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Executive summary 
Historically, basking sharks have been widely reported throughout New Zealand waters. While 
previously observed in large numbers, only a few individuals are now reported annually, primarily as 
fisheries bycatch, potentially indicative of a recent reduction in basking shark abundance in New 
Zealand waters. It is unclear what caused changes in observations of New Zealand basking shark 
abundance, but overseas, observations are known to be highly variable across years, and their 
distribution and occurrence in the Northern Hemisphere have been shown to be influenced by 
environmental predictors such as thermal fronts, chlorophyll a (chl-a) concentration, and the 
abundance of prey (zooplankton). Habitat suitability models (HSMs) are capable of filling in 
knowledge gaps on spatial and temporal distributions and predict areas of suitable habitat for widely 
distributed species. Here, basking shark habitat suitability (HSI) around New Zealand was predicted 
by combining functionally relevant, high-resolution (1km2 grid resolution) environmental and biotic 
(zooplankton prey species) data and opportunistic basking shark occurrence data (n = 369). 

The relationship between environment variables, biotic variables and basking shark records was 
explored using ensemble predictions (Ensemble HSM) from Boosted Regression Tree (BRT) and 
Random Forest (RF) models. BRT and RF models were bootstrapped 200 times and an ensemble 
model was produced by taking weighted averages of the predictions from each model type. BRT and 
RF models performed well for predicting basking shark occurrence (AUC and TSS > 0.7). Nine 
variables were retained for the model, eight environmental predictors (Bathy, BPI broad, Chl-a, MLD, 
Turbidity, POCFlux, Slope, and SST) and one biotic predictor (Copepoda). The relative importance of 
each predictor and their influence on basking shark HSI were consistent across BRT and RF models. 
Vertical flux (POCFlux, 26.0%), slope (Slope, 14.1%), and turbidity (Turbidity, 10.6%) were the three 
most important variables in predicting basking shark HSI. Bathymetry (Bathy, 9.7%) and broadscale 
bathymetric position index (BPI broad, 9.6%) were also moderately important variables. High HSI was 
predicted in gently sloping and less complex seafloor topographies with high turbidity and at two 
depths - very close to shore and at depths between 200 and 550 m. There was a weak relationship 
between HSI and copepod densities, with low HSI occurring with low levels of copepod densities, a 
peak in HSI at moderate copepod densities (10-20 counts per 5 nautical miles), and a plateau in HSI 
values at the highest levels of copepod densities (>25 counts per 5 nautical miles). 

Areas of high habitat suitability exhibited a core area for basking shark in the New Zealand Exclusive 
Economic Zone (EEZ) occurred along the continental slope, particularly along the 250 m contour 
along the North and South Islands; Mernoo Bank, Pukaki Rise, Puysegur, and around New Zealand’s 
offshore islands (Chatham Islands, Stewart Island, the Bounty Islands, and the Auckland Islands). 
Areas of high uncertainty (SD > 0.2) included most offshore waters north of 40°S, the deeper depths 
(>500 m) of the Hokitika Canyon, northern Chatham Rise, coastal waters off the East Coast South 
Island (Canterbury Bight), Foveaux Strait (between the South Island and Stewart Island) and 
Puysegur. High uncertainty beyond the core area was reported along deep sea features north of New 
Zealand, including the Kermadec Ridge and Trench, the Colville Ridge, the Norfolk Ridge, and the 
Lord Howe Rise. 
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The outputs produced here will be useful for fisheries risk assessment (e.g., spatially explicit risk 
assessment) and conservation needs, as well as providing guidance for future research efforts (e.g., 
areas of interest for future sampling). This study has provided the first insight into habitat suitability 
for basking sharks in the South Pacific using a novel approach by incorporating both environmental 
and biotic predictors into habitat models. However, caution should be considered given the relatively 
few species presence records and lack of true absence data.
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1 Introduction 
The basking shark (Cetorhinus maximus) is a planktivorous coastal-pelagic species widely distributed 
in the temperate and tropical waters of the Atlantic and Pacific Oceans, and fringes of the Indian 
Ocean (southern Australia, Indonesia, South Africa) (Rigby et al., 2019). It is the second largest fish in 
the world after the whale shark (Rhincodon typus), reaching an estimated maximum size of at least 
10 m total length (Weigmann, 2016). Basking sharks are known for their slow surface swimming 
behaviour but are also capable of vertical migrations to depths of 1,264 m (Gore et al., 2008). The 
species also engages in long distance migrations and has been recorded crossing the Atlantic Ocean 
both from east to west and from north to south (Skomal et al., 2009; Braun et al., 2018; Dewar et al., 
2018; Johnston et al., 2019). Recent genetic analysis suggests high gene flow and weak genetic 
structuring across the Atlantic and Pacific Oceans (Lieber et al., 2020). Despite their large size, 
basking sharks remain elusive and data-poor in the Pacific Ocean; habitat use and movement 
patterns in the South Pacific, and more specifically around New Zealand, are virtually unknown. 

