Predator Free 2050

Interoperability & Remote Comms

June 2025

Contributors

Matthew Hellicar	Innovation Consultant	matthew@appliedinnovation.co.nz
Angu Chen	System Analyst, Contributor	anguchen96@gmail.com
Liam O'Donoghue	Consultant, Reviewer	chchaikido@gmail.com

Context

This report highlights the significant challenges facing the Predator Free 2050 movement in terms of the technical aspects of the execution environment. It identifies issues such as disconnected solutions, duplicated efforts by projects and developers, and a lack of standardisation and interoperability in equipment and data management. To address these problems, the report outlines several priority initiatives.

State Of Play

- Projects are not provided with proven solutions to carry out the work they are being requested to execute
- Money spent on innovation is delivering a suite of disconnected solutions with no clear view of how those solutions come together to enable an end-to-end system that can operate efficiently to help projects solve the problems at hand
- There have been no concrete examples of how the collective of projects and developers has come together to identify repeatable solutions.
- Developers have thus far not been incentivised to collaborate on solutions.
- No standards have been defined to allow developers to deliver equipment that can integrate and/or communicate with other developers' equipment
- No common protocols have been defined to allow developers to deliver equipment that can integrate and/or communicate with communication solutions in the field
- Operational projects have thus far not been incentivised to collaborate on solutions or to deliver proven, repeatable solutions
- Projects have ended up duplicating effort on delivering technical solutions.
- Projects have had to come up with their own data analysis solutions to gain a
 view of status across their efforts. This has led to projects developing their own
 dashboarding and analysis solutions as well as duplicating the infrastructure
 (both technical and human) to support those.

Why Has This Happened?

The above are signs of an immature industry. Mature industries:

- invest in carefully targeted ways to deliver parts of the overall outcomes
- have well understood, tried-and-tested solutions
- have well defined methods of allowing interoperability, integration, and collaboration
- understand the total costs of solutions, projects, and operations

- ensure funds are spent efficiently always delivering against well-defined metrics
- manage out the complexity by providing proven solutions
- enable and encourage continuous improvement through rigorous trials with well-defined outcomes

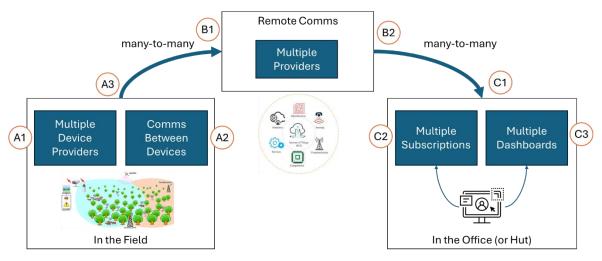
The Predator Free movement does not (yet) exhibit many of these characteristics, which leads to sub-optimal delivery of programmes.

To succeed, the Predator Free movement needs to organise itself around the characteristics of a mature industry. A collective of well-intentioned projects will not deliver the efficient, seamless engine required to execute a programme of this size and achieve outcomes of this complexity.

The complexity of this challenge is increasing as additional tools and potential solutions are brought into this space without sufficient methods to make best use of them.

What Are Projects Doing?

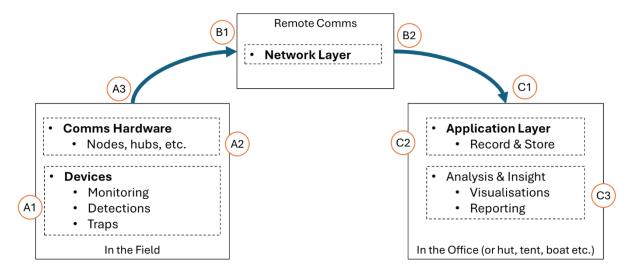
Across the existing projects, effort has been duplicated at multiple layers, each project spending precious funds to:


- Understand the features and capabilities of available tools (by engaging with the tool developer directly)
- Identify solutions that can deliver the stated goals of each phase

What Are Developers Doing?

