000
 FYEAR(2)          .0004     1    .9847   .0000
 FYEAR(3)         1.3569     1    .2441   .0000
 FYEAR(4)         1.3995     1    .2368   .0000
TARGET           10.8091     8    .2128   .0000
 TARGET(1)        1.3030     1    .2537   .0000
 TARGET(2)         .1808     1    .6707   .0000
 TARGET(3)         .0646     1    .7994   .0000
 TARGET(4)         .0000     1    .9955   .0000
 TARGET(5)         .0484     1    .8259   .0000
 TARGET(6)         .0417     1    .8383   .0000
 TARGET(7)         .0242     1    .8765   .0000
 TARGET(8)         .0081     1    .9284   .0000
GEAR(1)            .3937     1    .5304   .0000
TDAY               .1333     3    .9876   .0000
 TDAY(1)           .0079     1    .9290   .0000
 TDAY(2)           .0037     1    .9514   .0000
 TDAY(3)           .1042     1    .7468   .0000
LOGDUR            1.3865     1    .2390   .0000
LOGWT              .1567     1    .6922   .0000

No more variables can be deleted or added.
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Appendix 3:  Department of
Conservation Data Sets

Notes:
All of the smaller data sets (one or two printed pages) are shown here.  Only
the first page is shown for the larger data sets.

The data are held in three Excel files with names that mean exactly what they
say.  These are DOC-1TO8.XLW, DOC-9&10.XLW, and DOC-11ON.XLW.

BACI Experiment on 1080 in Rangataua Forest

Survival and Breeding of Known Age Takahe

Monitoring of Dactylanthus Tayloili Near the Summit of Mt Pirongia

Monitoring of Vegetation in Whareorino Forest, 1995-99

Blue Cod Size Data from Paterson Inlet, 1994-98

Blue Cod Numbers Data from Paterson Inlet, 1994-98

Tree Conditions at Ryan Creek, Heaphy Valley in 1995 and 1999

Diets of Fish Collected from Otago Streams

Survey of Deer Pellets in the Takahe Special Area, Murchison Mountains,
Fiordland National Park, in 1998

Angler Survey Results at Lake Taupo, 1992-99

Monitoring of Mistletoe in Eglington Valley, Fiordland, 1995-97

Hurunui Mainland Island 5-Minute Bird Count Data

Possum Trapping Data from Hurunui Mainland Island

Waikoropupu Springs Vegetation Transects, 1991-99

Kaimanawa Recreational Hunting Area Permanent Plot Biodiversity

Kaimanawa Recreational Hunting Area Plot Density of Nothofagus Fuscus
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Module 1
Question 1: Read section 1.3.

Question 2: Read section 1.4.

Question 3: Read section 1.4.

Question 4: Read section 1.5.

Question 5: Read section 1.6.

Question 6: Read section 1.7 and look at the example on 1080 poison

pellets.

Question 7: Think about changing the algorithm to produce confidence

intervals instead of t-statistics.

Question 8: Read section 1.9.

Question 9: Read section 1.10.

Question 10: Read section 1.11.

Question 11: A good question, difficult to answer.

Question 12: Read section 1.13. The relevance is a matter of opinion.

Module 2
Question 1: Read section 2.1.

Question 2: Read section 2.5 and rework equation 8.

Question 3: Read section 2.14.

Question 4: Read section 2.8 and use equation 15.

Question 5: Read section 2.8 and use equation 16 and Neyman

allocation.

Question 6: Read section 2.7 and 2.10.

Module 3
Question 1: Read section 3.1 to 3.4.

Question 2: Read section 3.8 and 3.9.

Question 3: Read section 3.10 to 3.12.

Module 4
Question 1: Read sections 4.2 and 4.3.

Question 2: Read sections 4.2 and 4.3.

Question 3: Read section 4.4.

Question 4: Read section 4.5.

Question 5: Read section 4.5.

Question 6: Read section 4.6.

Question 7: Read section 4.7.

Question 8: Read section 4.8.
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Module 5
Question 1: Read section 5.2.