Historically, basking sharks have been widely reported throughout New Zealand at latitudes between 
39°S and 51°S; most records originate from south of Cook Strait, including the brackish waters of 
Lake Ellesmere (Te Waihora) (Francis and Duffy, 2002). Individuals have been most commonly 
reported nearshore on the east and west coast of the South Island, and in waters near the Snares 
and Auckland Islands during the spring and summer months (Francis, 2017). Off Banks Peninsula, 
aerial surveys for Hector’s dolphins (Cephalorhynchus hectori) conducted by the Department of 
Conservation reported large groups of over 100 individuals in the early 1990s (Francis and Duffy, 
2002). Such large groups have not been reported since and subsequent aerial surveys have failed to 
see any basking sharks. Only a few individuals are now reported annually, primarily as fisheries 
bycatch (Francis and Duffy, 2002; Francis, 2017).  

Basking sharks are susceptible to exploitation from fishing due to their naturally low population sizes, 
presumed slow growth rates, and low reproductive rates (Francis, 2017). The species has been 
subject to targeted fishing throughout its range and, while most targeted fisheries ceased in the 
2000s, basking sharks are still taken as bycatch by a number of fishing gear types (e.g., trawl, 
trammel net, set net). Elsewhere they are threatened by interactions with recreational vessels and 
commercial shipping due to the species’ habit of spending time at the surface (Austin et al., 2019; 
Rigby et al., 2019). Population recovery has been low or negligible several decades after fishing 
ceased (Fowler et al., 2005). In 2002, basking sharks were listed in Appendix II of the Convention on 
International Trade in Endangered Species of Wild Fauna and Flora (CITES, 2002), and in 2005, were 
listed on Appendices I and II in the Convention of Migratory Species (CMS). In 2019, basking shark 
was assessed as globally Endangered by the International Union for Conservation of Nature (IUCN) 
Red List of Threatened Species (Rigby et al., 2019).  

Basking sharks have been protected in New Zealand waters since 2010. Within New Zealand, the 
species has been assessed as Nationally Vulnerable under both IUCN Red List Criteria and the New 
Zealand Threat Classification System (NZTCS) (Duffy et al., 2018; Finucci et al., 2019). There are no 
specific management measures in place for basking sharks, apart from mandatory reporting of 
captures and the return of captured individuals to the sea. In recent years, the species has 
occasionally been taken as bycatch in trawl and set net fisheries, with trawl bycatch typically 
occurring near or beyond the edge of the continental shelf (Francis and Smith, 2010; Francis, 2017). 
There are very little fisheries independent data available and estimates of basking shark bycatch 
likely underestimate the total New Zealand catches because they do not account for captures in 
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unobserved set net fisheries and inshore trawl fisheries (Francis, 2017). Patterns in unstandardised 
bycatch rates imply basking sharks were captured in relatively large numbers in the late 1980s and 
early 1990s, with peak bycatch occurring between 1988 and 1991 (Francis, 2017). Following this 
period, observed bycatch rates declined dramatically. Off the east coast of the South Island raw 
catch-per-unit-effort (CPUE) peaked in 1991 at 81.9 sharks per 1000 tows then fell to no reported 
captures from 2005–2016 (Francis, 2017). It is unclear if the recent decline in basking shark records in 
New Zealand is a result of a change to fishing practices that are less likely to encounter basking 
sharks, changes in regional availability of sharks, or a true decline in basking shark abundance 
(Francis, 2017). 

