Estimation of Demographic Parameters for New Zealand Sea Lions Breeding on the Auckland Islands

POP2010/01 Obj 3:
1997/98-20110/11

October 2011

Darryl MacKenzie

Proteus
wildlife research consultants

Survival and Reproduction

- 2 key demographic processes
- Can be estimated from tag-resight data using mark-recapture methods
- Previous report highlighted importance of accounting for tag-loss
- Artificially inflates mortality rates
- Sightability may be different for breeders/non-breeders, branded animals, number of flipper tags

Survival and Reproduction

- 4 components to model tag-resight data
- Number of flipper tags each year
- Survival from one year to next
- Whether female breeds in a year
- Number of sightings in a year

Survival and Reproduction

- Number of flipper tags in year t is multinomial random variable with 1 draw and category probabilities (T's) that depends on number of tags in previous year (allows for non-independent tag loss)

Number of tags in year t

Survival and Reproduction

- Given female is alive, it's age and breeding status in year $t-1$, whether it is alive in year t is a Bernoulli random variable where probability of success (survival) is $S_{\text {apet.t.b.bed }}$

Survival and Reproduction

- Given female is alive in year t, it's age and breeding status in year $t-1$, whether it breeds in year t is a Bernoulli random variable where probability of success (breeding) is $B_{\text {ajetitbed }}$

Survival and Reproduction

- 3 age-classes used for survival/reproduction: 0-3, 4-14, 15+
- OR, constant for 0-3, and logit-linear for age 4+
- Exploratory analysis investigating the use of splines also conducted
- Survival and breeding probabilities $=0$ for "breeders" in 0-3 age class

Survival and Reproduction

$$
\begin{gathered}
y_{a, t, b}=\mu_{a, b}+\varepsilon_{t, b}, \quad \varepsilon_{t, b}: N\left(0, \sigma_{b}^{2}\right) \\
\theta_{a, t, b}=\frac{e^{v_{a, t b}}}{1+e^{v_{a, t, b}}}
\end{gathered}
$$

Annual variation depends upon previous breeding status

Survival and Reproduction

- Given female is alive, it's breeding status, presence of a brand, PIT tag and number of tags in year t, the number of times it's sighted during a field season is a zero-inflated binomial random variable with a daily resight probability $p_{t, \text { bred,brand,tags }}$
- 2 models; no zero-inflation or zero-inflation assumed time-constant, but different for each age/breeding class

Survival and Reproduction

- Branded animals have the same resight probability regardless of number of flipper tags.
- Animals with no flipper tags can only be resighted if they are chipped or branded.
- PIT tags have no effect on the resight probability if the unbranded animal has 1 or more flipper tags.
- There is a consistent odds ratio (δ) between resighting animals with 1 and 2 flipper tags.
- Resight probabilities are different for breeding and nonbreeding animals.
- Resight probabilities vary annually.

Survival and Reproduction

$p_{t, \text { bred,brand }}$ - applies to all females with brand
$p_{t, \text { bred,chip }}$ - applies to unbranded females with no flipper tags
$p_{t, \text { bred }, T 1}$
$p_{t, \text { bred, T2 }}$

- applies to unbranded females with one flipper tags
- applies to unbranded females
with two flipper tags

Survival and Reproduction

- Posterior distributions for parameters can be approximated with WinBUGS by defining a model in terms of the 4 random variables
- Some outcomes are actually latent (unknown) random variables, but their 'true' value can be imputed by MCMC
- Equivalent to a multi-state mark-recapture model

Survival and Reproduction

- 2 chains of at least 30,000 iterations
- Last 20,000 iterations retained for inference
- Prior distributions:
- μ 's $\sim N\left(0,3.78^{2}\right)$
- σ 's $\sim \mathrm{U}(0,10)$
- Other probabilities $\sim \mathrm{U}(0,1)$
- $\mathrm{T}_{22} \sim \operatorname{Dirichlet}(1,1,1)$
- $\operatorname{In}(\delta) \sim N\left(0,10^{2}\right)$
- Chains demonstrated convergence and good mixing

