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6 Development of a New Zealand Seafloor Community Classification (SCC) 

Executive summary 
Marine habitats and ecosystems are under increasing pressure from human activities including 

sedimentation, eutrophication, fishing, mineral extraction, waste disposal, and dredging. Well-

designed networks of marine protected areas (MPAs) can be highly effective tools for conserving 

biodiversity and associated ecosystem functions and services. In New Zealand, ongoing work to 

improve scientific inputs to be considered in decision-making associated with the establishment of 

MPAs is supported by a MPA research programme funded via the Department of Conservation’s 

(DOC’s) Biodiversity 2018 Programme. DOC commissioned the development of a fit-for-purpose, 

numerical classification of the marine environment, to support ongoing MPA planning and reporting 

at a national scale and complement work to develop Key Ecological Areas mapping for New Zealand. 

Working with experts and members of the Marine Protected Areas Science Advisory Group (MSAG) 

at a workshop held on the 9th August 2019 it was agreed that Gradient Forest (GF) models would be 

used to produce a numerical classification of the seafloor environment and communities within the 

New Zealand Territorial Sea and Exclusive Economic Zone (jointly referred to as the New Zealand 

marine environment). Occurrence records for four biotic groups, demersal fish (317 species at 28,599 

unique sample locations), benthic invertebrates (958 genera at 33,187 unique locations), macroalgae 

(349 species at 3,320 unique locations) and reef fish (92 species at 339 unique locations), were used 

to inform the transformation of 33 gridded environmental variables to represent spatial patterns of 

taxa compositional turnover. Environmental variables were available at two resolutions: 250 m grid 

resolution from the coastline to the edge of the Territorial Sea (12 NM from shore) and a 1 km grid 

resolution from the edge of the Territorial Sea to the edge of the Exclusive Economic Zone. 

Predicted spatial patterns of compositional turnover for taxa in each of the four biotic groups were 

then combined to represent overall compositional turnover in seafloor communities, with the 

combined predictors classified using a hierarchical procedure to define groups at different levels of 

classification detail, (i.e., 30, 50, 75 and 100 groups). Associated uncertainty estimates of 

compositional turnover for each of the seafloor communities were also produced, and an added 

measure of uncertainty – coverage of the environmental space – was developed to further highlight 

geographic areas where predictions may be less certain due to low sampling. A 75-group 

classification – termed the New Zealand ‘Seafloor Community Classification’ (SCC) – was described. 

As would be expected, the geographic and environmental patterns of the SCC closely reflect the 

patterns of compositional turnover on which the SCC was based. At broad scales, SCC groups were 

differentiated primarily according to oceanographic conditions such as depth and bottom 

temperature. Environmental differences among groups in deep water were relatively muted, but 

greater environmental differences were evident among groups at intermediate depths, particularly 

with respect to bottom temperature, bottom oxygen concentration and bottom salinity. These more 

pronounced environmental differences among groups at intermediate depths were aligned with 

well-defined oceanographic patterns observed in New Zealand’s oceans, with a clear latitudinal 

separation along the boundaries of the Subtropical Front. Environmental differences became even 

more pronounced at shallow depths, where variation in more localised environmental conditions 

such as productivity, seafloor topography, seabed disturbance and tidal currents were important 

differentiating factors. Environmental similarities in SCC groups were mirrored by their biological 

compositions. A more detailed description of individual groups is provided in an associated 

publication.  



 

 

The SCC is a significant advance on previous numerical classifications in New Zealand (the New 

Zealand Marine Environment Classification (MEC) and the Benthic Optimised Marine Environment 

Classification (BOMEC)), at least in part due to large amount of biological and environmental data 

used. The SCC is critically appraised and considerations for use in spatial management are discussed.  
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1 Introduction 

1.1 Background 

Marine habitats and ecosystems are under increasing pressure from human activities including 

sedimentation, eutrophication, fishing, mineral extraction, waste disposal, and dredging (Halpern et 

al. 2008). These anthropogenic impacts threaten biodiversity, which in turn can affect ecosystem 

functioning and services, resulting in a need for management and conservation of the marine 

environment (Ramirez-Llodra et al. 2011). Well-designed networks of marine protected areas (MPAs) 

can be highly effective tools for conserving biodiversity and associated ecosystem functions and 

services (Halpern et al. 2010; Edgar et al. 2014; Rowden et al. 2018). 

In New Zealand, ongoing work to improve scientific inputs to decision-making associated with 

implementing marine protection is supported by a dedicated MPA research programme via DOC’s 

Biodiversity 2018 Programme. This programme is guided by a Marine Protected Areas Science 

Advisory Group (MSAG). The MSAG includes representatives from the Department of Conservation 

(DOC), Ministry for the Environment (MfE) and Fisheries New Zealand (FNZ).  

DOC recently commissioned a review of the marine habitat classification systems currently available 

in New Zealand, and relevant overseas examples (Rowden et al. 2018). The recommendation from 

Rowden et al. (2018) was that a numerical classification and / or a thematic classification should be 

developed for the coastal and marine habitats of New Zealand. Numerical classifications are 

generally bottom-up statistical grouping of multiple (usually) continuous variables (Rowden et al. 

2018), whereas thematic classifications are generally top-down sub-divisions of individual 

information layers (Rowden et al. 2018). The MSAG agreed that a fit-for-purpose numerical 

classification would be advantageous for ongoing marine protection planning and reporting at a 

national scale, as well as providing essential support for delivering on goals to develop a 

representative network of marine protected areas and complement work to develop Key Ecological 

Areas mapping for New Zealand (Stephenson et al. 2018b; Lundquist et al. 2020b). 

A workshop convened on August 9th, 2019, attended by members of the MSAG and NIWA 

researchers, discussed which numerical classification methods could be used, the availability of 

environmental and biological datasets, possible methods for including estimates of model 

uncertainty, and considered the number of classes suitable for MPA planning. Following this 

workshop, it was decided that Gradient Forest models would be used to produce the numerical 

classification that would be ‘tuned’ using biological records of demersal fish, benthic invertebrates, 

rocky reef fish and macroalgae. 

1.2 Gradient Forest environmental classifications 
In marine protected area planning, there is interest in how species and communities respond to 
environmental gradients, and in identifying the environmental variables that best predict patterns of 
biodiversity. Random forest models allow assessment of the importance of predictor variables for 
individual species and to indicate where along gradients abundance changes (RF; Breiman 2001).  
Gradient Forest models (GF; Pitcher et al. 2011) extend random forest models to whole assemblages, 
by aggregating Random Forest models. Information from GF models is used to inform the selection, 
weighting and transformation of environmental layers to maximise their correlation with species 
compositional turnover and establish where along the range of gradients important compositional 
changes occur (Ellis et al. 2012). These transformed environmental layers (representing species 
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compositional turnover) can then be classified to define spatial groups that capture variation in 
species composition and turnover.  
 
A GF-trained classification was recently used to describe spatial patterns of demersal fish species 
turnover in New Zealand using an extensive demersal fish dataset (>27,000 research trawls) and 
high-resolution environmental data layers (1 km2 grid resolution) (Stephenson et al. 2018a). Using a 
large set of independent data for evaluation, this 30-group classification was found to be highly 
effective at summarising spatial variation in both the composition of demersal fish assemblages and 
species turnover (Stephenson et al. 2018a).  
 

Such classifications have several key features that make them particularly useful for resource 

management and conservation planning. Firstly, they can be created at various hierarchical levels of 

group-detail (e.g., 30 groups as presented in Stephenson et al. (2018a), to 500+), a feature that 

makes them particularly useful when they need to be applied at differing spatial scales (national to 

regional to local) (Stephenson et al. 2020c). Secondly, because the classification is based on GF 

models of species turnover functions across environmental gradients, it can accurately reflect non-

linear environmental differences in species composition, e.g., across depth gradients. Together, 

these two attributes mean that a single classification can reflect the dynamic environments in 

inshore areas with a greater number of classes compared to fewer classes in the more homogenous 

offshore areas. Thus, this approach to classification obviates the need for separate classifications of 

coastal and marine classifications. Finally, such classifications also contain information on (predicted) 

biological inter-group similarities, allowing greater priority to be given during conservation planning 

to classification groups that occupy unusual environments and are therefore likely to support 

unusual species assemblages.  

One challenge with these classifications is the communication of a statistically complex product in a 

way that facilitates their use by management agencies and others involved in marine protection 

planning (Rowden et al. 2018; Stephenson et al. 2020c). This challenge can be overcome, at least in 

part, through the provision of maps and descriptions of the habitats and biotic assemblages 

associated with each classification group. A detailed description for a 30-group classification was 

produced by Stephenson et al. (2020c), which aimed to bridge the gap between the typical output 

from numerical classifications and the readily understandable habitat and assemblage descriptions 

that result from thematic classifications (see Rowden et al. 2018 for discussion on the stregnths and 

weaknesses of different classifications globally and in New Zealand). The descriptions of Stephenson 

et al. (2020c) included geographic locations, environmental characteristics, and species’ assemblages 

in a hierarchy based on the dominant environmental variables identified in the analysis (e.g., depth, 

tidal current, productivity). Class descriptions may facilitate the use of environmental classifications 

by both managers and stakeholders because they summarize complex multi-species data to a more 

manageable number of groups which are more user friendly for participatory process and 

ecosystem-based management. 

Stephenson et al. (2020c) recommended extending the 30-group demersal fish classification to 

include other taxonomic and ecological groups (e.g., macroalgae and benthic invertebrates), and thus 

more broadly represent benthic communities associated with coastal and marine habitats. 

1.3 Aims and objectives 

The aim of this project was to develop a numerical environmental classification and associated 

spatially explicit estimates of uncertainty, using a broad suite of taxonomic and ecological groups 
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(demersal fish, benthic invertebrates, macroalgae and reef fish), extending from the coastal marine 

area (inclusive of estuaries where data existed) to the full extent of the EEZ. This involved: 

• Working with experts and members of the MSAG to detail the planned approach (Objective 1). 

This workshop, which took place on 9th August 2019, reached broad agreement on: a list of all 

relevant environmental and biological datasets; the use of Gradient Forest modelling; the need 

to develop estimates of spatial uncertainty; and several options for the number of classes and 

spatial resolution of outputs which would be suitable for MPA planning. 

• Collating all relevant biological and environmental datasets (Objective 2). 

• Developing a Gradient Forest environmental classification and spatially explicit estimates of 

uncertainty extending from the coastal marine area (inclusive of estuaries) to the full extent of 

the EEZ (Objective 3). 

• Providing a concise and comprehensive report (Objective 4) detailing all environmental and 

biological datasets, methodology used and overview of the final environmental classification. 

• Providing a detailed environmental and biological (community) description of the classification 

for dissemination both within and outside marine management agencies (Objective 5), e.g., as in 

Stephenson et al. (2020c). This final objective is provided as a separate report (Petersen et al. 

2020). 
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2 Biological and environmental datasets (objective 2) 

2.1 Study area 
The study area extended over 4.2 million km2 of the South Pacific Ocean within the New Zealand 
Territorial Sea (TS) and Exclusive Economic Zone (EEZ) herein referred to as the New Zealand marine 
environment (≈25 – 57°S; 162°E – 172°W; Figure 2-1). 

 

Figure 2-1: Map of the study region. New Zealand Exclusive Economic Zone (EEZ, black dashed line), 
Territorial Sea (TS, solid black line), water depth and feature names used throughout the text are displayed. 
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2.2 Biological samples 

Occurrence records for demersal fish, benthic invertebrates (from coastal/offshore waters and 

separately from estuaries and harbours), macroalgae and reef fish were collated from various 

sources (Table 2-1). All records were groomed: records located on land, outside the New Zealand EEZ 

and/or duplicated within and between databases were removed. Taxonomy was standardised across 

datasets and years to the most recent nomenclature (metadata for biological data are provided in 

Supplementary materials 1).  

Records for each of the groups were separately aggregated to unique locations of different spatial 

resolutions (see further information in sections 2.2.1 – 2.2.5). Taxa with ≥ 10 unique sample locations 

were retained for the analysis (e.g., as in Stephenson et al. 2018a) because this ensured that there 

were sufficient samples to run GF models. All available records were used, regardless of the year 

and/or season in which they were collected, to maximise the number of species and samples 

available for GF modelling. Following quality control and spatial aggregation, a total of 630,997 

records across biotic groups occurring at 39,766 unique locations were retained for final analysis. 

However these were unequally distributed among taxa (Table 2-1) and across the study region 

(distribution of samples in Supplementary materials 2: Figure 7-1; Figure 7-2; Figure 7-3; Figure 7-4).  

Table 2-1: Summary of information for collated taxa records (after grooming).  

Biotic group Source Sampling years 
Spatial 

aggregation 

Number of 
taxa (>10 

occurrences) 

Number of 
unique 

locations 

Demersal fish trawl database (FNZ-NIWA) 1979 – 2016 1 km 317 28,599 

Benthic invertebrates 
(coastal and offshore) 

NIWA invert database 

Te Papa 

Auckland Museum 

trawl database (FNZ-NIWA) 

1896 – 2019 

1966 - 2015 

1905 - 2018 

1979 - 2016 

1 km 

1 km 

1 km 

1 km 

954 

66 

218 

132 

27,274 

Macroalgae NIWA (2019); Te Papa (2012); 
Auckland Museum (2019); Duffy 
(1979 – 2007) and Shears & 
Babcock (1999 – 2002) 

1850 - 2018 250 m 349 3320 

Reef fish DOC dataset 1986 - 2004 250 m 92 339 

Benthic invertebrates 
(Estuarine, intertidal) 

OTOT: National Estuary Dataset 2001 – 2017 
NA (see 

section 2.2.5) 
188 

NA (see 
section 2.2.5) 

2.2.1 Demersal fish 

Demersal fish species occurrence and abundance records (n = 391,198) (including information on 
research cruise identifier, gear type, date, min and max depth of trawl, and lat/lon) from 1979 – 2016 
were extracted from the research trawl database ‘trawl’ (NIWA 2014, 2018). These data were 
groomed to only keep those records identified to species level. Species records were spatially 
aggregated (based on presence/absence information) to a 1 km grid resolution (e.g., as in 
Stephenson et al. 2018a). Species with ≥ 10 unique sample locations at this resolution were retained 
for the analysis (e.g., as in Stephenson et al. 2018a). The final demersal fish dataset included 
observations for 317 species at 28,599 unique sample locations (Supplementary materials 2: Figure 
7-1).  
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2.2.2 Benthic invertebrates (coastal and offshore) 

Benthic invertebrate species occurrence records (n = 127,330) (including lat/lon, species name, 
collection date, and sampling gear used) from 1896 – 2019 were extracted from trawl (n = 56,841), 
NIWA’s Invertebrate Collection database ‘NIWA invert’ (n = 59,144), and databases at Te Papa (n = 
2943), and Auckland Museum (n = 8402). These databases also included records for demersal 
cephalopod species but for simplicity we refer to them as ‘benthic invertebrates’. In contrast to the 
trawl data, which reliably record both species presence and absence of demersal fish, trawl records 
do not provide a reliable indication of where benthic invertebrate species do not occur. One way to 
overcome this lack of true absence data for the modelling is to use a random selection of points from 
the analysis area, treating these as ‘pseudo-absences’. Alternatively, as was undertaken here, the 
individual RF species models (generated for GF models) can be constructed using the locations at 
which other species not being modelled were present to provide an indication of the ‘relative 
absence’, also sometimes referred to as ‘target-group background data’ (Phillips et al. 2009). Better 
results can generally be achieved using relative absences compared to randomly selected pseudo-
absences, particularly when the relative absences are drawn from other species records forming part 
of the same broad biological group and have been collected using similar methods with the same 
sampling biases (Phillips et al. 2009).  
Given that the benthic samples were collected using a variety of sampling methods (208 different 
gear types), the benthic invertebrate records were grouped into gear categories to reflect 
‘catchability’. Many of these gear types were name variants of commonly used sampling gear types, 
but for most records, the specific sampling parameters (e.g., mesh size, tow length, etc) were not 
recorded. In order to account for both the large number of gear types recorded and the differences 
in sampling parameters, gear types were grouped into catchability categories. Catchability was 
assumed to be influenced by gear size, deployment area and selectivity (Table 2-2) (Stephenson et al. 
2018b). 