Basking shark observations are known to be highly variable across years, with gaps in regional 
sightings of up to 20 years (Dewar et al., 2018). Basking shark distribution and occurrence appears to 
be strongly linked to zooplankton/prey abundance at smaller spatial scales, but the drivers of broad 
scale distribution patterns are largely unknown (Sims, 2008). In the Northern Hemisphere, 
environmental predictors such as sea surface temperature (SST), thermal fronts, chl-a concentration, 
and the abundance of zooplankton seem to influence their distribution (Cotton, 2005; Austin et al., 
2019). However, without accurate information on the species’ habitat use and migratory patterns, it 
is difficult to determine the cause of variability in abundance. 

Correlative models that predict the occurrence of species in relation to environmental variables 
(termed species distribution models or habitat suitability models) have become an important part of 
resource management and conservation biology. Such models are capable of filling knowledge gaps 
on spatial and temporal distributions and predicting areas of suitable habitat for widely distributed 
species (Elith et al., 2006; Weber et al., 2017). By relating species’ sightings to environmental 
predictor variables, the abundance or probability of taxa presence can be estimated along with a 
characterisation of the environmental drivers of species distributions. These models are becoming 
increasingly popular for use on marine species spanning large geographic and bathymetric ranges 
and have been employed on a range of cetaceans (Stephenson et al., 2020b), seabirds (Cleasby et al., 
2020), and cartilaginous fishes, including basking sharks in the Northeast Atlantic (Austin et al., 
2019). 

Here, we predict basking shark habitat suitability by combining functionally relevant, high-resolution 
environmental data (1km2 grid resolution) with available data on basking shark occurrence, 
opportunistically recorded across New Zealand's Exclusive Economic Zone (EEZ). Unlike many habitat 
suitability models which include only environmental data, here we had the unique opportunity to 
include biotic (zooplankton prey densities) data. The distribution of prey is often-overlooked, and at 
times, is a key predictor of species’ distributions (Dormann et al., 2018). Understanding biotic 
interactions and their influence in driving species’ distributions is important for predicting into 
unsampled space because the trophic interactions that are at the core of species habitat use may be 
better captured (e.g., more accurate predictions due to climate change) (Araújo and Luoto, 2007). 
Identifying the factors that drive basking shark distribution across the New Zealand marine region is 
important for better understanding species’ regional ecology and to direct and inform future 
research and spatially-focused conservation efforts for this protected species.  
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2 Methods 

2.1 Study area 
The study area extends over 4.2 million km2 of the South Pacific Ocean within the New Zealand 
Exclusive Economic Zone (EEZ, ≈ 25 – 57°S; 162°E – 172°W; Figure 1). New Zealand waters contain 
highly productive zones of mixing between higher salinity, nutrient poor, warm, northern waters, and 
lower salinity, nutrient rich, cold, southern water, resulting in areas of high biological diversity which 
are suitable for a range of shark species (Bradford-Grieve et al., 2006; Leathwick et al., 2006; 
Stephenson et al., 2018; Stephenson et al., 2020c). 

 

Figure 1: Map of the study region. New Zealand Exclusive Economic Zone (EEZ) (black dashed line), 
bathymetry and feature names used throughout the text modified from Stephenson et al., 2020, and the 
location of basking shark records used in this study (black dots).   
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2.2 Species records  
Habitat Suitability Models (HSMs) were used to analyse and spatially predict the distribution of 
basking shark habitat suitability (measured as Habitat Suitability Index – HSI). To maximize the 
sample size, basking shark records (n = 401) were collated from various sources (Francis and Duffy, 
2002; Francis, 2017; C.A.J. Duffy, unpublished data). These sources included records from 
commercial fisheries and public sightings, media reports, museum records, scientific surveys, and 
beach cast specimens. Records included information on date, number of individuals, geographic co-
ordinates and source (where available) and were collected between 1889 and 2020. The data were 
groomed in previous work (Francis and Duffy, 2002; Francis and Smith, 2010; Francis, 2017) to only 
keep records that were confirmed or probable basking shark observations that were within the New 
Zealand EEZ. The most recent records reported by fisheries observers were confirmed with 
photoidentification. Because of difficulties in correcting for differences in sampling methods, all catch 
records were converted into presence records (Elith et al., 2011; Stephenson et al., 2018). To 
minimize the effect of spatial bias in the occurrence data, species records were aggregated spatially 
to a 1km2 grid resolution (Aiello-Lammens et al., 2015; Stephenson et al., 2020b). Strandings and 
reports without an approximate date reference (month) were removed. The final dataset included 
presence records of basking sharks at 369 unique sampling locations.  