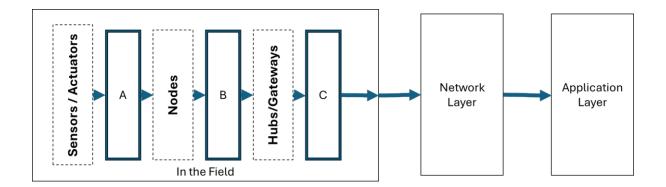
The existing developers of field equipment have:

- Received little direction on design constraints for their products
- Received little direction on any standards their products should utilise and/or align to
- Received no direction on how their equipment could or should or must interoperate with any other equipment
- Received no direction on what communications solutions their equipment should be able to integrate with in the field, sometimes forcing a developer to work on bespoke comms solutions


As a result of the above, developers have built their own custom solutions for most required elements. This has led to duplication of effort and has delivered an unconnected set of solutions.

The current environment – fragmented with every project using its own solutions and zero interoperability between field equipment

What Needs to Happen?

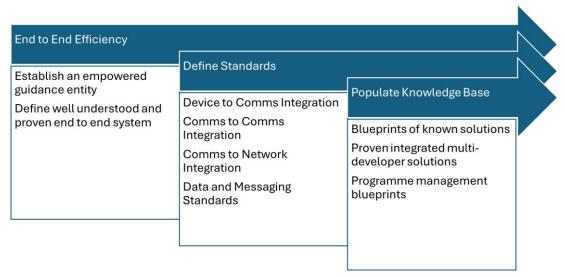

- All solutions must be designed and developed to play a known role in the overall solution space
- All solutions must comply with all standards and constraints defined
- All solutions must interoperate in the collective solution space
- All funded initiatives must contribute in a known way to the capabilities of the ecosystem and guarantee to enable interoperability within it
- All operational data reported must align to defined standards
- All communications across the execution environment must comply to welldefined protocols (to provide as much future-proofing as feasible)
- All solutions Deployment protocols must be provided
- E2E operation of the solutions must be proven
- The Total Cost of Ownership of each solution must be calculated, documented, and maintained

The elements of the future environment

Region	ID	Description	Target State
Field	A1	Multiple device providers	Standardised data structures describing all observations
Field	A2	Field comms between devices	Defined protocol for communication between sensor and comms node/hub
Field	А3	Connection to Remote Comms	Defined protocol to enable configurable plug-and-play integration with remote comms network
Comms	B1	Connectivity / coverage	Graceful failure mode – handle unavailability of remote comms, report errors so they can be handled back at source
Comms	B2	Data Reporting Endpoint(s)	Failure tolerant transmission – handle unavailability of endpoint, report errors so they can be handled back at source
Office	C1	Application / Dashboard Endpoint	Standardised, centralised API
Office	C2	Single Application Subscription	Single central subscription for all data management
Office	СЗ	Single Dashboard	Single platform with rich visualisations and integrations

Targets for the future environment – a well-defined environment with defined data and interoperability methods

- A: Standardised Data Structure describing each observation
- B: Defined Common Protocol for comms from Nodes to Hubs/Gateways
- C: Standardised Data Structure and Defined Common Protocol for end-to-end comms to Application Layer


Defined data and interoperability methods

How do we get there?

To achieve this, some or all of the following need to be addressed:

- 1. End to End Efficiency
 - a. A well understood and proven end to end system should be realised
 - b. This will follow naturally if all of the above is put in place but it must be maintained as a clear goal
 - c. To achieve that, an empowered guidance entity is required
- 2. Innovate for Outcomes
 - a. Standards must be defined for interoperability at multiple levels:
 - i. Device to Comms Integration
 - ii. Comms to Comms Integration
 - iii. Comms to Network Integration
 - iv. Data and Messaging Standards
 - b. A Knowledge Base must be maintained to cover:
 - i. Blueprints of known solutions (that can then be localised)
 - ii. Proven integrated multi-developer solutions (that can then be localised)
 - iii. Programme management blueprints (that can then be localised)

A series of well-defined initiatives should be brought together into a programme of work that delivers each of the building blocks in a logical manner. There will need to be multiple instances of some initiatives (such as embedded field trials that prove solutions), not all of which can be defined up front.