Survival and Reproduction

- Model deviance can be calculated and compared for each model
- Same interpretation as for maximumlikelihood methods (e.g., GLM), but has a distribution not single value
- Comparison of distributions a reasonable approach to determine relative fit of the models

Survival and Reproduction

- Fit of model to the data can be determined using Bayesian p-values with deviance as test statistic
- For each interaction in MCMC procedure, a simulated data set is created using current parameter values, and the deviance value calculated
- Frequency of simulated deviance values > observed deviance values provides a p-value for model fit

Survival and Reproduction: Data

- 1990-2006 tagging cohorts
- Resights from 1997/8-2010/11 in main field season at Enderby Island
- Stricter (status = 3) and liberal (status = 3 or 15) definitions of breeder used

Survival and Reproduction: Data

- Retagged females dealt with using the Lazarus approach
- Approximately 2300 tagged females included in analysis

Results (stricter defn.)

Results (strict defn.)

- Tag loss

Tags at $t-1$	Tags at t	Probability
1	0	$0.11(0.10,0.13)$
	1	$0.89(0.87,0.90)$
2	0	$0.04(0.03,0.05)$
	1	$0.14(0.13,0.16)$
	2	$0.82(0.80,0.83)$

Non-breeder in $t-1$ survival
 (Age Classes)

0-3

4-14

15+

Breeder in $t-1$ survival

(Age Classes)

Non-breeder in t-1 repro.

(Age Classes)

4-14

15+

Breeder in $t-1$ repro.
 (Age Classes)

4-14

15+

Non-breeder in $t-1$ survival
 (Logit-linear)

0-3

9

18

Breeder in $t-1$ survival
 (Logit-linear)

Year
9

Year
18

Survival vs Age
 (Logit-linear)

Non-breeder

Breeder

Non-breeder in t-1 repro.

(Logit-linear)

9

18

Breeder in $t-1$ repro.
 (Logit-linear)

9
18

Breeding vs Age
 (Logit-linear)

Age
Non-breeder

Breeder

Results - liberal definition

- Estimates from using the more liberal definition of breeder are very similar to above, although breeding probabilities tend to be slightly higher

Exploratory Analysis

- Exploratory analysis conducted to investigate semi-parametric relationships with age using splines
- 'Knots' are x-values where the nature of the relationship may change
- Y-value at each knot is defined by both relationships, hence creating a continuous 'curve'

Exploratory Analysis

- Linear and quadratic splines have been explored here, with knots at age 4, 8 and 12
- Survival probability for non-breeders aged 0-3 estimated as part of spline, or assumed as constant
- Breeding probability of non-breeders aged 0-3 assumed as constant

Exploratory Analysis

- Linear spline:
$\operatorname{logit}\left(\theta_{a, t, b}\right)=\alpha_{0, b}+\alpha_{1, b}(a-4)+\sum_{k=1}^{K}\left[\beta_{k, b}\left(a-\kappa_{k}\right) I\left(a \geq \kappa_{k}\right)\right]+\varepsilon_{t, b}$
- Quadratic spline:
$\operatorname{logit}\left(\theta_{a, t, b}\right)=\alpha_{0, b}+\sum_{j=1}^{2} \alpha_{j, b}(a-4)^{j}+\sum_{k=1}^{K}\left[\beta_{k, b}\left(a-\kappa_{k}\right)^{2} I\left(a \geq \kappa_{k}\right)\right]+\varepsilon_{t, b}$
- Fit using Bayesian methods where α 's and β 's are considered fixed and random effects respectively

Exploratory Analysis

Non-breeder in $t-1$ survival

Breeder in $t-1$ survival

Non-breeder in t-1 repro.

Breeder in t-1 repro.

Conclusions

- Survival and reproductive rates are estimated to be similar to previous years
- Average rates for prime-age animals:
- Non-breeder survival ≈ 0.90
- Breeder survival ≈ 0.95
- Non-breeder reproduction ≈ 0.30
- Breeder reproduction ≈ 0.60

Conclusions

- Exploratory analysis suggests the use of splines looks promising, particularly for non-breeder reproduction
- Potential disadvantages include less control over defining biologically reasonable relationships and potential confounding of other factors with age relationship
- Still further issues to consider in a full analysis, e.g., number and position of knots