2.3 Environmental and biotic predictor variables 
To characterise variability in the New Zealand marine environment, a comprehensive dataset of 
spatial environmental variables was collated at a 1km2 grid resolution, with each spanning the 
breadth of the New Zealand EEZ (Table 1 and Appendix A Table 1, further details are available in 
Stephenson et al. (2020a)). In addition to environmental variables, spatial estimates of various 
zooplankton densities (inferred prey) (Pinkerton et al., 2020) were used as a biological predictor in 
the models (Appendix A, Table 1). Estimates of zooplankton densities did not cover the entire New 
Zealand EEZ (Appendix B, Figure 9). Areas lacking this information will simply represent the modelled 
relationship between basking shark records and the environmental variables. A preliminary 
examination of currently available zooplankton density estimates reveals these are likely to cover 
core areas of basking shark distribution. Of the available environmental and biotic variables, a subset 
was selected to be used in the HSMs (Table 1) based on model tuning described in section 2.4.2. 
Although most of the chosen environmental variables were static (e.g., bathymetry, Bathy), several 
variables were dynamic in time, representing mean monthly statistics for the past 20 years (e.g., 
chlorophyll-a concentration, Chl-a, “temporal resolution” column in Table 1). Prior to fitting of the 
habitat suitability models, values for each environmental and biotic variable were extracted for 
locations of basking shark records by overlaying the records onto each of the environmental and 
biotic variable layers using the “raster” package in R (Hijmans and van Etten, 2012). For dynamic 
environmental variables (mean monthly climatologies), recorded dates of basking shark records were 
used to extract respective values from the month the record was made. 
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Table 1: Spatial environmental and biotic predictor variables included in the final models, collated for 
species distribution models from Stephenson et al. (2020a).  Further details for each environmental variable 
are available in Stephenson et al. (2020a) and details on the biotic variables are available in Pinkerton et al. 
(2020). All other environmental and biotic predictor variables are found in Appendix A. 

Abbreviation Full name Temporal 
resolution  Description Units 

Bathy Bathymetry Static Depth at the seafloor was interpolated from 
contours generated from various sources, 
including multi-beam and single-beam echo 
sounders, satellite gravimetric inversion, and 
others (Mitchell et al., 2012)  

m 

BPI_broad Bathymetric 
position 
index_broad 

Static Terrain metrics were calculated using an inner 
annulus of 12 km and a radius of 62 km using 
the NIWA bathymetry layer in the Benthic 
Terrain Modeler in ArcGIS 10.3.1.1 (Wright et 
al., 2012). Bathymetric Position Index (BPI) is a 
measure of where a referenced location is 
relative to the locations surrounding it. 

m 

Chl-a Chlorophyll-a 
concentration  

Mean 
monthly 

A proxy for the biomass of phytoplankton 
present in the surface ocean (to ~30 m). 
Blended from a coastal Chl-a estimate (quasi-
analytic algorithm (QAA), local aph*(555)) and 
the default open-ocean chl-a value from 
MODIS-Aqua (v2018.0) (Pinkerton, 2016) 

mg m-3 

MLD Mixed layer 
depth 

Mean 
monthly 

The depth that separates the homogenized 
mixed water above from the denser stratified 
water below. Based on GLBu0.08 hindcast 
results using a potential density difference of 
0.030 kg m-3 from the surface. Models used are: 
(1) hycom: from day 265 (2008) to present; (2) 
fnmoc: from day 169 (2005) to present; (3) 
soda: from day 249 (1997) to end of 2004; (4) 
tops: from day 001 (2005) to 225 (2010) 
(Pinkerton, 2016) 

m 

POCFlux Downward 
vertical flux of 
particulate 
organic 
matter at the 
seabed  

Mean 
monthly 

Net primary production in the surface mixed 
layer estimated as the VGPM model 
(Behrenfeld and Falkowski, 1997); this table). 
Export fraction and flux attenuation factor with 
depth estimated by refitting sediment trap and 
thorium-based measurements to 
environmental data (VGPM, SST) as (Lutz et al., 
2002; Pinkerton, 2016) and using data from 
(Cael et al., 2018). 