Establishing a roadmap

A process must be put in place to regularly (perhaps quarterly) review new and innovative solutions and identify when the right time is to shape a trial to prove those initiatives.

Note: The following proposals are based around achieving that future state. It is critical that the efficiency of that future state is not constrained or limited by any of the existing status. The important thing is to build an efficient execution engine for 2030 and beyond.

Summary of High Priority Proposals

The appendices of this report include lists of problem statements and proposals identified at this stage. This section covers a subset of those proposals.

In the short term, a number of building blocks are missing from the end to end environment so initiatives to deliver them are required.

ID	Name	Short Description		
Technical Initiatives				
PR1.1	Define the End-to-End	Define the architecture for an end-to-end data		
	System	management process		
PR1.2	Central Data Platform	Stand up a centralised data platform and make it ready		
		and available to all projects and developers		
PR1.3	Knowledge Base	Stand up and populate a central Knowledge Base (KB)		
		to host and share assets defining best practice		
		solutions		
PR1.4	Feature Matrix	Produce a product feature matrix across all devices		
		(add to knowledge base)		
PR1.5	Future Feature Matrix	Produce a matrix with opportunities highlighted for		
		desirable features to enable future solutions.		
Trial / Solution I	Proving Initiatives			
PR3.1	Identify / Initiate Proof	Identify or Initiate project(s) to deliver Proven Solution		
	of Solution Initiatives	Blueprints.		
PR3.2	Pilot E2E Integration	Shape a Pilot project to prove the end-to-end system(s)		
	Initiative(s)			

PR1.1: Define the End-to-End System

Define the architecture for an end-to-end data management process providing a proposed solution for each of the elements in the flow.

The architecture in question has at least three elements:

- Technical solutions including integration and remote communications
- Data Management solution including hosting, storage, access management, analysis, reporting and more
- Organisational / People-centred: flows and processes how humans get what they need out of the systems

Capabilities Required:

Role	Scope	Initial	Future
		Capacity	Capacity
Enterprise Architect	Define systems, data flows, and non-	0.5	-
	functionals		
Solution Architect	Define technical solutions including	0.5	-
(Technical)	integration points		

Timescales: Initial = 1.5 months

PR1.2: Productionise A National Data Platform

The current state of play has led to data from projects being stored on a variety of dedicated, customised platforms. This makes it particularly difficult and time consuming to bring together a national view of status and progress towards the goal.

It is proposed that a central platform is created and made available to all projects and developers. This platform needs to be looked after by an independent, unbiased entity.

The architecture and development of that platform needs to be guided by the needs of the users – i.e. the developers, the operational projects, and those advising strategic delivery of the overall programme. A central, independent, unbiased entity should be charged with guiding the evolution of that platform.

Reference: For further detail on the data platform, please refer to the supporting "Predator Free 2050: Delivering A Central Data Platform" provided alongside this report.

Note: Centralised projects of this type carry the risk of being hampered by complex requirements leading to long timelines. To reduce this risk, it is proposed that iterative, incremental processes are utilised to deliver working versions of the solution regularly and allow regular decision points along the way, removing the need for a big up-front architecture and design phase.

PR1.3: Stand up a Knowledge Base Hub

A central Knowledge Base Hub (KBH) needs to be architected and stood up ready to receive and share assets such as solution blueprints, proven use cases, good practice guides, data insight capabilities etc.