Table 2-2: Categories used to reflect catchability of sampling gear types. Table modified from (Stephenson 
et al. 2018b). 

Type Category Description Example  

Gear size 

Small < 1m 
Devonport dredge, box 

corer 

Medium 1-3m Benthic sled 

Large > 3m Otter trawls 

Deployment area 

Small < 1m Box corer 

Medium 1m – 1km  Beam trawls 

Large > 1 km Otter trawls 

Selectivity 

HS Highly selective Collected by hand 

G General Benthic sled 

 

  



 

14 Development of a New Zealand Seafloor Community Classification (SCC) 

Sampling gear types were assigned codes for each of the three catchability types and combined to 

yield ‘catchability’ groups (Table 2-3). Out of 18 possible ‘catchability’ groups, six ‘catchability’ groups 

occurred in the available invertebrate samples (Table 2-3): 

• LLG: Large gear types, deployed over large areas, which were not selective (e.g., otter trawls); 

• LMG: Large gear types, deployed over medium-sized areas, which were not selective (e.g., beam 

trawls);  

• MMG: Medium sized gear types, sampling medium sized areas, which were not selective (e.g., 

benthic sled);  

• SMG: Small gear types, sampling medium sized areas, which were not selective (e.g., Devonport 

dredge);  

• SMHS: Small gear types, sampling medium sized areas, which were highly selective (e.g., 

collected by hand, bottom longline); 

• SSG: Small gear types, sampling small areas, which were not selective (e.g., box corer). 

Records of LLG and LMG were combined as these catchability groups represent commercial fishing 

practices with similar catches of invertebrates likely to be more demersal in nature (i.e., squids). All 

records collected from highly selective gear types (e.g., SMHS) were excluded from the analysis, 

because methods classified within this group were considered too variable to provide reliable 

records of absence (20,010 records were excluded across 412 genera and 2,097 unique locations, 

including 190 genera unique to selective methods). Varying degrees of overlap occurred between 

genera captured by the different gear type classes in the records retained for analysis - LLG.LMG = 34 

% unique genera not shared with other gear types 66% overlap, MMG = 37% unique genera, SMG = 

47% unique genera, SSG = 21% unique genera (see Table 2-3 for number of unique genera per gear 

type). 

Benthic invertebrate records were groomed to keep only those records identified to genus and 

species level and within the New Zealand EEZ. These records were aggregated to genus level, 

resulting in 127,330 records across 958 genera. Genus records were then spatially aggregated (to 

presence - relative absence) at 1 km grid resolution (Supplementary materials 2: Figure 7-2). Records 

were aggregated to genus level because this provided a greater number of unique locations than 

when records based on species level were aggregated (33,187 vs 28,263 respectively). In addition, at 

genus level, benthic invertebrate records were more inclusive across all benthic invertebrate taxa 

than records at species level. 
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Table 2-3: Gear type codes used to reflect catchability, number of benthic invertebrate genera > 10 
occurrence, number of unique genera > 10 occurrence and number of unique sample locations (see text and 
Table 2-2 for Gear type code explanations).  

Gear type Number of genera > 10 
occurrence 

Number of unique 
genera > 10 occurrence 

Number of unique 
locations 

LLG.LMG 453 152 23,793 

MMG 566 210 1375 

SMG 444 208 1883 

SSG 43 9 364 

All gear types combined  958 958 27,274 

 SMHS (excluded) 412 190 20,010 

2.2.3 Macroalgae 

Macroalgae occurrence records were sourced from herbarium records, opportunistic data and 

observational datasets. Herbarium records were extracted from databases held at Te Papa 

Tongarewa - Museum of New Zealand, Auckland Museum, and NIWA. Opportunistic data were 

sourced from citizen science observations of large brown algae collected using iNaturalist (iNaturalist 

2019) and verified by photographs as part of an FNZ funded project (ZBD201406). Observational data 

were extracted from dive logs collected by Clinton Duffy (DOC) that recorded large brown seaweed 

around New Zealand between 1979 and 2007. A second observational dataset was collected by 

Shears and Babcock (2007) as part of a research programme on subtidal communities around New 

Zealand.  

For all datasets, only records that had been identified to species level were used. Occurrence data 

were initially restricted to those between 70 m depth and 10 m elevation (including some records on 

land) using a New Zealand bathymetry (and elevation) data layer. Records apparently occurring on 

land were associated with the closest available marine environmental data. The small number of 

records that were obtained from depths between 70 and 200 m depth were checked by macroalgal 

experts (W. Nelson and K. Neill) and included in the dataset only if they were considered valid. 

Macroalgal presence/absence records were aggregated to 250 m grid resolution. Species with ≥ 10 

unique sample locations at this resolution were retained for the analysis. Similarly to the benthic 

invertebrate records, ‘target-group background data’ were used as absences. The final macroalgae 

dataset consisted of 349 species at 3,320 unique locations (Supplementary materials 2: Figure 7-3).  

2.2.4 Reef fish 

The relative abundance of reef fishes were obtained from 467 SCUBA dives made around the coast of 
New Zealand over an 18-year period from November 1986 to December 2004 (for detailed 
methodology see Smith et al. (2013)). These data had previously been groomed and all records were 
identified to species level. Records were aggregated (to presence/absence) spatially to a 250 m grid 
resolution. Species with ≥ 10 occurrences were retained for the analysis. The final rocky reef fish 
dataset included observations of 92 species at 339 unique locations (Supplementary materials 2: 
Figure 7-4). 
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2.2.5 Benthic invertebrates (Estuarine, Intertidal) 

The abundance of benthic invertebrates collected from estuaries was retrieved from the National 

Estuary Dataset (Berthelsen et al. 2020) which was compiled as part of the MBIE-funded Oranga 

Taiao, Oranga Tangata (OTOT) programme. The dataset is comprised of primarily regional council and 

unitary authority monitoring data collected from throughout New Zealand. The raw dataset includes 

data from 70 estuaries, 421 sites and 8305 sampling events collected and analysed by a range of 

organisations. On average, there were 5.8 sample sites per estuary across 14 councils. All datapoints 

were collected from the intertidal. Between 3 and 15 replicates were collected at each sampling 

location, with the maximum sampled area at each location ranging between 1,800 m2 and 10,800 m2. 

Samples were collected over the period from 2001 to 2017, with variation in the months over which 

sampling was conducted.  

This dataset represents some of the best estuarine data available in New Zealand, comprising 

consistently collected, paired biological and environmental samples. However, sample data were 

generally collected to investigate change through time rather than to facilitate spatial mapping of 

environmental and biological patterns. Environmental predictor information for areas outside of 

sampled locations was very limited and for most estuaries, lacked the resolution required for 

description of within-estuary variation in environmental and biological character. Therefore, it was 

not possible to include the estuarine benthic invertebrate data with data from other biotic groups. 

We provide a separate analysis using this dataset to investigate broad patterns in estuarine 

bioregionalization. Further details on the methods and results are presented in Supplementary 

Materials 3 – Estuarine benthic invertebrates. 

2.3 Environmental variables 

New Zealand’s marine environments were described using 33 gridded environmental variables, 

collated at two resolutions (Table 2-4): a 250 m resolution grid from the coastline to the edge of the 

Territorial Sea (12 NM from shore), and a 1 km resolution grid from the edge of the Territorial Sea to 

the edge of the Exclusive Economic Zone (Figure 2-1). Some environmental variable layers were 

produced at a native resolution of 250 m, e.g., Bathymetry, whereas others required interpolation, 

e.g., Bottom nitrate (interpolation methods and further information on the environmental layers are 

available as metadata: Env_pred_metadata – for further information see Supplementary materials 

1). Spatial layers were projected using an Albers Equal Area projection centred at 175°E and 40°S 

(EPSG:9191) now accepted by DOC and Fisheries New Zealand (FNZ) as the standard projection for 

use with spatial data covering New Zealand’s EEZ (Wood et al. in prep). 

Environmental variables were selected based on their known influence on growth, survival and 

distribution of benthic and demersal taxa, and therefore their likely influence on species 

composition, richness and turnover (e.g., see Leathwick et al. 2006; Compton et al. 2013; Smith et al. 

2013; Anderson et al. 2016; Rowden et al. 2017; Stephenson et al. 2018a; Georgian et al. 2019). 

Several environmental variables showed some co-linearity within records for biotic groups but all 

levels of co-linearity were considered acceptable (Pearson correlation < 0.9) for tree-based machine 

learning methods (Elith et al. 2010; Dormann et al. 2013) and more specifically GF modelling (Ellis et 

al. 2012). 

The final environmental variables used for GF modelling were selected through a model tuning 

process which aimed to maximise model fit (see section 3.1). Twenty environmental variables were 

selected for GF modelling for all biotic groups (grey rows, Table 2-4). In most cases, the inclusion of 

many variables is avoided because they generally only provide minimal improvement in predictive 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/Environmental%20data/env_pred_metadata.xlsx
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accuracy and complicate interpretation of model outcomes (Leathwick et al. 2006). However, here, 

the interpretation of model outcomes (i.e., the drivers of distribution) was of secondary interest, the 

primary focus being on maximising the predictive accuracy of the model. Values for environmental 

variables were derived for each taxon record location by overlay onto the environmental predictor 

layers using the “raster” package in R (Hijmans & van Etten 2012). For demersal fish and benthic 

invertebrate records this was undertaken using 1 km grid resolution environmental variables 

(including in areas where information was available at a 250 m grid resolution in order to match the 

spatial scale at which these were sampled), whereas environmental values for reef fish and 

macroalgae records were extracted from the 250 m grid resolution environmental variables.  
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Table 2-4: Spatial environmental predictor variables used for the Gradient Forest analyses. Environmental variables are ordered alphabetically. Environmental variables used 
in the final GF models are highlighted in grey.  

Abbreviation Full name 
Temporal 

range 
Description 

Native 
Resolution 

Units Source 

Bathy Bathymetry Static 
Depth at the seafloor was interpolated from contours generated from 
various sources, including multi-beam and single-beam echo sounders, 
satellite gravimetric inversion, and others (Mitchell et al., 2012). 

250 m m Mitchell et al. (2012) 

Beddist 
Benthic 
sediment 
disturbance  

1/7/2017-
30/6/2018 

One-year mean value of friction velocity derived from (1) hourly 
estimates of surface wave statistics (significant wave height, peak wave 
period) from outputs of the NZWAVE_NZLAM wave forecast, at 8-km 
resolution, (2) median grain size (d50), at 250 m resolution, (3) water 
depth, at 25-m resolution. Benthic sediment disturbance from wave 
action was assumed to be zero where depth ≥ 200m. 

250 m ms-1 
Swart (1974); updated in 
2019 

BotNi Bottom nitrate Static 

Annual average water nitrate concentration at the seafloor (using NZ 
bathymetry layer) based on methods from Dunn et al. 2002. The 
oceanographic data used to generate these climatological maps were 
computed by objective analysis of all scientifically quality-controlled 
historical data from the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) Atlas of Regional Seas database 
(CARS2009, 2009). 

approx. 41 
km (1/2 
degree) 

umol l-1 NIWA, unpublished 

BotOxy 
Dissolved oxygen 
at depth 

Static 
Annual average water oxygen concentration at the seafloor (using NZ 
bathymetry layer) based on methods from Dunn et al. 2002. 
Oceanographic data from CARS2009 (2009). 

Approx. 41 
km (1/2 
degree) 

ml l-1 NIWA, unpublished 

BotOxySat 
Oxygen 
saturation at 
depth 

Static Annual average oxygen saturation at the depths. 
Approx. 41 
km (1/2 
degree) 

umol l-1 NIWA, unpublished 

BotPhos 
Bottom 
phosphate 

Static 
Annual average water phosphate concentration at the seafloor (using 
NZ bathymetry layer) based on methods from Dunn et al. 2002. 
Oceanographic data from CARS2009 (2009). 

Approx. 41 
km (1/2 
degree) 

umol l-1 NIWA, unpublished 

BotSal Salinity at depth Static 
Annual average water salinity concentration at the seafloor (using NZ 
bathymetry layer) based on methods from Dunn et al. 2002. 
Oceanographic data from CARS2009 (2009). 

Approx. 41 
km (1/2 
degree) 

psu NIWA, unpublished 
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Abbreviation Full name 
Temporal 

range 
Description 

Native 
Resolution 

Units Source 

BotSil Bottom silicate Static 
Annual average water silicate concentration at the seafloor (using NZ 
bathymetry layer) based on methods from Dunn et al. 2002. 
Oceanographic data from CARS2009 (2009). 

Approx. 41 
km (1/2 
degree) 

 umol l-1 NIWA, unpublished  

BotTemp 
Temperature at 
depth 

Static 
Annual average water temperature at the seafloor (using NZ bathymetry 
layer) based on methods from (Ridgway et al. 2002). Oceanographic 
data from (CARS2009 2009). 

Approx. 41 
km (1/2 
degree) 

°C km-1 NIWA, unpublished 

BPI_broad BPI_broad Static 

Terrain metrics were calculated using an inner annulus of 12 km and a 
radius of 62 km using the NIWA bathymetry layer in the Benthic Terrain 
Modeler in ArcGIS 10.3.1.1 (Wright et al. 2012). Bathymetric Position 
Index (BPI) is a measure of where a referenced location is relative to the 
locations surrounding it. 

250 m  m NIWA, unpublished 

BPI_fine BPI_fine Static 

Terrain metrics were calculated using an inner annulus of 2 km and a 
radius of 12 km using the NIWA bathymetry layer in the Benthic Terrain 
Modeler in ArcGIS 10.3.1.1 (Wright et al. 2012). Bathymetric Position 
Index (BPI) is a measure of where a referenced location is relative to the 
locations surrounding it. 

250 m  m NIWA, unpublished 

carbonate 
Percent 
carbonate 

Static 

The percent carbonate layers for the region were developed from 
>30,000 raw sediment sample data compiled in dbseabed, which were 
then imported into ArcGIS and interpolated using Inverse Distance 
Weighting (Bostock et al. 2019). 

1 km % Bostock et al. (2019) 

Chl-a 
Chlorophyll-a 
concentration 

July 2002 – 
March 2019 

A proxy for the biomass of phytoplankton present in the surface ocean 
(to ~30 m depth). Blended from a coastal Chl-a estimate (quasi-analytic 
algorithm (QAA), local aph*(555)) and the default open-ocean chl-a value 
from MODIS-Aqua (v2018.0). 

4 km (ocean) 
500 m 
(coastal) 

mg m-3 

NIWA unpublished, updated 
in 2020; Based on 
processing described in 
Pinkerton et al. (2016) and 
updated in Pinkerton et al. 
(2019). QAA algorithm 
detailed in (Lee et al. 2002; 
Lee et al. 2009) 

Chl-a.Grad 
Chlorophyll-a 
concentration 
spatial gradient 

July 2002 – 
March 2019 

Smoothed magnitude of the spatial gradient of annual mean Chl-a. 
Derived from Chl-a described above. 

500 m Mg m-3 km-1 

NIWA unpublished, updated 
in 2020; Based on 
processing described in 
(Pinkerton et al. 2018) 
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Abbreviation Full name 
Temporal 

range 
Description 

Native 
Resolution 

Units Source 

DET 
Detrital 
absorption 

July 2002 – 
March 2019 

Total detrital absorption coefficient at 443 nm, including due to 
coloured dissolved organic matter (CDOM) and particulate detrital 
absorption. Estimated using quasi-analytic algorithm (QAA) applied to 
MODIS-Aqua data, blended with adg_443_giop ocean product (Werdell, 
2019). 