mgC m-2 d-1 
 

Turbidity Particulate 
backscatter at 
555 nm 
(previously 
used to 
generate 
'turbidity') 

Mean 
monthly 

Optical particulate backscatter at 555 nm 
estimated using blended coastal and ocean 
products. Coastal: QAA v5 product bbp555 from 
MODIS-Aqua data. Ocean: bbp_555_giop ocean 
product (Werdell, 2019). Result calculated as 
long-term (2002–2017) average.  

m-1 
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Abbreviation Full name Temporal 
resolution  Description Units 

Slope Slope Static Bathymetric slope was calculated from water 
depth and is the degree change from one depth 
value to the next. 

Degree 
 

SST Sea surface 
temperature 

Mean 
monthly 

Blended from OI-SST (Reynolds et al., 2002) 
ocean product and MODIS-Aqua SST coastal 
product. Long-term (2002–2017) average values 
at 250 m resolution. 

°C 

Copepoda Copepoda Static Copepods, including calanoid, other cyclopoid, 
and harpacticoid copepods across at least 50 
species. Most abundant identified species 
include Calanus simillimus (29%) and 
Ctenocalanus citer (27%) (Pinkerton et al., 
2020).  

Counts per 
5 nautical 
mile 
Continuous 
Plankton 
Recorder 
(CPR) 
segment 

2.4 Habitat Suitability Modelling (HSM) 
The relationship between environment variables, biotic variables and basking shark records was 
explored using ensemble predictions (Ensemble HSM) from Boosted Regression Tree (BRT) and 
Random Forest (RF) models. This approach limits dependence on a single model type or structural 
assumption and enables a more robust characterization of the predicted spatial variation and 
uncertainties (Robert et al., 2016). 

To estimate basking shark distributions, BRT and RF models require locations of both presences 
(occurrence records) and absences. Here, true absences (i.e., sample locations where no basking 
sharks were recorded) were not available for opportunistic records such as public sightings, media 
reports, or museum records. True absences were also unavailable for the non-opportunistic sampling 
methods (i.e., trawl tows, observer records, scientific surveys), particularly from commercial records 
which are complicated with the inclusion of multiple gear types and fishing protocols (thus affecting 
catchability) and issues regarding a lack of reporting of basking shark interactions (Francis, 2017). 
Therefore, presence only modelling approaches using pseudo absences (i.e., locations where basking 
sharks were not recorded within our study area) was necessary.  

Table 2: Source of basking sharks records used in the models.  “Capture records” include sharks captured 
by other methods not reported in the table (e.g., shark nets, harpoon). 

Source Aerial 
survey 

Capture 
record 

Research 
vessel 

Public 
Sighting 

Surface 
longline 
fishery 

Set net 
fishery 

Trawl 
fishery Unknown 

n records 41 6 14 47 3 7 244 7 
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 Pseudo-absence selection 
A two-dimensional kernel density estimate (KDE) was produced using all basking shark locations 
(presence data) and a cell size of 1km2 (Figure 2). Within the KDE, the 95% percentage volume 
contour (minimum area in which 95% of the KDE value is located) was selected with a default 
bandwidth (bivariate normal kernel) (Calenge, 2006). The 95% KDE was used to create a probability 
grid from which pseudo-absences were sampled according to the probability of grid weights (that is, 
where KDE values were high, the chance of selecting an absence was high) (Georgian et al., 2019). 
Pseudo-absences were generated through random selection of points from within the probability 
grid except within a 1km2-grid radius of the presence localities. By selecting pseudo-absences in this 
manner, the pseudo-absences were subject to the same sampling bias as the presence data. This 
method has been shown to significantly increase the accuracy of BRT and RF models (Elith et al., 
2010; Cerasoli et al., 2017; Georgian et al., 2019). Following recommended best practice, the number 
of pseudo-absences selected by month were equivalent to the number of monthly presences 
(Barbet-Massin et al., 2012). 