A number of steps are required to deliver this:

- Define architecture of platform, including hosting solutions, access endpoints, and management processes
- 2. Define data flows and curation processes (how does something make it onto the Knowledge Hub?)
- 3. Gather, analyse and publish content
- 4. Maintain and evolve the KB and its content in perpetuity

Note: Centralised projects of this type carry the risk of being hampered by complex requirements leading to long timelines. To reduce this risk, it is proposed that iterative, incremental processes are utilised to deliver working versions of the solution

regularly and allow regular decision points along the way, removing the need for a big up-front architecture and design phase.

Capabilities Required:

Role	Scope	Initial	Future
		Capacity	Capacity
Solution Architect	Define technical solution	0.2	-
(Technical)			
Business Analyst	Define requirements	0.2	-
Development	If required, build out of platform	TBC	-

Timescales: Initial = 1 month

PR1.3: Stand up a Knowledge Base Hub

A central Knowledge Base Hub (KBH) needs to be architected and stood up ready to receive and share assets such as solution blueprints, proven use cases, good practice guides, data insight capabilities etc.

A number of steps are required to deliver this:

- 1. Define architecture of platform, including hosting solutions, access endpoints, and management processes
- 2. Define data flows and curation processes (how does something make it onto the Knowledge Hub?)
- 3. Gather, analyse and publish content
- 4. Maintain and evolve the KB and its content in perpetuity

Note: Centralised projects of this type carry the risk of being hampered by complex requirements leading to long timelines. To reduce this risk, it is proposed that iterative, incremental processes are utilised to deliver working versions of the solution regularly and allow regular decision points along the way, removing the need for a big up-front architecture and design phase.

Capabilities Required:

Role Scope		Initial	Future
		Capacity	Capacity
Solution Architect	Define technical solution	0.2	-
(Technical)			
Business Analyst	Define requirements	0.2	-
Development	If required, build out of platform	TBC	-

Timescales: Initial = 1 month

PR1.4. Feature Matrix (Current State)

Populate the matrix of features supported across all currently available devices. A first version of this matrix has been completed. Beyond June 2025, this should be maintained by the CCET.

Reference: The current version of the matrix is provided alongside this report – see the Feature Matrix.pdf file.

PR1.5. Future Feature Matrix (Future State)

Where features are identified as missing but desirable (using the Feature Matrix above), populate a matrix with opportunities to add features, integrate devices, make devices interoperable, or otherwise enable future solutions.

Capabilities Required:

Role	Scope	Initial	Future
		Capacity	Capacity
Technical consultant	Define matrix, outline potential	0.2	-
	solutions		

Timescales: Initial = 2 months, Future = hand over to CCET for evolution

PR3.1: Initiate / Identify Proof of Solution Initiatives

The Solution Blueprints proposed herein need to be brought together with input from developers and operational projects. The Blueprints need to be enhanced with proven use cases that show how the solutions work in practice.

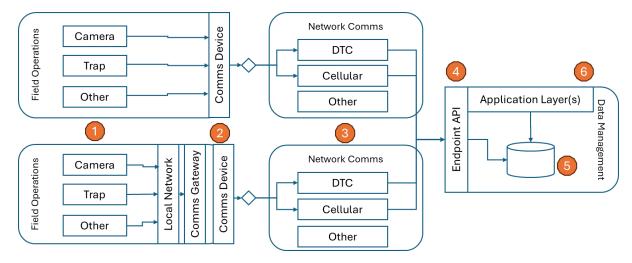
To achieve this, one or more Proof of Solution projects need to be identified, tracked, and reported on.

Each Initiative needs to have defined:

- A specified end-to-end technical solution supported by every developer / provider that has a role in the solution
- 2. A fully costed delivery plan, including total cost of ownership of all the elements of the solution
- 3. A defined set of measurable operational outcomes

Reference: A list of potential interoperability initiatives is provided alongside this report – see the Remote Comms Initiatives.xlsx file

Note: It seems likely that a number of these initiatives may already be in progress (e.g. one or more of the embedded R&D efforts). It may be very cost-effective to select such projects, but each must be reviewed to ensure the items above are defined, understood, and achievable.