4 km (ocean) 
500 m 
(coastal) 

m-1 

NIWA unpublished, updated 
in 2020; Based on 
processing described in 
(Pinkerton et al. 2018). 
Processing for 
adg_443_giop ocean 
product described in 
(Werdell 2019). 

DynOc  
Dynamic 
oceanography 

1993-1999 

Mean of the 1993-1999 period sea surface above geoid, corrected from 
geophysical effects taken for the NZ region. This broadly corresponds to 
mean surface velocity recorded from drifters in the NZ region (Hadfield 
pers comm). 

250 m m NIWA, unpublished 

Ebed 
Seabed incident 
irradiance 

 July 2002 – 
March 2019 

Broadband (400–700 nm) incident irradiance (E m-2 d-1) at the seabed, 
averaged over a whole year. Estimated by combining incident irradiance 
at the sea surface ((Frouin et al. 2012); this table), diffuse downwelling 
irradiance attenuation (KPAR; this table) and bathymetric depth at 
monthly resolution. Derived from blended coastal (QAA) and open-
ocean attenuation products. 

4 km (ocean); 
500 m 
(coastal) 

E m-2 d-1 

NIWA unpublished, updated 
in 2020, based on 
processing described in 
Pinkerton et al. (2018) 

POCFlux 

Downward 
vertical flux of 
particulate 
organic matter at 
the seabed  

 July 2002 – 
March 2019 

Net primary production in the surface mixed layer estimated as the 
VGPM model ((Behrenfeld & Falkowski 1997); this table). Export fraction 
and flux attenuation factor with depth estimated by refitting sediment 
trap and thorium-based measurements to environmental data (VGPM, 
SST) as Lutz et al. (2002), Pinkerton et al. (2016) and using data from 
Cael et al. (2017). 

9 km mgC m-2 d-1 

NIWA unpublished, updated 
in 2020. Based on 
processing described in 
Pinkerton et al. (2016) with 
new data from Cael et al. 
(2018). 

Gravel Percent gravel Static 

The percent gravel layers for the region were developed from >30,000 
raw sediment sample data compiled in dbseabed, which were then 
imported into ArcGIS and interpolated using Inverse Distance Weighting 
(Bostock et al., 2019). 

1 km % Bostock et al., 2019 

Kpar 
Diffuse 
downwelling 
attenuation 

July 2002 – 
March 2019 

vertical attenuation of diffuse, downwelling broadband irradiance 
(Photosynthetically Available Radiation, PAR, 400–700 nm). Merged 
coastal and open-ocean product based on MODIS-Aqua data. Coastal: 
estimated from inherent optical properties (QAA). Ocean: estimated 
from K490 using (Morel et al. 2007). 

4 km (ocean) 
500 m 
(coastal) 

 m-1 

NIWA unpublished, updated 
in 2020; Based on 
processing described in 
Pinkerton et al. (2018) 
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Abbreviation Full name 
Temporal 

range 
Description 

Native 
Resolution 

Units Source 

MLD 
Mixed layer 
depth 

July 2002 – 
March 2019 

The depth that separates the homogenized mixed water above from the 
denser stratified water below. Based on GLBu0.08 hindcast results using 
a potential density difference of 0.030 kg m-3 from the surface. Models 
used are: (1) hycom: from day 265 (2008) to present; (2) fnmoc: from 
day 169 (2005) to present; (3) soda: from day 249 (1997) to end of 2004; 
(4) tops: from day 001 (2005) to 225 (2010). 

9 km m 

NIWA unpublished, updated 
in 2020; (Chassignet et al. 
2007; Wallcraft et al. 2009; 
Metzger et al. 2010); Data: 
orca.science.oregonstate.ed
u 

Mud Percent mud Static 

The percent mud layers for the region were developed from >30,000 
raw sediment sample data compiled in dbseabed, which were then 
imported into ArcGIS and interpolated using Inverse Distance Weighting 
(Bostock et al., 2019). 

1 km  % Bostock et al., 2019 

OxyUt  
Apparent oxygen 
utilization 

 
The difference between the measured dissolved oxygen concentration 
and its equilibrium saturation concentration in water with the same 
physical and chemical properties. 

Approx. 41 
km (1/2 
degree) 

umol l-1 NIWA, unpublished 

PAR 
Photo-
synthetically 
active radiation 

 July 2002 – 
March 2019 

Daily-integrated, broadband, incident irradiance at the sea-surface 
based on day length, solar elevation and measurements of cloud cover 
from ocean colour satellites (Frouin et al. 2012). 

4 km E m-2 d-1 
NIWA unpublished, updated 
in 2020; Frouin et al. (2012) 

PB555nm 

Particulate 
backscatter at 
555 nm 
(previously used 
to generate 
'turbidity') 

 July 2002 – 
March 2019 

Optical particulate backscatter at 555 nm estimated using blended 
coastal and ocean products. Coastal: QAA v5 product bbp555 from 
MODIS-Aqua data. Ocean: bbp_555_giop ocean product (Werdell 2019). 
Result calculated as long-term (2002–2017) average. 

4 km (ocean) 
500 m 
(coastal) 

m-1 

NIWA unpublished, updated 
in 2020; Based on 
processing described in 
Pinkerton et al. (2018). 
Processing for 
bbp_555_giop ocean 
product described in 
Werdell (2019). 

Reef Rocky reefs Static 
Locations of subtidal rocky reefs inferred from navigational charts 
(Smith et al., 2013). Polygon data converted to raster grids based on > 
50% of polygon in cell. 

polygon data  
Presence / 
absence of reef 

DOC 

Rough Roughness Static 

Roughness of the seafloor calculated as the as the variation in three-
dimensional orientation of grid cells within a neighborhood. Vector 
analysis is used to calculate the dispersion of vectors normal 
(orthogonal) to grid cells within the specified neighbourhood. 

250 m  m 
NIWA, unpublished data, 
updated in 2019 
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Abbreviation Full name 
Temporal 

range 
Description 

Native 
Resolution 

Units Source 

sand sand Static 

The percent sand layers for the region were developed from >30,000 
raw sediment sample data compiled in dbseabed, which were then 
imported into ArcGIS and interpolated using Inverse Distance Weighting 
(Bostock et al., 2019). 

1 km % Bostock et al., 2019 

SeasTDiff 

Annual 
amplitude of sea 
floor 
temperature 

Static 
Smoothed difference in seafloor temperature between the three 
warmest and coldest months. Providing a measure of temperature 
amplitude through the year. 

250 m °C km-1 
NIWA, unpublished data, 
updated in 2018 

Sed.class 
Sediment 
classification 

Static 

Classification of Mud, Sand and Gravel layers (this table) using the well-
established (Folk et al. 1970) classification. Subtidal rocky reefs (this 
table) were incorporated. This classification provides a broad measure 
of hardness Mud – Rock.  

1 km 

NA;  

Mud;  

Muddy gravel; 
Muddy sandy 
gravel;  

sand;  

Gravely mud; 

Gravelly sandy 
mud; 

Gravelly sand; 

Gravel; 

Rock 

NIWA unpublished, updated 
in 2020 

Slope Slope Static 
Bathymetric slope was calculated from water depth and is the degree 
change from one depth value to the next. 

250m ° 
NIWA, unpublished, 
updated in 2019 

SST 
Sea surface 
temperature 

1981-2018 
(ocean) 
2002-2018 
(coastal) 

Blended from OI-SST (Reynolds et al., 2002) ocean product and MODIS-
Aqua SST coastal product. Long-term (2002–2017) average values at 250 
m resolution. 

0.25° (ocean) 
1 km 
(coastal) 

°C 

NIWA unpublished, updated 
in 2020; Coastal based on 
processing described in 
Pinkerton et al. (2018). 
Ocean: (Reynolds et al. 
2002) 
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Abbreviation Full name 
Temporal 

range 
Description 

Native 
Resolution 

Units Source 

SSTGrad 
Sea surface 
temperature 
gradient 

1981-2018 
(ocean) 
2002-2018 
(coastal) 

Smoothed magnitude of the spatial gradient of annual mean SST. This 
indicates locations in which frontal mixing of different water bodies is 
occurring (Leathwick et al. 2006).Derived from SST described above at 
two resolutions and merged. 

0.25° (ocean) 
1 km 
(coastal) 

 °C km-1 
NIWA unpublished, updated 
in 2020 

SuspPM 
Suspended 
particulate 
matter 

 

Indicative of total suspended particulate matter concentration. Based 
on SeaWiFS ocean colour remote sensing data (Pinkerton & Richardson 
2005); modified Case 2 atmospheric correction (Lavender et al. 2005); 
modified Case 2 inherent optical property algorithm (Pinkerton et al. 
2006). 

4 km 

Indicative of total 
suspended 
particulate 
matter 
concentration (g 
m-3) 

NIWA unpublished, updated 
in 2020; Pinkerton (2016) 

TC 
Tidal Current 
speed 

2009 - 

Maximum depth-averaged (NZ bathymetry) flows from tidal currents 
calculated from a tidal model for New Zealand waters (Walters et al. 
2001). Tidal constituents (magnitude A and phase phi, represented as 
real and imaginary parts X + iY = A*exp(i*phi)) for sea surface height and 
currents (8 components) were taken from the EEZ tidal model, on an 
unstructured mesh at variable spatial resolution. The complex 
components were bilinearly interpolated to the output grid. 

250 m ms-1 
Walters et al., 2001; NIWA 
unpublished, updated in 
2020 

TempRes 
Temperature 
residuals 

1/7/2017-
30/6/2018 

Residuals from a GLM relating temperature to depth using natural 
splines – this highlights areas where average temperature is higher or 
lower than would be expected for any given depth. 

250 m °C Leathwick et al. (2006) 

VGPM 

Net primary 
production by 
the vertically-
generalised 
production 
model 

 July 2002 – 
March 2019 

Daily production of organic matter by the growth of phytoplankton in 
the surface mixed layer, net of phytoplankton respiration. Estimated at 
monthly resolution based on satellite observations of chl-a, PAR and 
SST, and model-derived estimates of mixed-layer depth, using the 
vertically-generalised production model (Behrenfeld & Falkowski, 1997). 

9 km mgC m-2 d-1 

Behrenfeld & Falkowski 
(1997); 

NIWA unpublished, updated 
in 2020 
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3 Development of a Gradient Forest environmental classification 
(Objective 3)  

GF models were used to analyse and predict spatial patterns of compositional turnover for species in 

each of four biotic groups: demersal fish, reef fish, benthic invertebrates, and macroalgae, following 

analytical methods described in Ellis et al. (2012); Pitcher et al. (2012). These four turnover models 

were then combined to derive estimates of compositional turnover along each of the environmental 

gradients. Associated uncertainty estimates were also produced. Finally, the combined compositional 

turnover was hierarchically classified to a 30-, 50-, 75-, and 100-group level (i.e., inferred community 

groups) across the New Zealand TS and EEZ (Figure 3-1). Here we describe in detail the 75-group 

classification, which we refer to as the ‘New Zealand Seafloor Community Classification’ (SCC).  All 

modelling was undertaken in R (R Core Team 2020). Metadata for all data used in the models, R 

code, and output files are provided in Supplementary Materials 1. 

3.1 Methods 

3.1.1 Estimating compositional turnover 

For each biotic group (demersal fish, macroalgae and reef fish) and for the different benthic 

invertebrate sampling gear types (LLG.LMG, MMG, SMG and SSG) GF models were fitted using the 

‘extendedForest’, (Liaw & Wiener 2002) and ‘gradientForest’ (Ellis et al. 2012) R packages (Figure 3-

1). GF models were fitted with 500 trees and default settings for the correlation threshold used in the 

conditional importance calculation of environmental variables. For each of the 7 GF models, we 

extracted information on the predictive power of the individual RF models (R2
f for each taxon 

measured as the proportion of out-of-bag variance explained) (Ellis et al. 2012) and the importance 

of each environmental variable (R2 assessed by quantifying the degradation in performance when 

each environmental variable was randomly permuted1 (Pitcher et al. 2012). The environmental 

variables used in each GF model were selected to maximise the number of taxa effectively modelled 

(i.e., taxa with R2
f > 0) and increase model fits for the most poorly modelled taxa (i.e., taxa with low 

R2
f).  

GF aggregates the values of the tree-splits from the RF models for all taxon models with positive fits 

(R2
f > 0) to develop empirical distributions that represent taxa compositional turnover along each 

environmental gradient (Ellis et al. 2012; Pitcher et al. 2012). The turnover function is measured in 

dimensionless R2 units, where taxa with highly predictive random forest models (high R2
f values) have 

greater influence on the turnover functions than those with low predictive power (lower R2
f). The 

shapes of these monotonic turnover curves describe the rate of compositional change along each 

environmental predictor; steep parts of the curve indicate fast assemblage turnover, and flatter parts 

of the curve indicate more homogenous regions (Ellis et al. 2012; Pitcher et al. 2012; Compton et al. 

2013).  

The use of the dimensionless R2 to quantify compositional turnover enables information from 

multiple taxa to be combined, even if that information comes from different sampling devices, 

surveys or regions (Ellis et al. 2012). In the first instance, the compositional turnover functions from 

each of the benthic invertebrate gear type GF models were combined using the 

‘combinedGradientForest()’ function to provide a combined benthic invertebrate GF model (herein 

 
1 Note that R2 described by Pitcher et al., 2012 and Ellis et al., 2011 refers to a unitless measure of cumulative importance and should not 
be confused with the more commonly used R-squared (R2) denoting coefficient of determination. 
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referred to simply as Benthic invertebrate GF model). In the second instance, a final ‘combined’ GF 

model was created using the ‘combinedGradientForest()’ function across all biotic groups (demersal 

fish, reef fish, benthic invertebrates, and macroalgae) (Figure 3-1). Broadly, this method of combining 

GF models accounts for the number of taxa, the number of samples, and the taxa R2
f along the 

gradient of each environmental variable from individual GF models to provide a cumulative estimate 

of compositional turnover (for further details see, Ellis et al. (2012); Pitcher et al. (2012)). 

The compositional turnover functions from each biotic group and the combined GF models (shapes 

of the turnover curves) were used to transform the gridded environmental layers (both 250m and 1 

km grid resolutions), creating a ‘transformed environmental space’ representing compositional 

turnover. Variation within this transformed environmental space was summarised using principle 

components analysis (PCA) (Pitcher et al. 2011). The colours used in the PCA of each biotic group 

were based on the first three axes of their respective PCA analysis so that similarities/differences in 

colour corresponded broadly to pairwise similarities/differences in the transformed environmental 

space and thus, by inference, describe differences in taxa composition (Stephenson et al. 2018a). 

Predicted taxa compositional turnover for each biotic group was plotted geographically using the 

colour scheme derived from their respective PCA analyses. 

GF models for each taxon and sampling gear type, as well as the cumulative GF models, were 

bootstrapped 100 times (Figure 3-1). That is, 100 combined GF models were fitted (as for the main 

model described above) to separate randomly selected subsets of the full input dataset. For biotic 

groups with ≥ 5000 samples (Table 2-1), a random selection of 5000 samples was selected from the 

full dataset. This number of samples was selected both to ensure reasonable computational time for 

the analysis, and because previous analysis using demersal fish data indicated that this number of 

samples was the lowest number of samples which provided stable (consistent) model outputs 

(Stephenson et al. 2018a). A GF using a larger number of samples of the demersal fish and 

invertebrate samples (20,000 samples each) were qualitatively consistent (respectively) to the mean 

bootstrap results. For biotic groups with < 5000 samples (Table 2-1), 75% of the dataset was 

randomly selected for each bootstrap iteration. The bootstrapping process was repeated 100 times, 

and at each iteration, species compositional turnover functions were used to transform the gridded 

environmental layers (both 250m and 1 km grid resolutions). Mean (± 1 standard deviation of the 

mean) estimates of taxa R2
f and environmental variable importance (R2) were calculated for each GF 

model from the 100 bootstrapped iterations. 