 

Figure 2: The 95% kernel density estimate (KDE) probability grid.Areas outside the KDE probability grid 
are covered by crossed black lines. 
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 Predictor variable selection 
In most cases, the inclusion of many variables (e.g., > 20 variables) in tree-based machine learning 
models (i.e., BRT and RF) is avoided because they only provide minimal improvement in predictive 
accuracy, and complicate interpretation of model outcomes (Leathwick et al., 2006). As the 
interpretation of drivers of distribution of basking shark was a key requirement, a reduction in the 
number of predictor variables was undertaken in order to produce a parsimonious model. A BRT 
model was initially fitted using all available environmental variables which was then subjected to a 
simplification process whereby environmental variables were removed from the models, one at a 
time, using the “simplify” function (Elith et al., 2006). Firstly, this simplification process assesses the 
relative contributions of each variable in terms of deviance explained, with the lowest contributing 
variables removed from the model. The model is then refitted with the remaining environmental 
variables. The change in deviance explained that resulted from removing the variable was then 
examined and the process repeated until the deviance explained decreased by > 1% between 
removal of predictor variables. Despite having a relatively small influence on the model, Chl-a was 
retained as this predictor was found to be an important predictor of basking shark distribution 
elsewhere (Austin et al., 2019). 

The final variables retained for modelling were Bathymetry, BPI broad, Chl-a, mixed layer depth 
(MLD), Turbidity, POCFlux, Slope, sea surface temperature (SST), and Copepoda (Table 1). Several 
environmental variables showed some co-linearity (Figure 3) however, all levels of co-linearity were 
considered acceptable for tree-based machine learning methods (Pearson correlation < 0.75, (Elith et 
al., 2010; Dormann et al., 2013). The ‘final’ environmental variables selected through this approach 
were also used in RF models (Appendix B Figure 1-Figure 9). 

 

Figure 3: Pearson’s correlation coefficients among the final environmental and biotic variables.  
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 Boosted Regression Tree models 
BRT modelling combines many individual regression trees (models that relate a response to their 
predictors by recursive binary splits) and boosting (an adaptive method for combining many simple 
models to give improved predictive performance) to form a single ensemble model (Elith et al., 
2008). Detailed descriptions of the BRT method are available in Ridgeway (2007) and Elith et al. 
(2008). All statistical analyses were undertaken in R (R Core Team, 2020) using the ‘Dismo’ package 
(Hijmans et al., 2017). BRT models were fitted with a Bernoulli error distribution, a tree complexity of 
2, a learning rate of 0.01 (with parameters selected so as to fit trees for each bootstrapped model), a 
bag fraction of 0.7 and random 10-fold cross evaluation following recommendations from Leathwick 
et al. (2006) and Elith et al. (2008). The BRT method has been widely used in ecological applications 
and has performed well in previous studies of fish and cetacean distributions in New Zealand 
(Leathwick et al., 2006; Compton et al., 2013; Stephenson et al., 2020b). 

 Random Forest models 
RF models (Breiman, 2001) fit an ensemble of regression (abundance data) or classification tree 
(presence/absence data) models describing the relationship between the distribution of an individual 
species and some set of environmental variables (Ellis et al., 2012). Following environmental and 
biotic predictor variable selection using the BRT model, the RF model was tuned using the train 
function in the R package ‘caret’ (Kuhn, 2020). This function selects optimal values for the complexity 
parameters mtry (the number of variables used in each tree node), maxnodes (the maximum number 
of terminal nodes in each trees), and ntree (the number of trees to grow). RF models have previously 
been applied to demersal fish in the New Zealand EEZ (Stephenson et al., 2018). 

 Bootstrapping the models 
BRT and RF models were bootstrapped 200 times. A random ‘training’ sample with a sample size 
equal to the number of presence records was drawn with replacement. A random sample of pseudo 
absence of equal number was drawn without replacement from the full set of available pseudo 
absences separated by month (Barbet-Massin et al., 2012) and the models were run using these 
presence-pseudo absence records. Presence records which were not randomly selected were 
combined with a random number of pseudo absences and were set aside for independent 
assessment of model performance (referred herein as ‘evaluation’ data). At each BRT and RF model 
iteration, geographic predictions were made using environmental predictor variables to a 1km2 grid. 
Given that BRT and RF models used pseudo absences, we refer to our outputs as ‘habitat suitability’ 
(rather than the commonly used ‘probability of occurrence’) because we did not have information on 
‘catchability’ or ‘sightability’ of basking sharks from the different sampling methods nor did we have 
estimates of species prevalence (Anderson et al., 2016; Georgian et al., 2019). HSI and a spatially 
explicit measure of uncertainty (measured as the standard deviation of the mean predicted HSI, SD) 
were calculated for each grid cell using the 200 bootstrapped layers.  