Question 2: Read section 5.2.

Question 3: Look at the regression model example in section 5.3.

Question 4: Read the part about this test in section 5.3.

Question 5: Read sections 5.4 and 5.5.

Question 6: Read section 5.5.

Question 7: Read section 5.6.

Module 6
Question 1: Read section 6.2.

Question 2: Read section 6.1.

Question 3: Read section 6.6. This is an example of BACI with one

control and one impact site and with

repeat before and repeat after surveys.

Question 4: Read section 6.6.
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Accuracy A measure of how close an estimated statistic (e.g. the sample mean) is to

the equivalent population parameter (e.g. the population mean).

Anova Analysis of variance: a method to analysis data to assess the amount of

variation associated with different known factors or variables.

Autocorrelation Data show autocorrelation when observed value of a variable is correlated

to adjacent values, usually in time or in space. E.g. a tree’s height measured

over time is autocorrelated data.

Average Also called the mean. This is a sample statistic that describes .the centre of

a group of measurements.

Bonferroni Bonferroni adjustments are made to correct for the inflated type 1 errors

that result from conducting several simultaneous tests of significance. C. E.

Bonferroni was an Italian working in the area of probability theory.

Chi-squared A distribution often used in analysing count data, and for comparing sample

distribution variances with population variances. The distribution has only positive

values.

Coefficient of A measure to describe the relative variation in data by dividing the standard

variation deviation by the mean. Also sometimes the standard error of an estimate

divided by the estimate.

Composite sampling A useful sample design where the cost of collecting large samples in the

field is relatively low, but the cost of analysing all of the samples is high.

Confidence level The probability that the statistical method produces a confidence interval

that includes the parameter of interest.

Continuous Continuous variables are usually measurements, e.g. weights, temperature.

Control Control groups are necessary in experiments to find out what might have

happened in the absence of the treatment.

Correlation The correlation coefficient measures the strength of the linear relationship

between two quantitative variables.

Degrees of freedom Often this is just the sample size minus one. However, the expression

degrees of freedom is also used more generally for the number of

independent comparisons that can be made, e.g. in an analysis of variance

table.

Dependent A dependent variable is one for which the values are related to the values

for certain other variables, which are sometimes called the independent

variables.

Discrete A discrete variable has gaps between each of the values that it can take, e.g.

numbers of birds, age (in years).

Effect The deviation in the value of the variable of interest from what would be

expected in the absence of the treatment, e.g. the reduction in possum

index after a control operation is the effect of possum control.

Error The level of uncertainty in the sample statistic or the inaccuracy of a sample

statistic due to a less than ideal sample design.
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Experiment A planned, rigorous approach to a study of e.g. a biological system. It often

involves the control or allowance for the effects of some variables whilst

manipulating others.

Factor Usually a qualitative variable, e.g. gender, blood type.

F-distribution Used in comparing variances, e.g. for comparison of the variability of the

sample means with the variability within the samples.

Fixed effect An effect where the interest is in the specific levels of the factor that are

observed, as compared with a random effect.

Hypothesis The conjecture that the research is designed to investigate.

Independent Independent variables are those where the value of one does not depend

on the value of the other.

Interaction In experimental design an interaction of factor A and B means that the

observed effect of A depends on the level of B, and vice-versa.

Mean The average of the α observations, or of the population.

Median The middle number when the observations are placed in rank order.

Meta-analysis The statistical synthesis of results of separate, independent studies.

Mode The most frequently occurring observation(s).

Model A descriptive device for simplifying and characterising processes, e.g.

biological systems, often expressed by an equation showing how the

variable observed depends on other variables and/or factors.

Monitoring A process to review the changes in a process, generally over time.

Multiple comparison A method to investigate specific differences when there are more than two

factors, or treatments, being investigated.

Multivariate A type of statistical analysis where the interest is in more than one

dependent variable.

Nested A nested design is used when replicate units are completely contained

within one treatment.

Non-parametric Methods that do not require making assumptions about the specific

parametric form of the distribution that the data are sampled from.