3.1.2 Spatial predictions and estimating model uncertainty 

Spatial estimates of compositional turnover from each GF model (i.e., for each biotic group, sampling 

gear type, and cumulative model), were averaged (mean) and a spatially explicit measure of 

uncertainty (measured as the standard deviation of the mean (SD) compositional turnover averaged 

across each environmental variable) was calculated for each grid cell using the 100 bootstrapped 

transformed environmental layers (Figure 3-1). 

As an added measure of model uncertainty, for each GF model, we estimated ‘coverage of the 

environmental space’ (Smith et al. 2013; Stephenson et al. 2020b) (Figure 3-1). The ‘environmental 

space’ is the multidimensional space produced by considering each of the environmental variables as 

a dimension. Some parts of this environmental space will contain many samples - meaning we can be 

more confident of the relationships and the predictions (Smith et al. 2013) - while other parts will 

contain few samples. Predictions for the less sampled parts of the environmental space are 

considered less reliable, and should be interpreted with greater caution (Smith et al. 2013). 
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We modelled variation in sampling density within the environmental space by combining our 

samples (assigned as ‘present’) with an equal number of randomly sampled values from the 

environmental space (i.e., where we did not have any taxonomic samples – assigned as ‘absences’). A 

Boosted Regression Tree (BRT, (Elith et al. 2006)) model was then used to model the relationship 

between these ‘present’ (true) samples and ‘absent’ (random) samples for the 20 environmental 

variables used in the GF analyses. The ‘Dismo’ package (Hijmans et al. 2017) was used with BRT 

models fitted using a Bernoulli error distribution, a learning rate that yielded 2,000 trees and an 

interaction depth of 2 (so that only pair-wise combinations of the environmental variables were 

considered). Predictions using this model yielded estimates of the probability of a sample occurring 

in each part of the environmental space, these estimates ranging between 0 and 1, where 0 indicated 

very low sampling of the environmental space and 1 a very high level of sampling (Stephenson et al. 

2020b). 
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Figure 3-1: Summary of data inputs, analyses undertaken and key outputs and terminology used.  
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3.1.3 Classification 

The mean spatial estimate of compositional turnover from the combined GF model (i.e., the 

bootstrapped GF model which included samples from all biotic groups and gear types) was classified 

to 30-, 50-, 75- and 100-group levels to represent seafloor communities at various spatial scales 

(Figure 3-1). Classification was undertake in two stages (Leathwick et al. 2011; Stephenson et al. 

2018a) using the R package ‘cluster’ (Maechler et al. 2017). For the first stage, mean spatial 

estimates of compositional turnover were clustered to form 500 initial groups using non-hierarchical, 

k-medoids clustering. Average values for the transformed environmental predictors were then 

computed for each of these initial groups For the second stage, a hierarchical clustering approach – 

flexible UPGMA – using the Manhattan metric, and a value for beta of -0.1 (Belbin et al. 1992) was 

used to define each group from the initial 500. 

Given the hierarchical nature of the GF classification, consideration will be required as to what 

constitutes the most appropriate level of classification detail for conservation planning purposes 

which may vary depending on spatial scale of the application and the required level of information 

needed for management. Using the biological data used in the GF models the discrimination across 

classification levels was assessed for each group (5 – 150 groups in increments of 5, as in (Snelder et 

al. 2007)) using an ANOSIM analysis (Clarke & Warwick 2001). The global R statistic was calculated as 

the difference in ranked biologic similarities arising from all pairs of replicate sites between different 

groups, and the average of all rank similarities within groups, adjusted by the total number of sites. 

Global R is equal to 1 if all replicates within groups are more like each other than any replicates from 

different groups and is approximately 0 if there is no group structure. The significance of the ANOSIM 

statistics were tested with a randomisation procedure based on the null hypothesis of no group 

structure. All ANOSIM analyses were undertaken in R using the ‘Vegan’ package (Oksanen et al. 

2013). A large proportion of groups at any particular classification level had either few biologic sites 

or lacked them altogether. We therefore only undertook analysis on groups with adequate biological 

data (≥ 5 unique occurrences).  

Finally, we describe the 75-group level classification in greater detail. We refer to this classification as 

the New Zealand ‘Seafloor Community Classification’ (NZ SCC). This classification level represented 

the highest number of groups that captured the majority of the variation across the New Zealand 

marine environment, based on examining the ANOSIM global R statistic for each taxa, and which 

contained adequate number of biological records. In section 3.2.2 we describe the 75-group level 

classification in greater detail. Group means for each of the transformed environmental variables 

were calculated and plotted in a PCA and their hierarchical similarities were displayed using a 

dendrogram. Groups were also plotted geographically.  

Following methods developed by Stephenson et al. (2020c), individual group descriptions for the SCC 

are provided in Petersen et al. (2020). Descriptions included: 

• The location of the SCC group within the New Zealand marine environment. 

• Descriptions of a subset of each groups’ environmental characteristics, termed “characterising 

environmental conditions”. In addition, for each SCC group, the mean and range (25 – 75 

quantile) of each environmental variable is available in: Summary_info_SCC (for further 

information see Table 6-3 in Supplementary materials 1).  

• Descriptions of each groups’ biological characteristics were provided by calculating mean 

frequency occurrence of each taxa within groups and investigating the contribution of individual 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Summary_info_SCC.xlsx
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taxa to intra-group similarity (SIMPER analysis using Bray-Curtis similarity, in PRIMER v7.0.13) 

(Stephenson et al. 2020c). Characterising species were defined as those species contributing 

more than 4% to the SIMPER intra-group similarity. In addition, for each SCC group, the mean 

frequency occurrence of all taxa is available in: Mean_Taxa_Occ_SCC (for further information see 

Table 6-3 in Supplementary materials 1). 

• Finally, as a measure of model confidence, for each classification group, the mean, 25% and 75% 

quantile for the uncertainty estimate of compositional turnover (SD of the combined 

bootstrapped GF) and the overall predicted environmental coverage were extracted. In addition, 

for each SCC group, the mean and range (25 – 75 quantile) for both measures of uncertainty by 

biotic group is available in: Summary_info_SCC (for further information see Table 6-3 in 

Supplementary materials 1). 

For further details on methods and qualitative descriptions see Petersen et al. (2020). For reference, 

an example of a group description (Group 30) is provided in Supplementary material 1 – section 6.4. 

3.2 Results 

3.2.1 Compositional turnover and uncertainty 

Models were able to be fitted for most taxa across all biotic groups (i.e., R2
f > 0, Table 3-1). However, 

individual taxon R2
f values varied widely, ranging from 0.19 (macroalgae, Table 3-1) to 0.94 (reef fish, 

Table 3-1). The GF models explained 47-53% of variation in occurrence on average across biotic 

groups (mean taxa R2
f: 0.47 – 0.53, Table 3-1). Mean R2

f (± SD) for individual taxa are presented by 

biotic group in: Sp_R2 ; for further information see Table 6-3 in Supplementary materials 1). 

Table 3-1: Mean (±SD) model fit metrics of individual taxa (R2
f) from bootstrapped GF models. The 

number of taxa retained in biotic group datasets is provided in brackets in the group headings. 

Model fit metric 
Demersal fish 

(317 taxa) 

Benthic 
invertebrates 

(958 taxa) 

Macroalgae (349 
taxa) 

Reef fish (92 
taxa) 

Mean taxa 
effectively 
modelled (± SD) 

313.76 (±1.57) 955.20 (±3.36) 335.99 (±0.11) 91.99 (±0.11) 

Min Taxa R2
f (± SD) 0.36 (±0.04) 0.26 (±0.05) 0.19 (±0.08) 0.25 (±0.04) 

Mean Taxa R2
f (± 

SD) 
0.52 (< 0.01) 0.48 (< 0.01) 0.47 (< 0.01) 0.53 (±0.01) 

Max Taxa R2
f (± 

SD) 
0.91 (±0.01) 0.84 (±0.05) 0.61 (±0.04) 0.94 (±0.04) 

 

Although all environmental variables contributed to predicting compositional turnover for all models 

(positive R2, Table 3-2), their relative importance (in terms of mean cumulative importance) varied 

across biotic groups (Table 3-2). The most consistently important variables in the biotic group GF 

models were dissolved oxygen at depth (BotOxy) and bottom salinity (BotSal) (Table 3-2). Tidal 

current speed (TC) was important in GF models of demersal fish, benthic invertebrates and the 

combined GF model. Many of the environmental variables had moderate cumulative importance 

across all biotic groups and in the combined GF model, e.g., dissolved oxygen at depth (BotOxy), 

seabed incident irradiance (Ebed), downward vertical flux of POC at the seabed (POCFlux) (R2: 0.0015 

– 0.004, Table 3-2). 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Mean_Taxa_Occ_SCC.xlsx
file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Summary_info_SCC.xlsx
file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Sp_R2.xlsx
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Table 3-2: Mean (±SD) cumulative importance (R2) of environmental variables for bootstrapped GF 
models of each biotic group and for the ‘combined’ bootstrapped GF model. The four environmental 
predictors with the highest cumulative importance for each biotic group and for the combined GF models are 
highlighted in black. 

Environmental 
variable 

Demersal fish Macroalgae Reef fish 
Benthic 

invertebrates 
Combined 

Bathy 0.0037 (±0.0001) 0.0009 (±0) 0.0019 (±0.0002) 0.0227 (±0.001) 0.0289 (±0.0012) 

Beddist 0.0012 (±0.0001) 0.0013 (±0.0001) 0.0031 (±0.0003) 0.0267 (±0.0013) 0.0174 (±0.001) 

BotOxy 0.0039 (±0.0001) 0.0024 (±0.0001) 0.0068 (±0.0004) 0.0408 (±0.0013) 0.0478 (±0.0011) 

BotNi 0.0027 (±0.0001) 0.0018 (±0.0001) 0.0033 (±0.0002) 0.0176 (±0.0006) 0.0253 (±0.0006) 

BotPhos 0.0026 (±0) 0.0013 (±0) 0.0036 (±0.0003) 0.0171 (±0.0008) 0.0257 (±0.0009) 

BotSal 0.0038 (±0.0001) 0.0022 (±0.0001) 0.0073 (±0.0004) 0.0378 (±0.0023) 0.0437 (±0.0024) 

BotSil 0.0023 (±0) 0.0034 (±0.0001) 0.0044 (±0.0004) 0.0197 (±0.0008) 0.045 (±0.0013) 

BotTemp 0.0036 (±0.0001) 0.0013 (±0) 0.0062 (±0.0004) 0.022 (±0.0006) 0.0314 (±0.0013) 

BPI_broad 0.0018 (±0.0002) 0.0021 (±0.0001) 0.005 (±0.0003) 0.0421 (±0.0025) 0.0443 (±0.0025) 

BPI_fine 0.0009 (±0.0001) 0.0019 (±0.0001) 0.0038 (±0.0007) 0.0323 (±0.0017) 0.0345 (±0.0016) 

Chl-a.Grad 0.0013 (±0.0005) 0.0013 (±0.0002) 0.0027 (±0.0002) 0.0237 (±0.003) 0.0212 (±0.003) 

DET 0.0031 (±0.0001) 0.0021 (±0.0001) 0.0043 (±0.0004) 0.0308 (±0.0022) 0.0368 (±0.0017) 

PB555nm 0.0022 (±0.0001) 0.0017 (±0) 0.0048 (±0.0004) 0.0284 (±0.0025) 0.0289 (±0.0017) 

SeasTDiff 0.0013 (±0) 0.002 (±0.0001) 0.0042 (±0.0003) 0.0226 (±0.0008) 0.023 (±0.0006) 

Slope 0.0022 (±0.0001) 0.0007 (±0) 0.0014 (±0.0002) 0.0233 (±0.0029) 0.0221 (±0.0025) 

SSTGrad 0.0031 (±0.0003) 0.0024 (±0.0001) 0.0046 (±0.0006) 0.0311 (±0.0051) 0.034 (±0.0032) 

Sed.class 0.0007 (±0) 0.0003 (±0) 0.0003 (±0.0001) 0.0084 (±0.0004) 0.008 (±0.0004) 

TC 0.004 (±0.0001) 0.0015 (±0.0001) 0.0041 (±0.0004) 0.0476 (±0.0027) 0.0468 (±0.0025) 

POCFlux 0.0023 (±0) 0.0019 (±0.0001) 0.0053 (±0.0004) 0.0299 (±0.0016) 0.0304 (±0.0012) 

Ebed 0.0011 (±0.0004) 0.0018 (±0.0001) 0.0027 (±0.0003) 0.0306 (±0.0025) 0.0239 (±0.0013) 

 

The predicted cumulative changes in compositional turnover along each environmental variable from 

biotic group GF models (blue, yellow, orange and green lines, Figure 3-2) and the combined GF model 

(black line, Figure 3-2) indicate both the overall influence of each environmental variable (final height 

of the curve) and the rate of change. Steep parts of the curve indicate fast compositional turnover, 

and flatter parts of the curve indicate more homogenous regions (Ellis et al., 2012; Pitcher et al., 

2012). There were differences both in overall influence of environment variables and rate of change 

between biotic groups, most likely reflecting differences in environmental preferences (or proxies 

thereof) and sampling of the different taxa (Figure 3-2). For example, compositional turnover of reef 

fish and macroalgal taxa increased rapidly along the gradient of bottom silicate concentrations 

(BotSil) from 0 – 5 umol l-1 with no turnover past these values (Figure 3-2), whereas compositional 

turnover of benthic invertebrates and demersal fish taxa was slower but occurred across a larger 

gradient (0 – 110 umol l-1, plateauing past this point, Figure 3-2). Compositional turnover of the 

combined GF model incorporates both of these trends along the gradient of bottom silicate 

concentrations (Figure 3-2 and Figure 3-3). Cumulative changes and associated uncertainty in 

composition turnover along each environmental variable from individual biotic group GF models are 
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available in Supplementary Materials 4 – Compositional turnover for individual biotic groups (Figure 

9-1, Figure 9-4, Figure 9-7, Figure 9-10). 

Overall, the variability in mean predicted cumulative changes in compositional turnover (measured 

as the SD of the mean) from the combined GF model was relatively low (Figure 3-3). However, there 

were some more pronounced differences both along individual environmental gradients and 

between different environmental variables (Figure 3-3). For example, the SD of mean compositional 

turnover between slope values of 0 - 15° was low but increased with increasing slope values (Figure 

3-3), most likely reflecting the lower numbers of samples from sites with steep slopes. Among two of 

the most influential predictors, the SD of mean compositional turnover along the gradient of 

dissolved oxygen at depth (BotOxy) was much lower than the SD of mean compositional turnover in 

relation to sea surface temperature gradient (SSTGrad) (Figure 3-3). 

There were strong similarities in spatial patterns in compositional turnover between biotic groups 

(Supplementary Materials 4 – Compositional turnover for individual biotic groups: Figure 9-2, Figure 

9-5, Figure 9-8, Figure 9-11) and the combined GF models (Figure 3-4); reflecting broadscale patterns 

in environmental variables linked to well-defined oceanographic patterns observed in New Zealand’s 

waters. Briefly, compositional turnover was minimal in deeper water (< 2000 m), although with 

progression to shallower waters (1000 – 2000m) there appeared to be differences in taxa occurring 

in in the northwest of the study area compared to all other deep water areas (Figure 3-4). With 

progression to intermediate depths (70 – 1000 m), there was a clear latitudinal separation along the 

boundaries of the Subtropical Front (STF), a highly productive zone of mixing between high salinity, 

nutrient poor, warm, northern waters, and low salinity, nutrient rich, cold, southern waters 

(Bradford-Grieve et al. 2006; Leathwick et al. 2006; Leathwick et al. 2012; Stephenson et al. 2018a) 

(Figure 3-4). In shallower water (0 – 70 m), patterns in compositional turnover were more closely 

associated both with latitude and with more localised environmental conditions which varied 

between biotic groups (Supplementary Materials 4 – Compositional turnover for individual biotic 

groups: Figure 9-2, Figure 9-5, Figure 9-8, Figure 9-11). For the combined GF model, these more 

localised environmental variables were particulate backscatter at 555 nm (PB555nm, a measure of 

water clarity), tidal currents (TC) and seafloor topography at different scales (BPI_broad and 

BPI_fine) (Figure 3-4, Table 3-2). 