PR 3.2: Identify a Pilot End to End Integration Initiative

It is proposed a specific pilot initiative is identified and shaped to deliver accelerated proof of at least one solution to prove operation of the end to end system, including showcasing a level of technical interoperability and utilising unproven remote comms.

The following example is purely for illustrative purposes and relates to the OneNZ direct to cell initiatives.

This initiative should include as a minimum:

- 1. In field sensor/actuator devices from at least one product developer (e.g. NZAutoTraps, Critter Solutions, 2040, etc.)
- 2. In field comms from at least one comms product developer (e.g. Celium, LoraWAN, FlexiComms etc.)
- 3. A remote communications provider (e.g. OneNZ/SpaceX, Spark satellite-to-mobile etc.)
- 4. One or more defined data endpoints
- 5. At least one data reporting / analysis tool
- 6. An operational project with the capacity to oversee the in-field devices

The Critical Success Factors of these projects include:

Factor	Rationale	Target / Measure
Data	Data contributes to national data set.	All messages comply to
standardisation	Seamless integration with pre-defined APIs.	defined data standards
	Seamless usage of data for	
	visualisations and insights.	
	Assists with E2E automation.	
Protocol	Enables plug-and-play	All comms uses pre-
Uniformity	communications between compliant devices.	defined protocol(s)
	Allows control of scalability (volume	
	tolerance) and flexibility (usage	
	tolerance).	
	Pre-defined error and noise behaviour.	
Future Proofing	Tolerance to change the overall	All integration points
	environment.	defined in software /
		firmware

Capabilities Required:

Role	Scope	Initial	Future
		Capacity	Capacity
Technical Project	Oversee delivery of all deliverables	0.4	0.2
Manager			
Solution Architect	Define solutions, define technical	0.4	0.2
(Technical)	responsibilities		
Data Analyst	Shape visualisations, manage	0	0.2
	analytics and reporting		

Timescales: Initial = 3 months, Future = 6-12 months (TBC)

Conclusions

The top priority for the next phase must be to ensure that a well understood, well defined technical environment is put in place.

The next developer to come into this space must not be left to make up their own answers to everything again – that doesn't help the collective build a cohesive solution. In the process of compiling this report we have engaged across multiple developers and have noted a willingness and desire to find ways to solve the problems identified herein. It seems feasible that, with some additional guidance and encouragement, developers would indeed be willing to influence their development roadmaps to deliver a much more collaborative execution environment.

The next operational project to start must be able to rely on well defined, proven, costed, and deliverable solutions with well-defined and supported operational processes to enable them. Every project we have engaged with through this process has expressed a desire to have access to such a set of knowledge.

In an environment where funding remains a challenge, it is critical we ensure every dollar is spent as efficiently as possible.

Appendices

Proposal Summary

ID	Category	Proposal	Description
PR1.1	E2E	Define the End-to- End System	Define the architecture for an end-to-end data management process providing a proposed solution for each of the elements in the flow.
PR1.2	Application	Stand Up A National Data Platform	It is proposed that a central platform is created and made available to all projects and developers
PR1.3	Knowledge	Build the Knowledge Base	The central Knowledge Base (KB) needs to be architected and stood up ready to receive and share assets such as solution blueprints, proven use cases, good practice guides, data insight capabilities etc.
PR1.4	Knowledge	Product Overview Matrices	At-a-glance overview of products, which features they provide, and what other products they can operate with
PR2.1	Organisatio n	Centralise the common elements	To remove duplication of effort (and spend), it is proposed that a Central Enablement & Capabilities Team (for brevity, referred to as CECT from here on) is put in place to support end to end operations. To support projects (and developers) in delivering solutions. Also to own centralised data management, reporting, and insights
PR2.2	Operational	Costing Model	Define Total Cost of Ownership model for e2e solutions - purchase, implementation, integration, maintenance, data
PR3.1	Pilot	Initiate / Identify Proof of Solution Initiatives	The Solution Blueprints proposed herein need to be brought together with input from developers and operational projects. The Blueprints need to be enhanced with proven use cases that show how the solutions work in practice.
PR3.2	Pilot	Identify a Pilot E2E Integration Initiative	It is proposed a specific initiative is defined to prove at least one solution to prove technical interoperability and remote comms.
PR2.3	Organisatio n	Developer Forum	To create and maintain a view of the technical ecosystem and promote interoperability
PR2.4	Organisatio n	Al Forum	To provide a clear way forward for the use of Al across the collective
PR4	Knowledge	Product Sheets	Produce a sheet per product in scope to capture product overview, capabilities, and features
PR5	Knowledge	Knowledge Base	A base for all information and insight relevant to PF2050 - invited content but curated by central team
PR6	Knowledge	Centre of Knowledge Team	Team to gather, analyse, collate, publish and manage all knowledge

