Utility of mussel spat ropes for improving passage past culverts – summary to date and future development
General outline

Discuss lab and field based experiments to date using ropes where main aims were to:

• Improve passage through perched culverts for climbing species

• Improve passage where internal barrel velocity creates a barrier - native fish and crustacea

• Pros/cons

• Future application
Culverts and ‘climbing’ species

- Some NZ species have evolved the ability to jump and/or climb as migrating juveniles – steep topography, many waterfalls

- In some situations behaviour can be exploited to improve passage up into and through perched culverts
Improving passage through perched culverts

Laboratory trial 1 (2008)
Test species: Galfas (c. 45-55mm)
Perch height: 0.5m
Pipe length=0.5m
Results summary Lab trial 1

• 0.5m perch height no problem for Gal fas with ropes
• Mean success >85% (n=4 reps, n= 30 fish/3 hr trial)
• Two rope types tested Super Xmas tree/Russet loop
• No sig diff between rope types
• Recommend super xmas (less debris)

Field trial 1

Control v Treatment (BACT design)

Pre (n= 3) vs Post (n=3)
Perch Height= 2.4m
Pipe length =13m

Location: Coromandel coastal 2nd order bush streams

Species targeted:
Gobhut, Angaus, Angdie, Galfas
Results summary Field trial 1

• Angaus/die – inconclusive (v low numbers in both C & T streams)

• Gobhut – unsuccessful relative to control site 2.4 m rope climb beyond capability for this species - investigate alternative option (propose flexi ramp)

• Galfas – significant increase relative to control – within this species’ capability on this medium over this height at this locality – juves only

Field trial 2 - underway

Can ropes improve eel recruitment to lake Harihari

Previous extensive netting survey suggested limited to zero eel recruitment in lake Harihari

Ropes installed to culvert in April 2009

Culvert diam: 500mm
Culvert length: 18m
Perch height: 1.9m

Repeat previous sampling effort by Chisnall & Ruru. 2008 when limited-no recruitment evident – Sampling to occur this year
Improving passage through non-perched culverts varying in length, flow and slope

- Laboratory trial 1 – Pilot test
- Test species: Gobhut (24-73mm)
- Pipe length=3m/6m
- Pipe gradient 10 deg
- Water Velocity 1l/s
- NB Some fish re-used/water temp effects
Results summary Lab trial 1

Notwithstanding some methodological issues (temp/learning?):

No Gobhut passage in 3m or 6m when culvert set at 10 deg without ropes

But average 52% success when ropes provided

Dead pockets created by ropes and Gobhut able to sit stationary on culvert base along length

Improving passage through culverts varying in length, flow and slope

Laboratory experiment 1

Test species: Galmac, Saltru, (c. 45-115mm), Paratya shrimp

Pipe length=3m/6m

Pipe gradient 1.5/3 deg

Water velocity 0.24/0.75l/s
Results summary Lab trial 2

- Saltru – ropes improve passage success generally but esp in long (6m) high slope (3 deg) pipes

- Galmac – weaker than saltru so benefits of ropes evident even in 3m pipes when at higher slope (3deg)
Results summary Lab trial 2

• Paratya shrimp – weaker again no passage in any combo tested unless ropes present

Inanga 6m pipe group attack – no rope

Clip 31
Inanga 6m pipe – rope assist
Trout – 3m pipe exploiting ‘pockets’
Paratya shrimp swim/climb perspex
Future

• Test add-ons to ropes for larger culverts and possibly use rope as supporting structure for end of pipe solutions

• Assess long term durability and efficacy of ropes through time
Acknowledgements

• Mark Hamer, Kevin Collier, Ross Jones, Callum Bourke, Steve Scothern, Mike Lake - Waikato Regional Council.

• Jonathan Tonkin, Kris Taipeti, Hayden Hokianga

• Department of Conservation