There were clear spatial differences in the uncertainty estimate (SD) of compositional turnover 

between biotic groups (Supplementary Materials 4 – Compositional turnover for individual biotic 

groups: Figure 9-3, Figure 9-6, Figure 9-9, Figure 9-12). However, the SD for all GF models was low 

compared to the mean compositional turnover, i.e., the uncertainty in the compositional turnover 

was low even for the most variable areas. The SD of mean compositional turnover for the combined 

GF model was highest close to shore in areas of high compositional turnover, for example, in Cook 

Strait and the Marlborough Sounds (Figure 3-5, A). Much of the continental shelf (areas shallower 

than 200 m) and the Chatham Rise displayed moderate to high variability in mean compositional 

turnover (Figure 3-5, A). Deep water areas displayed the lowest variability in mean compositional 

turnover, in part reflecting compositional homogeneity associated with these abyssal waters, but 

also likely reflecting, at least in part, the relative lack of sampling in these areas as environmental 

coverage was low for most areas deeper than 2000 m (Figure 3-5, A and B). Environmental coverage 

was high in areas close to shore and along the Chatham Rise (Figure 3-5, B) and moderate for parts of 

the Challenger and Campbell Plateaus (Figure 3-5, B). 
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Figure 3-2: Mean functions fitted by bootstrapped GF models of demersal fish (blue), benthic 
invertebrates combined across gear types (yellow), reef fish (orange), macroalgae (green) samples and 
combined estimates (black) (R2). Fitted functions indicate relative compositional turnover along the range of 
each predictor. 
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Figure 3-3: Mean (± SD) functions fitted by bootstrapped combined GF models of samples from all biotic 
groups (R2). Fitted functions indicate relative compositional turnover along the range of each predictor. 
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Figure 3-4: Mean predicted compositional turnover in geographic and PCA space derived from ‘combined’ bootstrapped Gradient Forest model fitted using 
samples from all biotic groups. Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour correspond broadly to 
similarities/differences in predicted compositional turnover. Compositional turnover in PCA space, with vectors indicating correlations with the 6 most important 
environmental predictors (A); Geographic distributions of compositional turnover across  the New Zealand marine environment (dashed line)(B); Geographic distribution 
of compositional turnover at finer scales, centred on Cook Strait (C). 
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Figure 3-5: Spatially explicit measures of uncertainty for compositional turnover from the ‘combined’ bootstrapped Gradient Forest model fitted using samples 
from all biotic groups Uncertainty estimate (SD) of compositional turnover modelled using bootstrapped Gradient Forest model fitted with demersal fish, benthic 
invertebrate, macroalgae and reef fish samples (A). Predicted environmental coverage depicting the confidence that can be placed in the predictions, ranging from low 
(i.e., no samples in the dataset with those environmental conditions) to high (i.e., many samples with those environmental conditions) within the New Zealand EEZ (B). 
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3.2.2 Community classification 

Assessment of classification strength 

There was adequate benthic invertebrate and demersal fish unique occurrences for more than 70% 

of all groups (up to 150 groups, Table 5), however, for the more coastally restricted taxa from the 

macroalgae and reef fish biotic groups, there were fewer groups with adequate occurrences (Table 

3-3). All the global ANOSIM R values were significant at the 1% level. The global R values generally 

increased for all data sets as the classification detail was increased, indicating that finer levels of 

classification detail defined more biologically distinctive environments (Table 3-3). The ANOSIM R 

values were higher for demersal and reef fish biotic groups than for the benthic invertebrates and 

the macroalgae. However, the classification strength became more gradual for all biotic groups, once 

the number of classification groups exceeded 55 – 75 groups (Table 3-3). Furthermore, pairwise 

differences between groups (with adequate sample number) declined with increasing classification 

detail (Table 3-3). 

Table 3-3: Results of the pair-wise ANOSIM analysis for the four biological datasets at varying levels of 
classification detail.  

 

Classification detail 
(number of groups) 

Proportion of groups ≥ 5 
unique occurrences 

Proportion of significant 
inter-class differences  

Mean significant 
ANOSIM R-statistic 

Demersal  5 1.00 1.00 0.57 

Fish 25 0.84 1.00 0.65  
50 0.82 1.00 0.70  
75 0.76 0.99 0.72  
100 0.73 1.00 0.73  
125 0.74 0.99 0.73  
150 0.73 0.99 0.74 

Benthic  5 1.00 1.00 0.22 

Invertebrates 25 0.92 0.94 0.21  
50 0.96 0.93 0.23  
75 0.91 0.93 0.25  
100 0.91 0.93 0.27  
125 0.90 0.92 0.26  
150 0.87 0.92 0.26 

Reef Fish 5 0.60 1.00 0.20  
25 0.40 0.98 0.32  
50 0.32 0.92 0.41  
75 0.24 0.92 0.41  
100 0.23 0.91 0.49  
125 0.18 0.94 0.49  
150 0.15 0.92 0.49 

Macroalgae 5 0.80 1.00 0.01  
25 0.72 0.91 0.03  
50 0.66 0.81 0.04 
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Classification detail 
(number of groups) 

Proportion of groups ≥ 5 
unique occurrences 

Proportion of significant 
inter-class differences  

Mean significant 
ANOSIM R-statistic 

 
75 0.55 0.84 0.05  
100 0.50 0.84 0.04  
125 0.44 0.80 0.04  
150 0.45 0.71 0.04 

 

The New Zealand Seafloor Community Classification 

The 75-groups defined in the Seafloor Community Classification (SCC) exhibited clear differences in 

terms of environmental conditions (summarised in Figure 3-6 and Figure 3-7) and in geographic 

distributions (Figure 3-8 and Figure 3-9). The hierarchical nature of the classification provides a 

robust description of inter-group relationships, with a number of readily identifiable clusters of 

related groups (Figure 3-6). Mean environmental conditions, mean model uncertainty estimates and 

the most frequently occurring taxa in each SCC group are provided in Summary_info_SCC and 

Mean_Taxa_Occ_SCC respectively (for further information see Table 6-3 in Supplementary materials 

1). 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Summary_info_SCC.xlsx
file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Mean_Taxa_Occ_SCC.xlsx
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Figure 3-6: Dendrogram describing similarities among the seafloor community classification groups (75 
groups) across the New Zealand marine environment. Groups sharing broad similarities are shown as the 
same colour (groupings assigned visually). 
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Figure 3-7: Principle Component Analysis (PCA) of the seafloor community classification groups (75 
groups) for the New Zealand marine environment. Vectors indicate correlations with the nine most important 
environmental predictors and symbol size indicates the relative spatial area represented by the group. Colours 
are based on the first three axes of the PCA analysis applied to the group means for each of the transformed 
predictor variables, so that similarities/differences in colour correspond broadly to similarities/differences in 
predicted compositional turnover (Figure 3-4). 
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Geographic and environmental patterns of the SCC closely reflect the patterns of the combined 

compositional turnover on which the SCC was based. At broad scales, SCC groups were differentiated 

primarily according to oceanographic conditions such as depth (along PC1 in Figure 3-7) and bottom 

temperature (co-linear with bottom salinity and bottom oxygen, along PC2 in Figure 3-7). 

Environmental differences among SCC groups in deep water (groups 1 – 19, mean depths between 

4156 and 537 m) were relatively muted, but greater environmental differences were evident among 

SCC groups at intermediate depths (group 20 – 48, primarily mean depths between 537 and 52 m), 

particularly with respect to bottom temperature, bottom oxygen concentration and bottom salinity. 

These more pronounced environmental differences among groups at intermediate depths were 

aligned with well-defined oceanographic patterns observed in New Zealand’s oceans, with a clear 

latitudinal separation along the boundaries of the Subtropical Front (STF). Intermediate depth groups 

to the north of the STF included groups 27-35; 41-43 and south of the STF included 20-23; 36-40; 46- 

48. Environmental differences became even more pronounced at shallow depths (groups 49 -75, 

primarily mean depths between 54 and 1 m), where variation in more localised environmental 

conditions such as productivity (POCFlux), seafloor topography (BPI broad and Slope), seabed 

disturbance (BedDist) and tidal currents (TC, Figure 3-7) were important differentiating factors. 

As with previous classifications based on estimates of compositional turnover (e.g., Stephenson et al. 

2020c), environmental differences between SCC groups were mirrored by differences in biological 

composition. SCC groups varied in their characterising taxa with many taxa occurring in several 

groups sharing similar environmental characteristics (e.g., orange roughy (Hoplostethus atlanticus), 

and smooth oreo (Pseudocyttus maculatus) were most frequently observed in deep cold-water 

groups), whereas a large number of species occurred infrequently or in a small number of groups 

(see mean frequency occurrence of all taxa sampled within each group in Mean_Taxa_Occ_SCC). A 

more detailed description of the characterising demersal fish, benthic invertebrate, macroalgae and 

reef fish characterising taxa is provided in Petersen et al. (2020). 

In addition, mean values for the two spatially explicit estimates of uncertainty differed between 

biotic groups and between SCC groups (Summary_info_SCC; see Table 6-3 in Supplementary 

materials 1). Mean environmental coverage was low across all biotic groups for all very deep-water 

SCC groups (groups 1 – 8) reflecting the lower confidence that can be placed in predictions of these 

largely unsampled parts of the New Zealand marine environment. Broadly, with decreasing depth, 

the mean environmental coverage increased, although some small localised SCC groups with few 

biological samples had low environmental coverage (e.g., group 26). Mean environmental coverage 

for demersal fish and benthic invertebrates was consistently higher than for macroalgae and reef fish 

across most SCC groups, possibly due to the more restricted distributions of the latter and the more 

spatially extensive sampling of the former, although this varied between SCC groups (especially 

groups very close to shore where macroalgae had higher environmental coverage in some cases). 

Several SCC groups had low or variable number of samples across biotic groups, but moderate to 

high combined environmental coverage (e.g., shallow coastal groups 58 – 60, 66, 72), suggesting 

sampling in similar environmental conditions had occurred for these taxa in other SCC groups. Mean 

variability (SD) in compositional turnover differed between biotic groups but was generally low 

compared to the compositional turnover (e.g., spatial patterns in uncertainty reflected those 

described in section 3.2.1). Detailed descriptions including mean environmental values, 

characterising taxa and mean uncertainty measures (standard deviation of compositional turnover 

and predicted environmental coverage) for individual SCC groups are provided in Petersen et al. 

(2020). 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Mean_Taxa_Occ_SCC.xlsx
file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Summary_info_SCC.xlsx
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Figure 3-8: Geographic distribution of the Seafloor Community Classification (75 groups) derived from 
‘combined’ bootstrapped Gradient Forest model. Colours are based on the first three axes of the PCA analysis 
applied to the group means for each of the transformed predictor variables, so that similarities/differences in 
colour correspond broadly to similarities/differences in predicted compositional turnover. 
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Figure 3-9: Closeup views of parts of the geographic distribution of the Seafloor Community Classification 
(75 groups) derived from ‘combined’ bootstrapped Gradient Forest model. Colours are based on the first 
three axes of the PCA analysis applied to the group means for each of the transformed predictor variables, so 
that similarities/differences in colour correspond broadly to similarities/differences in predicted compositional 
turnover. 
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4 Discussion 
Following a workshop with experts and members of the MSAG held on the 9th August 2019, it was 

decided Gradient Forest models would be used to develop a fit-for-purpose marine environmental 

classification (Objective 1). The relevant environmental and biological datasets required for GF 

modelling were collated (Objective 2). This data collation included extensive grooming and error 

checking of sample data from multiple sources for four biotic groups occurring on or near the 

seafloor (i.e., demersal fish, reef fish, benthic invertebrates and macroalgae). The final taxonomic 

datasets consisted of 630,997 records of 1,716 taxa occurring at 39,766 unique locations. Gridded 

environmental data (available at two resolutions: 250 m grid resolution within the Territorial Sea and 

a 1 km grid resolution within the Exclusive Economic Zone) were collated from multiple sources. 

Many of these environmental data layers were updated in the process and extensive metadata was 

created to ensure reproducibility and ease of use of these in future projects. 

Bootstrapping techniques were applied to the analysis of spatial patterns of compositional turnover 

for taxa in each of the four biotic groups. This approach allowed for measures of model uncertainty 

(a measure of variability in compositional turnover) to be produced in a spatially explicit manner. In 

addition, an added measure of uncertainty – coverage of the environmental space – was produced to 

further highlight geographic areas where model predictions may be less certain due to low sampling. 

Finally, the estimates of compositional turnover for each biotic group were combined to represent 

overall compositional turnover in seafloor communities, and then classified using a hierarchical 

procedure to define groups at different levels of classification detail, i.e., 30, 50, 75 and 100 groups 

(Objective 3). Here, a concise and comprehensive report is presented, detailing all environmental and 

biological datasets, methodology used and overview of the 75-group classification – termed the ‘New 

Zealand Seafloor Community Classification’ (SCC) (Objective 4). A detailed environmental and 

biological (community) description of the SCC (e.g., as in Stephenson et al. 2020c) is provided as a 

separate report (Petersen et al. 2020) (Objective 5). Here we critically appraise the SCC (section 4.1) 

and briefly summarise considerations for future use in spatial conservation and resource 

management planning (section 4.2). 

4.1 Critical appraisal of the Seafloor Community Classification  

The methods and data used to develop the SCC build on those used in previous classifications of New 

Zealand’s marine domain: the New Zealand Marine Environment Classification (MEC, Snelder et al. 

2007) and the Benthic Optimised Marine Environment Classification (BOMEC, Leathwick et al. 2012). 

Although the classification is environment-based, in broad terms the classification can be understood 

as a spatial summary of variation in seafloor community composition and turnover in the New 

Zealand marine environment (Stephenson et al. 2020c). Overall, the spatial distribution of the SCC is 

consistent with the MEC and BOMEC which identified depth, and to a lesser extent, water 

temperature and water mass, and major oceanographic features as important drivers of taxa 

composition. However, the SCC also identified finer scale environmental differences for inshore 

groups (at shallow depths), where variation in more localised environmental conditions such as 

productivity (POCFlux), seafloor topography (BPI broad and Slope), seabed disturbance (BedDist) and 

tidal currents (TC) were important differentiating factors. 

The SCC is a significant advance on previous numerical classifications in New Zealand, in terms of the 

availability of a much larger number of taxonomic records, spanning multiple biotic groups combined 

with a more comprehensive, recently updated, set of environmental predictor variables in a flexible 

machine learning modelling framework that can incorporate non-linear relationships between taxa 
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and environment (Pitcher et al. 2012; Stephenson et al. 2020c). Furthermore, spatial estimates of 

confidence were provided for the predicted compositional turnover, which can in turn partially be 

used to assess the confidence that can be placed in the individual SCC groups (see section 4.2 for 

further details on how these estimates could be useful for spatial planning as well as their 

limitations). 

The SCC groups represent groups of taxa that share the same suite of environmental preferences, 

and therefore inhabit the same locations. These groups can be considered communities as they 

describe groups of spatially and temporally co-occurring taxa, which may interact to some extent 

with one another (Morin 2009). Some of these taxa will have different ecological niches (e.g., 

demersal predators versus benthic invertebrate filter feeders) and may only be ‘associated’ because 

they inhabit the same volume of water. Although some species in a community interact either 

directly (e.g., through predator-prey interactions) or indirectly (e.g., by feeding on the same 

organisms), other taxa may not necessarily interact with each other (Francis et al. 2002). There is still 

a paucity in information with regards to species interactions at the spatial scales of the communities 

identified by the SCC. Regardless, the inferred communities from the SCC provide useful descriptions 

of habitat and biotic assemblages for resource management and conservation planning, particularly 

when considered alongside the estimates of confidence for each of the groups. 