ID	Category	Proposal	Description
PR7	E2E	Solution Blueprints	End to end solutions, bringing together products from multiple developers - solutions to known problems
PR8	E2E	Use Cases: Proofs of Solution	Documented test cases for solution blueprints - capturing benefits and gaps
PR9	Comms	Interoperability Opportunities	List of prioritised interoperability opportunities that will bring value to developers and programmes
PR10	Comms	Comms Protocol Standards	Standards for how comms solutions can interoperate (talk to each other in the field)
PR11	Data	Data Standards	Defined minimum set of data all devices should report
PR12	Application	Application Layer Interoperability	Approach for data sharing across application layers
PR13	Application	Application Layer Centralisation	Central data storage, management, and application layer to collate data
PR14	Application	Application Layer Visualisations	Centralised service for providing insight
PR15	Comms	API Endpoint(s)	Centralisation and/or standardisation of API endpoints
PR16	Organisatio n	Pilot projects to establish Proofs of Solutions	One or more projects to prove out solutions
PR17	E2E	Automation of data process	Blueprint for Field > Remote Comms > Application Layer > Visualisation > Insights

Problem Statement Summary

ID	Problem Statement	Description	Priorit y
PS1	Lack of Knowledge about product capabilities	Projects have to engage with developers directly to spend time to understand the capabilities of the product	P2
PS2	Difficult to gauge suitability of product	Projects have to gauge the suitability of a product, often without the [technical] skillsets to do so	P2
PS3	Difficult to compare devices to each other	Projects have to work out the differences between product offerings	P2
PS4	No Central Repository for Products	No central place for projects to gather product information	P2
PS5	Lack of documented E2E Solutions	No documented e2e, multi-product solutions	P2
PS6	Lack of documented proven solutions	No documented examples of proven e2e, multi- product solutions	P2
PS7	Lack of interoperation in the field	No solutions for devices to inter-operate in the field	P1
PS8	Lack of interoperation standards	No documented or agreed standards for interoperation protocols	P1

ID	Problem Statement	Description	Priorit y
PS9	Lack of data standards	No defined standard for data reported from devices in the field	P2
PS10	Only manual Application Layer Interoperability	Only Manual approaches for data sharing across application layers (ETL)	P2
PS11	No Common Application Layer	Lack of Central data storage, management, and application layer to collate data	P2
PS12	No Common Application Layer Visualisations	No definition or provision of common visualisations to provide insight required by projects	P3
PS13	Very few Common API Endpoint(s)	Each provider is using their own, custom- developed API endpoint to report data from the field	P2
PS14	Learnings from projects not captured	Learnings from project deployments and/or equipment tests are not captured and documented centrally	P3
PS15	No automated E2E reporting of data	No real-time feedback loop from Field > Remote Comms > Application Layer > Visualisation > Insights	P2
PS16	No central technical skills capability	Each project has to learn (or recruit) skills to manage devices, application, data insights and more	P3