Normal distribution A commonly used distribution that is symmetrical, and has a smooth, single

peaked, bell-shaped density curve.

Observation A sample is a collection of observations or unit from a population. The

actual measurement from a unit is also referred to as an observation.

Parameter A numerical characteristic of the population, e.g. the average, the variance.

Parametric Methods that require making an assumption about the specific

mathematical form of the distribution the data are sampled from.

Poisson distribution A discrete distribution often assumed for count data.

Population The complete set of units that are of interest, e.g. the population of trout in

a lake at a point in time.
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Power The probability of detecting the existence of an effect from a test of

significance, given that the effect does exist.

Precision The accuracy with which a variable is measured or a parameter is

estimated.

Probability The likelihood that an event will occur. The simplest interpretation is in

terms of a long run frequency; e.g. the probability of obtaining a head from

tossing a fair coin is 0.5 because a head is expected to occur 50% of the

time from many tosses.

Pseudo-replication Assuming that observations are a random sample from a population when

in fact they are only randomly selected from part of the population, or they

are not selected independently.

P-value The probability of observing a test statistic value as extreme as that

observed when a null hypothesis is true.

Quartile The quartiles of a sample or population divide the sample or population

into four parts. The first quartile exceeds 25% of all values; the second

quartile (also called the median) exceeds 50% of all values, etc.

Random A process is described to be random if what is observed from the process is

affected by chance to some extent.

Random effects In analysis of variance, a factor is considered to have random effects if the

levels of the factor observed are randomly selected from a population of

possible levels. The alternative is that effects are fixed.

Random sampling Sampling in such a way that each unit in a population has the same chance

of being selected whenever a draw is made.

Range The range of a sample or population is the largest value minus the smallest

value.

Repeated measures When observations are taken on a sample unit at several different times

then the study is said to have repeated measurements.

Replication Repeating experimental conditions to obtain several observations differing

only by unexplained random errors is called replication. Values randomly

sampled from the same population are also sometimes called replicates.

Residual What is left over after all known effects are accounted for. This is typically

used to describe the part of an observation that is estimated to be due to

unknown random causes.

Sample A selection of some of the units from a population.

Sample size The number of units (observations) in a sample.

Serial correlation The ordinary correlation coefficient calculated by pairing up the values in a

time series X
t
 with values k time steps away. For example the first serial

correlation is the correlation between X
t
 and X

t+l
.

Significance level The probability that a test of significance will give a significant result when

the null hypothesis is true.

Standard deviation A measure of the amount of variation in the values in a sample or

population.
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Standard error The standard deviation of an estimator of a parameter. Statistical inference

The process of drawing conclusions on the basis of samples from

populations.

Stratification The division of a population into non-overlapping sets of sample units,

usually with the idea that the units within strata will be relatively similar.

Stratified sampling Sampling separately from each of the strata in a population.

Sums of squares Quantities used in regression analysis, analysis of variance, etc., which

measure the variation related to specific factors. E.g. the regression sum of

squares measures the amount of the variation in the data that is accounted

for by the regression equation. They are sums of squared differences

between observations and mean values.

Survey The process of sampling a population.

Systematic A systematic sample is one where every kth observation in time or space is

selected.

t-distribution A distribution that occurs frequently in statistical analyses, e.g. in the

comparison of the means of samples from two normally distributed

populations with the same variance.

Temporal versus Temporal is to do with time and spatial is to do with space.

spatial

Transformation The process of using a mathematical equation to change the scale of

measurement. E.g. the log transformation Y=log(X) is often used and an

analysis done on the Y values rather than the corresponding X values.

Treatment A type of experimental manipulation on the units used in a study.

Trends Changes (usually with time or space) that are generally in the same

direction.

Type 1 error The probability of getting a significant result by mistake for a test of

significance.

Type 2 error The probability of getting a non-significant result by mistake for a test of

significance.

Univariate An analysis on one variable is called univariate.

Variables The different quantities measured in a study, e.g. the height and weight of

the subjects in a nutrition survey.

Variance A measure of the amount of variation in data. Also the square of the

standard deviation.
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