One challenge with numerical classifications, such as the SCC, is the communication of results from a 

statistically complex product in a way that facilitates their use by management agencies and others 

involved in spatial planning processes (Rowden et al. 2018). Building on methods developed by 

Stephenson et al. (2020c), individual group descriptions for the SCC are provided in Petersen et al. 

(2020). These descriptions are provided to facilitate use of the classification by both managers and 

stakeholders and, at least in part, help bridge the gap between the typical output from numerical 

classifications and the readily understandable habitat and assemblage descriptions that result from 

thematic classifications (Rowden et al. 2018). As new data become available, the underlying 

numerical methodology underpinning the classification could be re-run, thus the SCC lends itself to 

being continually improved and refined over time (the locations and descriptions for all data files and 

R code are available in the Supplementary materials 1, Table 6-3). 

Despite the large datasets collated for the development of the SCC, there remain limitations 

associated with the classification, which at least in part, can be attributed to the available biological 

and environmental data. The long temporal span over which taxa samples were collected means that 

there is a mismatch between the temporal window of biological data and that of the environmental 

variables which were mostly compiled from data collected in the last few decades. This mismatch 

means that the compositional turnover presented here should be interpreted as a spatially and 

temporally smoothed representation (Stephenson et al. 2018a). The ability of the classification to 

represent variation in taxa composition at different scales using independent or newly collected data 

(e.g., as in Bowden et al. 2011;  or as in Stephenson et al. 2018a) would be of interest in order to 

independently validate the accuracy of the SCC. 

Although the species occurrence data we used mostly provided adequate spatial coverage of our 

study area close to shore and further offshore on the Chatham Rise and the Challenger and Campbell 

Plateaus (as assessed by the coverage of the environmental space), several large, outlying sections 

had few or no biological samples, notably the vast majority of waters deeper than 2500m. For deeper 

waters where few samples are available, lower confidence can be placed in the predictions of 

compositional turnover that underpin the SCC.  
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The ‘quality’ of the available biological data varied by biotic group based on differences in sampling 

gear and method. Records for demersal fish and reef fish were collected using (relatively) consistent 

sampling gears and methods (Smith et al. 2013; NIWA 2014, 2018). Abundance estimates were 

available for both these biotic groups, and few assumptions were required to use these data as 

presence / absence in GF models to make them consistent with benthic invertebrate and macroalgae 

group data. In contrast, multiple sampling gears and methods were used to collect benthic 

invertebrates, which required division of these data into gear catchability categories. However, it 

should be noted, that there was a high proportion of unique taxa associated with each gear type and 

therefore it was deemed important to include each of these because they sampled differing parts of 

the community. Information on sampling methods for macroalgae were not easily available but given 

their localised nature (collected on or close to shore), this was not deemed to be critical. Neither the 

benthic invertebrate nor the macroalgal data here can be considered true presence / absence 

(because of variations in the survey designs used to collect these data), and therefore the 

classification results from these biotic groups should be used with greater caution (although care was 

taken to account for differences in the biases associated with sampling method as per Phillips et al. 

(2009)). Abundance estimates were not available in a consistent manner for benthic invertebrate and 

macroalgal data. Further, the effect of using genus records on predictions of benthic invertebrate 

compositional turnover (especially at a fine scale) is not clear (e.g., some genera may contain many 

species whereas others may only contain a single species within the New Zealand marine 

environment). Despite this uncertainty, the use of genera data instead of species is likely to provide 

more accurate representations of broad-scale patterns due to the more comprehensive spatial 

sampling represented by the genus-level data. Future iterations of the SCC may benefit from being 

tuned using abundance estimates and, for benthic invertebrates, records at the species level (e.g., 

using data from comprehensive surveys as in Bowden et al. 2019). Despite these limitations, the taxa 

data used here form a valuable dataset that will have uses outside the development of the SCC (e.g., 

see Lundquist et al., 2020) and represents the best available compiled biotic information at present 

for the New Zealand marine environment.  

At the scale of the New Zealand marine environment, the quality of environmental data may vary 

spatially, i.e., some layers may be most robust close to shore. For example, the sediment 

classification layer (Sed.class) will be more robust inshore due to higher sampling underpinning the 

spatial data layers (Bostock et al. 2019). Despite the large influence that substrate is expected to 

have on demersal and benthic species composition (Ruiz et al. 2009), this environmental predictor 

variable had relatively low influence on seafloor community compositional turnover, most likely due 

to incomplete substrate distributions, for example, incomplete information on the distribution of 

hard substrata such as rocky reefs. 

In prior spatial analyses using a subset of taxa records analysed here (e.g., Leathwick et al. 2006; 

Compton et al. 2012; Compton et al. 2013; Wood et al. 2013), the inclusion of many environmental 

variables was avoided because they generally only provide small improvements in predictive 

accuracy and complicate interpretation of model outcomes (Leathwick et al. 2006). However, here 

the interpretation of model outcomes (i.e., the drivers of distribution) was of secondary interest, the 

primary focus being on maximising the predictive accuracy of the model. For certain taxa the 

inclusion of a broad range of environmental predictors in this manner can result in modelled 

relationships that are not easily explained ecologically. For example, macroalgal compositional 

turnover along the gradient of bottom silicate concentration in this analysis. However, in this case,  

bottom silicate is assumed to be a proxy for other unmeasured variable(s) (e.g., as bathymetry is 

often used in similar spatial models, Dunstan et al. (2012)). For model prediction into well-sampled 
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environmental space this use of a unknown proxy variable is not likely to affect prediction accuracy 

(interpolation) but this may not be the case when predicting into poorly sampled space 

(extrapolation) where the environmental variable may no longer be viable as a proxy (Elith & 

Leathwick 2009). 

The lack of consistent spatially explicit abundance information, coupled with the incomplete 

information about substrate type, means that despite the comprehensive SCC group descriptions of 

the environmental and biotic characteristics, SCC groups may still lack some of the key features that 

stakeholders may more readily associate with, or understand as habitats and communities. For 

example, the lack of abundance information means there is no spatial information about the 

locations of biogenic habitats, despite biogenic habitat forming taxa being present (and identified as 

characterising taxa) in several groups (e.g., bivalves, stony corals – see Petersen et al. (2020) for 

further information). Additionally, further discrimination within groups based on a more detailed and 

reliable substrate layer would allow finer-scale biodiversity patterns to be more easily 

communicated. These limitations may be addressed by using other spatial layers or classifications, 

for example, a thematic classification may provide adequate descriptions at these finer scales if such 

information is available in a particular area , e.g., The Coastal and Marine Habitat and Ecosystem 

Classification (MFish and DOC 2008) – or an improvement of this current thematic classification. 

4.2 Considerations for using the Seafloor Community Classification in spatial 
planning 

Description of spatial variation in species compositional turnover and richness is central both to our 

understanding of the scaling of diversity, and for identification of priority sites for conservation 

(McKnight et al. 2007). SCC groups are based on estimated taxa compositional turnover, which allows 

spatially explicit measures of  (predicted) within-group and between-group similarity in taxonomic 

composition to be produced (Stephenson et al. in review). That is, the transformed environmental 

space can be used to represent biological similarity. In turn, these similarity metrics can allow 

identification of environments that are likely to host rare or unusual communities as well as 

identifying geographic areas (which may consist of multiple SCC groups) that are most representative 

of New Zealand seafloor communities as a whole, for example, in a spatial conservation prioritisation 

analysis (Leathwick et al. 2011).  

A recent analysis by Stephenson et al. (in review) compared the efficacy of a demersal fish GF-based 

classification with increasing group number (10; 20; 30; 50 and 100 groups) against individual species 

distribution layers (derived from species distribution models) for use in conservation planning (using 

the prioritisation software Zonation). The best-performing GF-based conservation ranking used 

continuous spatial layers describing the within-group and between-group similarities of a 30-group 

classification together with species richness (all layers with equal weighting). Conservation outcomes 

from this ranking were only marginally less efficient (7%) than those from a more conventional 

ranking that used 217 individual species distribution layers, despite using only half of the available 

species’ occurrence data in the individual species distribution models. The authors concluded that 

despite only using a 30-group classification, GF models were more likely to capture information 

across a broad range of species, allowing for representation of both common and rare species when 

describing spatial variation in species composition and turnover. In addition, the reduced number of 

groups (e.g., for the present work this would be 75 SCC groups compared to 1600 species layers) 

facilitates the understanding and communication of spatial biodiversity patterns and may be of use 

for decision-making in participatory stakeholder processes (Stephenson et al. in review).  
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Given the hierarchical nature of the SCC classification, consideration will be required as to what 

constitutes the most appropriate level of classification detail for conservation planning purposes. At 

the scale of the New Zealand marine environment, the 75-group SCC may be appropriate. Using a 

higher number of classification groups (100 – 200 groups) is likely to be more appropriate for a 

regional scale analysis (e.g., at the scale of the Hauraki Gulf), particularly for inshore areas where 

there is a greater heterogeneity in environmental conditions (Stephenson et al. 2018a). As part of 

any spatial planning analysis, information from the SCC could be supplemented with the inclusion of 

other spatial layers to facilitate selection of areas of particular importance (e.g., see Stephenson et 

al. (2018b); Lundquist et al. (2020b) for a comprehensive list and description of spatial layers 

available in New Zealand to inform the identification of Key Ecological Areas). However, the SCC aims 

to represent seafloor communities but to achieve comprehensive representation for conservation 

planning, information on other species, including pelagic species, not captured in the SCC will most 

likely be required. This is especially the case given that it is unlikely that the SCC would be an 

appropriate proxy for pelagic species distributions (Hewitt et al. 2015). 

A spatial conservation prioritisation analysis using the 75-group SCC would benefit from the inclusion 

of classification uncertainty measures because failure to acknowledge sources of uncertainty can 

lead to poor management decisions (Regan et al. 2005; Link et al. 2012). Here we provide two 

spatially explicit measures of uncertainty: model variability and environmental coverage, which 

provide two complementary measures to be considered by managers. The environmental coverage 

provides an indication of the parts of the environmental space which, for example, contain many 

samples - meaning we can be more confident of the relationships and the predictions for 

compositional turnover and SSC groupings in such areas (Smith et al. 2013; Stephenson et al. 2020a). 

The uncertainty estimates of compositional turnover (i.e., standard deviation of the mean (SD) 

compositional turnover averaged across each environmental variable) provide an important 

indication of the variability in the modelling estimates. Given that uncertainty estimates of 

compositional turnover will only vary in areas where samples are present, we suggest that the 

uncertainty associated with individual SCC groups first be assessed by examining the number of 

samples and environmental coverage values. Where these values are adequate (e.g., environmental 

coverage > 0.05 as in (Stephenson et al. 2020a) or another suitable cut-off), the uncertainty 

estimates of compositional turnover will provide further insight into the variability (and therefore the 

confidence) of the underlying models used for the classification. However, it should be noted that 

both these uncertainty estimates are not propagated through the model to include any uncertainty 

in the classification. That this, here we only quantify parts of the model uncertainty (albeit arguably 

the most important parts); there are no estimates of classification uncertainty per se (Hill et al. 

2020). This means that for parts of the environmental space our estimate of uncertainty will be an 

under-estimate of the actual uncertainty (i.e., particularly for those parts of the environmental space 

that could be classified as either in one group or another similar group). However, spatial predictions 

of inter- and intra-group (biological) similarity can be generated from the classification which can be 

used to highlight those areas in the classification groups which may be classified in one group or 

another and therefore may represent less certain classifications (e.g., see methods and use of these 

layers in Lundquist et al. 2020a; Stephenson et al. in review).  

Finally, uncertainty estimates can be used in combination as part of a gap analysis to highlight areas 

that would most benefit from increased sampling by targeting of underrepresented assemblages for 

further sampling and/or protection (Ferrier et al. 2007; Pitcher 2007). 
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4.3 Conclusion 

To the authors’ knowledge, the SCC uses the largest number of taxa records and the most 

comprehensive, and highest resolution, set of environmental predictor variables used to date to 

develop a numerical classification globally. The SCC and associated spatially explicit uncertainty 

layers are particularly well suited as inputs for marine protection planning and reporting at a national 

scale. Firstly, spatially explicit estimates of within and between group similarity of the SCC make it 

particularly well suited to support developing a representative network of marine protected areas 

(objective 10.6.3 of the New Zealand Biodiversity strategy, Department of Conservation (2020)) and 

complement work to develop Key Ecological Areas mapping for New Zealand. Secondly, the 

development of two spatially explicit measures of uncertainty allow a nuanced use of these layers for 

spatial planning. The SCC summarises a large and complex taxa dataset spanning four biotic groups in 

a single classification layer which could greatly facilitate communication of complex spatial 

biodiversity patterns during participatory stakeholder processes. Despite the advances and utility of 

the SCC for conservation planning there remain several limitations, including a lack of abundance 

data, and a lack of some of the key features that stakeholders may more readily associate with, or 

understand as, habitats and communities (e.g. communities associated with rocky reefs, pelagic 

species). These limitations can, at least in part, be overcome through the use of other spatial layers 

to supplement the distributional information of other important biodiversity features (e.g. as 

collated for the identification of Key Ecological Areas, Stephenson et al. 2018b; Lundquist et al. 

2020b) such as, distributions of fish spawning grounds, biogenic habitats. An additional advantage of 

numerical classifications such as the SCC is that these can be evaluated and updated as and when 

new biotic data become available.  

Finally, it is important to note that adopting the SCC is just the first step towards the effective 

application of this classification for spatial planning purposes. New Zealand conservation and 

management agencies will need to commit to actively engage long-term in a structured feedback 

process to help maintain, modify and improve the SCC, as well as promoting and facilitating its 

application via open-access online data portals and tools. Part of this commitment includes sufficient 

resourcing to achieve this essential underpinning infrastructural support. None of the 

aforementioned was provided for previous classifications of New Zealand’s coastal and marine 

environments, and is one of the reasons that, for example, the MEC has been underutilised, and the 

development of a regional MEC and a final BOMEC did not progress beyond examples (Rowden et al. 

2018). 
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6 Supplementary Materials 1 – Filepaths and metadata 

6.1 Biological data 

Table 6-1: Filepaths and description of biological data.  

Home 
folder 

sub folder Files Filetype Description 

Biological 
data 

Benthic 
invertebrates 

BI_matrix_LLG.LMG_unique_GN CSV Benthic invertebrate genera matrix used in 
Gradient Forest Models: X, Y locations 
(projection: EPSG:9191). Genera 
presence/absence sampled using LLG.LMG 
gear types are provided from columns 4 - end   

BI_matrix_MMG_unique_GN CSV Benthic invertebrate genera matrix used in 
Gradient Forest Models: X, Y locations 
(projection: EPSG:9191). Genera 
presence/absence sampled using MMG gear 
types are provided from columns 4 - end   

BI_matrix_SMG_unique_GN CSV Benthic invertebrate genera matrix used in 
Gradient Forest Models: X, Y locations 
(projection: EPSG:9191). Genera 
presence/absence sampled using SMG gear 
types are provided from columns 4 - end   

BI_matrix_SSG_unique_GN CSV Benthic invertebrate genera matrix used in 
Gradient Forest Models: X, Y locations 
(projection: EPSG:9191). Genera 
presence/absence sampled using SSG gear 
types are provided from columns 4 - end   

BI_Names_Genera CSV List of unique genera across all gear types 
used in GF analysis    

BI_SDM CSV Records (n = 94 035) of benthic invertebrate 
genera with > 70 unique locations used in 
Species Distribution Models (SDM)   

CombinedDatabase_Benthic 
Invertebrates 

CSV Groomed, benthic invertebrate records 

 Demersal 
fish 

DF_Names_species CSV List of unique species used in GF analysis  

  DF.matrix_all_years_unique_SP CSV Demersal fish species matrix used in Gradient 
Forest Models: X, Y locations (projection: 
EPSG:9191). Species presence/absence are 
provided from columns 4 - end 

  DF_allyears_SDM CSV Records of demersal fish species with > 70 
unique locations used in Species Distribution 
Models (SDM) 

  TRAWL_demersal_fish_1979_2018 CSV Groomed, demersal fish records 
 Macroalagae MA_Names_species CSV List of unique species used in GF analysis  

  MA_matrix_unique_SP CSV Macroalagal species matrix used in Gradient 
Forest Models: X, Y locations (projection: 
EPSG:9191). Species presence/absence are 
provided from columns 4 - end 

  MA_SDM CSV Records of Macroalgal species with > 50 
unique locations used in Species Distribution 
Models (SDM) 
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Home 
folder 

sub folder Files Filetype Description 

  MA_AllRecords_Sp CSV Groomed, macroalgal records 

 Reef fish Reef_fish_list CSV List of unique species used in GF analysis  

  SampSitesFish_SPname CSV Reef fish species matrix used in Gradient 
Forest Models: X, Y locations (projection: 
EPSG:9191). Species presence/absence are 
provided from columns 4 - end 
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6.2 Environmental data 

Table 6-2: Filepaths and description of environmental data. Files referred to in the main of the text are 
highlighted in grey. 

Home folder sub folder Files Filetype Description 

Environmental 
data 

 env_pred_metadata.xlsx 
 
link: Environmental 
data\env_pred_metadata.xlsx 

Excel 
(.xlsx) 

Metadata for each environmental variable, 
including information on: environmental 
variable abbreviation used throughout the 
text; full name; spatial projection of the 
layers; temporal range of the data used to 
generate the layers (can be static if this layer 
does not vary over time, e.g., bathymetry); 
description of the environmental variable and 
any brief methods used to generate the 
layers; native resolution of the spatial grids; 
method for modifying the resolution (if any); 
units; source/reference; notes/comments; the 
year layers were last updated (if known); 
name and contact for any further enquiries. 

Environmental 
data 

1 km Bathy 
Beddist 
BotNi 
BotOxy 
BotOxySat * 
BotPhos 
BotSal 
BotSil 
BotTemp 
BPI_broad 
BPI_fine 
carbonate 
Chl-a 
Chl-a.Grad 
DET 
DynOc  
Ebed 
fluxSeabed 
Gravel 
Kpar 
MLD 
Mud 
OxyUt  
PAR 
PB 
Reef 
Rough 
sand 
SeasTDiff 
Sed.class 
Slope 
SST 
SstGrad 
SuspPM 
TC 
TempRes 
VGPM 

TIFF Geospatial raster (.tif) files at a 1 km grid 
resolution across the New Zealand Exclusive 
Economic Zone (spatial projection: 
EPSG:9191). 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/Environmental%20data/env_pred_metadata.xlsx
file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/Environmental%20data/env_pred_metadata.xlsx
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Home folder sub folder Files Filetype Description 
 

250m Bathy 
Beddist 
BotNi 
BotOxy 
BotOxySat * 
BotPhos 
BotSal 
BotSil 
BotTemp 
BPI_broad 
BPI_fine 
carbonate 
Chl-a 
Chl-a.Grad 
DET 
DynOc  
Ebed 
fluxSeabed 
Gravel 
Kpar 
MLD 
Mud 
OxyUt  
PAR 
PB 
Reef 
Rough 
sand 
SeasTDiff 
Sed.class 
Slope 
SST 
SstGrad 
SuspPM 
TC 
TempRes 
VGPM 

TIFF Geospatial raster (.tif) files at a 250m grid 
resolution across the New Zealand Territorial 
Sea (spatial projection: EPSG:9191).  
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6.3 Model outputs 

Table 6-3: Filepaths and description of GF model outputs. Files referred to in the main of the text are 
highlighted in grey. 

Home 
folder 

sub 
folder 

Files Filetype Description 

GF_outputs R code 1.Species_Env_prep 
2.GF_tuning 
3. BOOTSTRAPPING_GF_MODELS 
4. COMBINING_GF_MODELS_BOOT_F 
5. CLASSIFICATION_SPECIES_ENV_INFO 
6. CLASSIFICATION_UNCERTAINTY_INFO 

Rdata Annotated R code used to prepare 
and run GF models and 
subsequent analyses from 
Stephenson et al., 2020. Files are 
numbered in the order that they 
were used. 

 R 
objects 

BI_LLG.LMG.source 
BI_MMG.source 
BI_SMG.source 
BI_SSG.source 
boot_array_EnvTran_CMB1.source 
DF.source 
EnvRanges.BI.source 
EnvRanges.CMB.source 
EnvRanges.DF.source 
EnvRanges.MA.source 
EnvRanges.RF.source 
imp.vars.BI.source 
imp.vars.CMB.source 
imp.vars.DF.source 
imp.vars.MA.source 
imp.vars.RF.source 
MA.source 
Pred_1km.BI.source 
Pred_1km.CMB.source 
Pred_1km.DF.source 
Pred_250m.BI.source 
Pred_250m.CMB.source 
Pred_250m.DF.source 
Pred_250m.MA.source 
Pred_250m.RF.source 
Pred_EEZ_MA1.source 
RF.source 
species.BI_LLG.LMG.source 
species.BI_MMG.source 
species.BI_SMG.source 
species.BI_SSG.source 
species.DF.source 
species.MA.source 
species.RF.source 

Rdata 
Source 

R objects used for GF analysis  

 Results Mean_Taxa_Occ_SCC.xlxs 
 
Link: 
GF_outputs\Results\Mean_Taxa_Occ_SCC.xlsx 

Excel 
workbook 
(xlsx) 

Mean occurrence of taxa within 
each group of the Seafloor 
Community Classification (SCC). 
Information is organised by taxa 
(tab 1: Demersal Fish; tab 2: 
Benthic invertebrates; tab 3: Reef 
fish; tab 4: macroalgae). Colours 
provide an indication of the 
relative ranking of each taxa 
within groups (blue = low 
frequency occurrence and red 
indicates high frequency 
occurrence within groups). 

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Mean_Taxa_Occ_SCC.xlsx
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Home 
folder 

sub 
folder 

Files Filetype Description 

  SP_R2.xlxs 
 
Link: GF_outputs\Results\Sp_R2.xlsx 

Excel 
workbook 
(xlsx) 

Mean (± SD) R2
f values for 

individual taxa from GF models. 
(BI: Benthic invertebrates, DF: 
Demersal fish, MA: Macroalgae, 
RF: Reef fish).  

  Summary_Info_SCC.xlsx 
 
Link: 
GF_outputs\Results\Summary_info_SCC.xlsx 

Excel 
workbook 
(xlsx) 

Mean and range (25 – 75 
quantile) of environmental 
variables (tab 1), uncertainty 
measures (tab 2) and most 
frequently occurring taxa (tab 3) 
within each Seafloor Community 
Classification group. For the mean 
environmental variable values, 
colours provide an indication of 
the relative ranking within each 
group (blue = low value and red 
indicates high value within 
groups). 

  Petersen et al 2020 - Seafloor Community 
Classification: Group descriptions 

Word 
document 
(docx) 

Individual group descriptions for 
the Seafloor Community 
Classification. 

6.4 Seafloor Community Classification, example group description 

Following methods developed by (Stephenson et al. 2020c), individual group descriptions for the 

Seafloor Community Classification are provided in Petersen et al. (2020). This included the location of 

the SCC group within the New Zealand marine environment; information on environmental 

characteristics (mean values for a subset of the available environmental variables, termed 

“characterising environmental conditions”); description of species’ assemblages (mean frequency 

occurrence and contribution of individual taxa to intra-group similarity for a subset sampled taxa, 

termed “characterising species”); and a summary of model uncertainty (mean measures of GF model 

confidence). For further details on methods and qualitative descriptions see Petersen et al. (2020). 

An example of a group description for Group 30 is provided below. 

  

file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Sp_R2.xlsx
file://///niwa.local/projects/hamilton/DOC19208/Working/Comments%20on%20SCC%20report/GF_outputs/Results/Summary_info_SCC.xlsx
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Group 30 

1. Geographic location 

 

Figure 6.1 Geographic distribution of group 30 from a 75-group seafloor community classification (SCC) in the 
New Zealand marine environment (dashed line). 
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2. Group Description 

Group 30 is a large widespread group (Figure 6.1) occurring on the continental shelf north of the 
Subtropical Front in warm, moderate productivity coastal waters (Table 6.5). This group is 
characterised by moderate oxygen concentrations and low dissolved silicate and nitrate 
concentrations at depth (Table 6.5). Benthic invertebrate assemblages are diverse and are 
characterised by high frequency occurrence of the squid Nototodarus, multiple coral species, and low 
frequency bivalve, brachiopod and gastropod occurrence (Table 6.6). Fish assemblages are diverse, 
with ~130 demersal fish taxa and ~50 reef fish taxa. Demersal fish assemblages are characterised by 
high frequency tarakihi, barracouta, jack mackerel and school sharks, and reef fish assemblages are 
characterised by very high frequency occurrence of nearly 20 taxa including perch, damselfish and 
morwong (Table 6.6). This group has a very high number of samples for benthic invertebrates and 
demersal fish and very low samples for macroalgae and reef fish (Table 6.6). Overall confidence in 
modelled relationships is moderate – high for this group (high confidence for ‘combined’ biotic group 
environmental coverage and moderate for model variability (SD), Table 6.7). Note, there is low 
sample number and low confidence associated with model variability of reef fish (Table 6.7). 

 

3. Similar groups 

Closely related to group 31; more loosely related to group 32. 

 

4. Characterising environmental conditions 

Table 6.5: Group 30 characterising environmental conditions 

Environmental variable Mean value Qualitative description 

Bathymetry 129 m Shelf depth 
Slope 0.34 ° Low slope 
Bottom silicate 4.91 µmol l-1 Low concentrations of silicate at 

depth 
Dissolved oxygen at depth 5.21 µmol l-1 Moderate concentrations of oxygen 

at depth 
Temperature at depth 14.15 °C km-1 High bottom water temperature 
Downward vertical flux of particulate 
organic matter at the seabed 

41.22 mgC m-2 d-1 Moderate productivity 

Turbidity 0.002 m-1 Low turbidity 

 

5. Characterising Species 

Table 6.6: Species name, mean frequency occurrence and % contribution to group 30 similarity for those 
species contributing to a total of 70% of the group similarity or > 4 % to the group similarity. Groups with no 
species present or where data was insufficient to run analyses are reported as na. 

Taxa type 
Sampling 

gear 
n samples 

Unique 
taxa 

Scientific name 
Common 

name/broad 
descriptor 

Mean 
frequency 
occurrence 

% 
contribution 
to similarity 

Benthic 
invertebrates 

LLG.LMG 1271 154 Nototodarus Squid 0.92 99.06 
MMG 65 191 Lyreidus Crab 0.4 15.8 

  Heteromolpadia Sea cucumber 0.31 10.71 
  Ophiozonoida Brittle star 0.31 10 
  Monomyces Coral 0.32 7.15 
  Peronella Sea cucumber 0.26 5.21 

SMG 70 154 Monomyces Coral 0.13 11.8 
  Saccella Bivalve 0.11 10.51 
  Caryophyllia Coral 0.1 7.98 
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Taxa type 
Sampling 

gear 
n samples 

Unique 
taxa 

Scientific name 
Common 

name/broad 
descriptor 

Mean 
frequency 
occurrence 

% 
contribution 
to similarity 

  Pratulum Bivalve 0.09 6.14 
  Splendrillia Gastropod 0.06 5.37 

  Neothyris Brachiopod 0.07 4.68 
  Tethocyathus Coral 0.07 4.24 

  Balanophyllia Coral 0.06 4.11 
SSG 33 17 Dittosa Crab 0.33 48.72 

  Neothyris Brachiopod 0.3 27.12 
Demersal fish   1414 129 Nemadactylus 

macropterus Tarakihi 0.75 13.05 
  Thyrsites atun Barracouta 0.7 11.48 
  Trachurus 

declivis Jack mackerel 0.59 8.22 
  Galeorhinus 

galeus School shark 0.56 7.19 
  Zeus faber John Dory 0.55 7.14 
  Chelidonichthys 

kumu Red gurnard 0.5 5.94 
  Lepidopus 

caudatus Frostfish 0.48 5.18 
  Squalus 

acanthias Spiny dogfish 0.48 5.01 
  Lepidotrigla 

brachyoptera Scaly urnard 0.45 4.66 
  Chrysophrys 

auratus Snapper 0.4 4.1 
Macroalgae**  3 3 na na na na 
Reef fish  3 49 Centroberyx 

affinis Nannygai 1 4 
  Caprodon 

longimanus Perch 1 4 
  Hypoplectrodes 

sp B Perch 1 4 
  Pseudocaranx 

dentex Trevally 1 4 
  Pagrus auratus Snapper 1 4 
  Scorpis violaceus Sea chub 1 4 
  Amphichaetodon 

howensis Butterflyfish 1 4 
  Chromis dispilus Damselfish 1 4 
  Parma 

alboscapularis Damselfish 1 4 
  Aplodactylus 

arctidens Marblefish 1 4 
  Cheilodactylus 

spectabilis Morwong 1 4 
  Nemadactylus 

douglasii Morwong 1 4 
  Pseudolabrus 

luculentus Wrasse 1 4 
  Bodianus 

vulpinus Hogfish 1 4 
  Odax pullus Butterfish 1 4 
  Forsterygion 

flavonigrum Triplefin 1 4 
  Parablennius 

laticlavius Blenny 1 4 
  Parika scaber Leatherjacket 1 4 
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* No samples with species present, ** insufficient data to run simper analysis 

 

6. Uncertainty ranges 

Table 6.73: Mean uncertainty values for group 30 by biotic group and ‘combined’. 

Taxa Mean SD Confidence (SD) Mean Env. Cov 
Confidence 
(Env. Cov) 

Benthic invertebrates 0.002 Moderate 0.642 High 

Demersal fish  0.003 Moderate 0.606 High 

Macroalgae 0.002 Moderate 0.138 Moderate 

Reef fish 0.004 Low 0.322 Moderate 

Combined 0.003 Moderate 0.623 High 
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7 Supplementary Materials 2 – Maps of biological samples 

 

Figure 7-1: Map of study region with unique locations of demersal fish used in GF analysis.  
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Figure 7-2: Map of study region with unique locations of benthic invertebrates (by sampling gear type) 
used in GF analysis. 
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Figure 7-3: Map of study region with unique locations of macroalgae used in GF analysis.  
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Figure 7-4: Map of study region with unique locations of reef fish used in GF analysis.  
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8 Supplementary Materials 3 – Estuarine benthic invertebrates 

8.1 Data and methods 

Although the estuarine benthic invertebrate dataset comprises some of the best data in New Zealand 

regarding paired biological-environmental samples, the environmental predictors used for the SCC 

were thought to be less robust in estuaries and therefore would not produce useful predictions. In 

addition, despite the availability of environmental variables at a 250 m spatial scale, predictions at 

this spatial scale may still be too coarse to reflect the sharp environmental gradients present in none 

but the largest estuaries. Therefore, only paired biological and environmental data within this 

dataset were used for further modelling. 

Data retrieved from the National Estuary Dataset and used in this analysis included macrofaunal 

abundance data and paired physico-chemical sediment data, as well as Sea Surface Temperature 

(SST) and Salinity (Sal.Fac). Macrofauna cores were sieved through 0.5mm mesh, with all taxa 

included. In most cases a standard core size (13 cm dia x 15 cm depth) was used. Paired sediment 

data was available for grainsize (< 63 µm, 63 µm–2 mm, > 2 mm) (here ‘Mud’ (< 63 µm) was retained 

for analysis) and Total Organic Carbon (TOC) content for all data points. Variability in the taxonomic 

resolution of the species identifications was apparent between regions/organisations. In addition, 

methods used to measure grainsize analysis and Total Organic Carbon content was also variable. For 

the macrofauna data, clumping of biotic groups was undertaken to standardise the results based on 

the methodology suggested by Berthelsen et al. (2020), with small further modifications based on 

expert opinion within NIWA’s benthic ecology team (such as removing terrestrial insects and 

freshwater species). For the sediment data, grainsize analysis methodologies varied between wet 

sieving and laser diffraction, the laser based only on < 2 mm particle size, while wet sieve measures 

all fractions. The percent grainsize for each fraction < 2 mm was therefore adjusted in the wet sieved 

samples to account for this difference (i.e., % of < 63 µm out of the < 2 mm fraction). Total Organic 

Content was either directly measured or estimated based on known relationships with ash-free dry 

weight, depending on which method was used. Sea Surface Temperature (SST) is a measure of the 

average SST for a location just offshore of the estuary for the month/year that the site was sampled. 

Salinity was calculated based on a distance weighted flow of freshwater input from streams within a 

1 km radius of each sampling location (Sal.fac, where a high Sal.fac indicates low salinity). In addition 

to data retrieved from the National Estuarine Dataset, an exposure metric was calculated for each 

sampling location. Exposure (Exp.Wind) was calculated based on measuring the distance from each 

sampling point to the land in 1 degree intervals (over 360 degrees in total), multiplied by the total 

number of days the predominant wind was from that direction (binned into 45 degree intervals) and 

the average wind speed for those days. Predominant wind direction and speed was extracted 

regionally from the nearest regional airport weather station over 3 years of records. 

Despite spatial and temporal variability in the dataset, all log transformed abundance of estuarine 

benthic invertebrate taxa were used in the analysis (without spatial aggregation) in order to 

maximise the amount of data available for the analysis and avoid introducing additional confounders 

(such as the loss of regional data from the NRC where only 3 replicates were sampled per site). 

As for other biotic groups, species compositional turnover of estuarine benthic invertebrates was 

estimated using bootstrapped GF models as described in section 2.4.1. Predicted compositional 

turnover between samples was summarised using principle components analysis (PCA). The colours 

used in the PCA were based on the first three axes of the PCA analysis so that similarities/differences 

in colour corresponded broadly to pairwise similarities/differences in the transformed environmental 
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space. Predicted compositional turnover between samples was classified into 10 groups using K-

means clustering.  

8.2 Results and discussion 

Most estuarine benthic invertebrate taxa were effectively modelled (i.e., approx. 147 out of 188 taxa 

had R2
f > 0 – Table 8.1). Individual taxa R2

f ranged from a min 0.01 to 0.94, with a mean 0.51 (Table 

8.1). To put these results into context, these R2
f were similar to values for other biotic groups despite 

the R2
f for estuarine benthic invertebrate taxa representing the explained deviance in abundance, 

which tends to be lower than R2
f from presence/absence models.  

Table 8.1 Mean (±SD) model fit metrics of individual taxa (R2
f) from bootstrapped GF models.  

Measure Species modelled (total 
possible: 188) 

Min R2 mean R2 max R2 

Mean  146.63 0.01 0.51 0.94 

Standard deviation 5.90 0.01 0.03 0.03 

All environmental variables contributed to predicting compositional turnover of estuarine benthic 

invertebrates (Fig 8.1). Wind exposure was the most important variable for predicting compositional 

turnover of estuarine benthic invertebrates followed closely by SST, Salinty, Mud content and organic 

matter (Fig 8.1). Inspection of the fitted functions for the environmental variables indicated that SST, 

Mud, TOC had broadly linear relationships with compositional turnover, whereas Exp.Wind and 

Sal.fac showed a levelling off in compositional turnover at higher values (e.g., Exp.Wind > 5,000,000) 

(Fig 8.1). 
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Fig 8.1. Mean (± SD) functions fitted by bootstrapped GF models of estuarine benthic invertebrates. Fitted 

functions indicate relative compositional turnover along the range of each predictor. 

Estuarine benthic invertebrate samples were well spread in environmental space, and at a 10 group 

classification level showed clear environmental preferences (Fig 8.2, Table 8.2). For example, group 

10 was characterised by low Mud content, moderate TOC and very high SST (Fig 8.2, Table 8.1). 
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Fig 8.2. Distributions in PCA space of 10 groups defined by classification of transformed environmental layers 
derived from bootstrapped Gradient Forest models fitted using estuarine benthic invertebrate records. 
Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour correspond 
broadly to similarities/differences in group taxonomic composition. Vectors indicate correlations with the five 
most important environmental variables. 

Table 8.2. Number of samples and mean value of environmental variables for estuarine benthic invertebrate 

classification at a 10-group level. 

Group n.samples Mud TOC Sal.fac SST Exp.Wind 

1 131 10.85 0.32 0.00 15.27 588932.10 

2 100 2.29 0.20 0.01 14.68 583887.80 

3 78 69.25 0.56 0.01 17.19 250295.60 

4 72 29.97 0.53 0.00 15.45 428929.40 

5 34 40.11 0.51 0.37 15.24 79215.67 

6 45 79.64 1.71 0.01 17.61 351204.80 

7 68 4.48 0.35 0.00 18.26 1038544.00 

8 142 19.82 0.53 0.00 18.34 502250.00 

9 47 2.08 0.15 0.00 15.52 4426073.00 
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10 41 7.90 0.57 0.00 21.75 139486.60 

 

The classification worked well at describing groups across broad environmental conditions (Table 

8.2). For example, for Auckland Council (AC), the larger more exposed estuaries (such as Kaipara and 

Manukau) were dominated by group 9, which was associated with high Exposure. Upper Waitemata 

was characterised primarily by groups 3, 4 and 8, which are associated with the muddier more 

organically enriched environments often observed in the upper arms of estuaries. Regional trends 

also emerged, for example HBRC, NRC, and TDC were primarily characterised by groups 8 and 10, 

diverging from other regions through differences in SST (Table 8.3).  

Despite regional separations of groups, some large estuaries also contained at least some samples in 

almost all groups (e.g., Kaipara contained samples classified into 7 of the 10 groups). Whether this 

reflects the large size of the estuary (and therefore it’s likelihood to contain many of the 

communities found across the country), or whether this high number of groups is linked to sample 

size (Kaipara contained almost half of the samples available in the Auckland Council area) is unclear. 

Our inability to spatially extrapolate the estuarine dataset in a comparable way to other 

classifications within this report highlight how current estuarine modelling efforts are limited by lack 

of fine scale environmental data collected for the purpose of spatial extrapolation. In addition, many 

of environmental data layers being used in offshore applications are considerably less robust and 

reliable at the estuarine scale. This means that models to help with spatial conservation planning and 

management cannot be used to their full potential in areas where they are urgently needed—the 

coastal and estuarine environments that New Zealanders use and value every day. Moving forward, 

we recommend prioritising the collection of a national estuarine dataset for the purpose of spatial 

extrapolation (i.e., using standardised sampling methods and a single central parataxonomic 

clearinghouse to ensure data integrity and cross-comparability). 

Table 8.3. Number of  estuarine benthic invertebrate samples assigned to each classification at a 10-group 

level shown by Council and Estuary. 

 Group  

Council / Estuary 1 2 3 4 5 6 7 8 9 10 Total 

AC 62 86 63 164  114 133 160 369  1151 

centralwaitemata 10 16  4       30 

kaipara 4  15 4  84 133 72 207  519 

mahurangi 12   36       48 

mangemangeroa 4   28       32 

manukau         162  162 

okura 7 12  24       43 

orewa 5 10  4       19 

puhoi 5 8  8       21 

turanga 3 6  12  6     27 

upperwaitemata   48 20  24  88   180 

waikopua 7 4  8       19 

waiwera 2 14  16       32 

whangateau 3 16         19 

BOPRC 2  6 8  6 238 296   556 

ohiwa 2   8       10 
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 Group  

Council / Estuary 1 2 3 4 5 6 7 8 9 10 Total 

tauranga   6   6 238 296   546 

ECAN 23 10 45 56 5 12 21 112   284 

akaroa 10 8         18 

avonheathcote 10  30 36 5  21 104   206 

lyttelton   15 12  12     39 

okainsbay 3 2  8    8   21 

ES 13 80  12  48 7    160 

awarua 1 2         3 

bluff 1 2         3 

fortrose 1 8         9 

freshwater  8         8 

haldane 1 2  12       15 

jacobsriver 4 22    24     50 

newriver 2 26    24 7    59 

waikawa2 3 10         13 

GWRC 20 14 9 20 55  21 8 36  183 

hutt     10      10 

lakeonoke     5      5 

makara 1 6         7 

porirua 19   20   21 8   68 

tikotu  4         4 

waikanae     15    36  51 

whareama   9  15      24 

wharemauku  4         4 

whareroa     10      10 

HBRC   27  25  7 272  40 371 

ahuriri       7 272  40 319 

porangahau   27        27 

wairoa     25      25 

HRC    4 5      9 

manawatu    4 5      9 

MDC   12 4  12 7 64   99 

havelock   3   6  48   57 

shakespeare       7 8   15 

waikawa1    4       4 

wairau   6   6     12 

whangarae   3     8   11 

NCC 1  3    14 16   34 

delaware   3    7 8   18 

nelsonhaven 1      7 8   16 

NRC   24  5 60  24  370 483 

kerikeri      18     18 

mangonui      6    140 146 
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 Group  

Council / Estuary 1 2 3 4 5 6 7 8 9 10 Total 

ngunguru          210 210 

ruakaka   6        6 

waitangi1   9   24     33 

waitangi2     5      5 

whangarei   6   12     18 

whangaroa   3     24  20 47 

ORC 3 4 15 8 75 18     123 

catlins 2  6        8 

kaikorai  2 3 4 5 12     26 

kakanui     10      10 

owaka    4 5      9 

shagriver   3  15      18 

taieririver  2   5      7 

tokomairiro     20 6     26 

waikouaiti 1  3  15      19 

TDC 4  12 12    104   132 

moutere        48   48 

ruataniwha 3          3 

waimea 1  12 12    56   81 

WCRC   6        6 

orowaiti   6        6 

WRC 3 6 12    28 80 18  147 

firth       14 48 18  80 

raglan   12     16   28 

tairua 3 6     14 16   39 
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9 Supplementary Materials 4 – Compositional turnover for 
individual biotic groups 

9.1 Demersal fish 

 

 

Figure 9-1: Mean (± SD) functions fitted by bootstrapped GF models using demersal fish samples (R2). 
Fitted functions indicate relative compositional turnover along the range of each predictor. 
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Figure 9-2: Mean predicted compositional turnover in geographic and PCA space derived from bootstrapped Gradient Forest model fitted with demersal fish 
samples. Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour correspond broadly to similarities/differences in predicted 
compositional turnover. Compositional turnover in PCA space, with vectors indicating correlations with the 6 most important environmental predictors (A); Geographic 
distributions of compositional turnover across New Zealand’s marine environment (dashed line)(B); Geographic distribution of compositional turnover at finer scales, 
centred on Cook Strait (C). 

(B) (C)

(A)
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Figure 9-3: Spatially explicit measures of uncertainty for compositional turnover modelled using bootstrapped Gradient Forest model fitted with demersal fish 
samples. Uncertainty estimate (SD) of compositional turnover modelled using bootstrapped Gradient Forest model fitted with demersal fish samples (A). Predicted 
environmental coverage depicting the confidence that can be placed in the predictions, ranging from low (i.e., no samples in the dataset with those environmental 
conditions) to high (i.e., many samples with those environmental conditions) within the New Zealand EEZ (B)
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9.2 Benthic invertebrates 

 

Figure 9-4: Mean (± SD) functions fitted by bootstrapped GF models using benthic invertebrate samples 
form combined gear types (R2). Fitted functions indicate the relative compositional turnover along the range of 
each predictor. 
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Figure 9-5: Mean predicted compositional turnover in geographic and PCA space derived from bootstrapped, combined, Gradient Forest model fitted with benthic 
invertebrate samples. Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour correspond broadly to similarities/differences 
in predicted compositional turnover. Compositional turnover in PCA space, with vectors indicating correlations with the 6 most important environmental predictors (A); 
Geographic distributions of compositional turnover across New Zealand’s marine environment (dashed line)(B); Geographic distribution of compositional turnover at 
finer scales, centred on Cook Strait (C). 

(B) (C)

(A)
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Figure 9-6: Spatially explicit measures of uncertainty for compositional turnover modelled using bootstrapped Gradient Forest model fitted with benthic 
invertebrate samples. Uncertainty estimate (SD) of compositional turnover modelled using bootstrapped Gradient Forest model fitted with demersal fish samples (A). 
Predicted environmental coverage depicting the confidence that can be placed in the predictions, ranging from low (i.e., no samples in the dataset with those 
environmental conditions) to high (i.e., many samples with those environmental conditions) within the New Zealand EEZ (B). 
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9.3 Rocky reef fish 

 

 

Figure 9-7: Mean (± SD) functions fitted by bootstrapped GF models using reef fish samples (R2). Fitted 
functions indicate relative compositional turnover along the range of each predictor. 
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Figure 9-8: Mean predicted compositional turnover in geographic and PCA space derived from 

bootstrapped Gradient Forest model fitted using reef fish samples. Gridded predictions produced at a 250 m 

scales were aggregated to a 5 km scale for easier visualisation and clipped to areas representing rocky reef 

layers. Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour 

correspond broadly to similarities/differences in predicted compositional turnover. Compositional turnover in 

PCA space, with vectors indicating correlations with the 6 most important environmental predictors (A); Inset 

maps show the Kermadec Islands and the Chatham Islands.
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Figure 9-9: Spatially explicit measures of uncertainty for compositional turnover modelled using bootstrapped Gradient Forest model fitted with reef fish samples. 
Gridded predictions produced at a 250 m scales were aggregated to a 5 km scale for easier visualisation Uncertainty estimate (SD) of compositional turnover modelled 
using bootstrapped Gradient Forest model fitted using reef fish samples (A). Predicted environmental coverage depicting the confidence that can be placed in the 
predictions, ranging from low (i.e., no samples in the dataset with those environmental conditions) to high (i.e., many samples with those environmental conditions) 
within the New Zealand marine environment (B). Inset maps show the Kermadec Islands and the Chatham Islands.



 

80 Development of a New Zealand Seafloor Community Classification (SCC) 

9.4 Macroalgae  

 

Figure 9-10: Mean (± SD) functions fitted by bootstrapped GF models using macroalgae samples (R2). Fitted 
functions indicate relative compositional turnover along the range of each predictor. 
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Figure 9-11: Mean predicted compositional turnover in geographic and PCA space derived from 
bootstrapped Gradient Forest model fitted using macroalgae samples. Gridded predictions produced at a 250 
m scales were aggregated to a 5 km scale for easier visualisation and clipped to areas representing rocky reef 
layers. Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour 
correspond broadly to similarities/differences in predicted compositional turnover. Compositional turnover in 
PCA space, with vectors indicating correlations with the 6 most important environmental predictors (A); Inset 
maps show the Kermadec Islands and the Chatham Islands.
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Figure 9-12: Spatially explicit measures of uncertainty for compositional turnover modelled using bootstrapped Gradient Forest model fitted using macroalgae 
samples. Gridded predictions produced at a 250 m scales were aggregated to a 5 km scale for easier visualisation Uncertainty estimate (SD) of compositional turnover 
modelled using bootstrapped Gradient Forest model fitted using macroalgae samples (A). Predicted environmental coverage depicting the confidence that can be placed 
in the predictions, ranging from low (i.e., no samples in the dataset with those environmental conditions) to high (i.e., many samples with those environmental 
conditions) within the New Zealand marine environment (B). Inset maps show the Kermadec Islands and the Chatham Islands.  
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