 Model performance 
BRT and RF model performance were evaluated using AUC (area under the Receiver Operating 
Characteristic curve) and TSS (True Skill Statistic). AUC is an effective measure of model performance 
and a threshold-independent measure of accuracy, while the TSS is a threshold-dependent measure 
of accuracy, but is not sensitive to prevalence (Allouche et al., 2006; Komac et al., 2016). AUC scores 
range from 0 – 1, with a score of 0.5 indicating model performance is equal to random chance, a 
score > 0.7 indicating adequate performance, and a score > 0.80 indicating excellent performance 
(Hosmer Jr et al., 2013). TSS, which takes into account Specificity and Sensitivity to provide an index 
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ranging from -1 to +1, where +1 equals perfect agreement and -1 is no better than random, Allouche 
et al. (2006). A TSS value > 0.6 is considered useful. (Allouche et al., 2006). Model fit metrics were 
calculated using both the ‘training’ dataset and the ‘evaluation’ dataset. The latter is considered a 
more robust and conservative method of evaluating goodness-of-fit of a model than using the same 
data with which the model was trained (Friedman et al., 2001).  

 Ensemble models 
We produced an ensemble model by taking weighted averages of the predictions from each model 
type, using methods adapted from Anderson et al. (2016), Georgian et al. (2019), and Anderson et al. 
(2020). This adapted procedure derives a two-part weighting for each component of the ensemble 
model, taking equal contributions from the overall model performance (AUC value derived from the 
‘evaluation’) and the uncertainty measure (SD) in each cell, as follows: 

𝑊𝑊1𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵
𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵+𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑅𝑅

  and  𝑊𝑊1𝐵𝐵𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑅𝑅
𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵+𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑅𝑅

     

 

𝑊𝑊2𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝑀𝑀𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵
𝑀𝑀𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵+𝑀𝑀𝑆𝑆𝐵𝐵𝑅𝑅

  and  𝑊𝑊2𝐵𝐵𝑅𝑅 = 1 − 𝑀𝑀𝑆𝑆𝐵𝐵𝑅𝑅
𝑀𝑀𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵+𝑀𝑀𝑆𝑆𝐵𝐵𝑅𝑅

   

 

𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑊𝑊1𝐵𝐵𝐵𝐵𝐵𝐵+𝑊𝑊2𝐵𝐵𝐵𝐵𝐵𝐵
2

  and 𝑊𝑊𝐵𝐵𝑅𝑅 = 𝑊𝑊1𝐵𝐵𝑅𝑅+𝑊𝑊2𝐵𝐵𝑅𝑅
2

   

 

𝑋𝑋𝐸𝐸𝐸𝐸𝑀𝑀 = 𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵 ∗𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵 +  𝑋𝑋𝐵𝐵𝑅𝑅 ∗𝑊𝑊𝐵𝐵𝑅𝑅   

 

𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 = 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵 ∗𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵 +  𝑆𝑆𝑆𝑆𝐵𝐵𝑅𝑅 ∗ 𝑊𝑊𝐵𝐵𝑅𝑅  

 

where 𝑀𝑀𝑀𝑀𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑀𝑀𝑀𝑀𝑆𝑆𝐵𝐵𝑅𝑅 are the model performance statistics; 𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑋𝑋𝐵𝐵𝑅𝑅 are the model 
predictions; 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑆𝑆𝑆𝑆𝐵𝐵𝑅𝑅 are the bootstrap SDs; and 𝑋𝑋𝐸𝐸𝐸𝐸𝑀𝑀 and 𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 are the weighted ensemble 
predictions and weighted SDs, respectively, from which maps of predicted species distribution and 
model uncertainty were produced. All spatial outputs from this work are provided at a 1km2 grid 
resolution and using the Albers Equal Area projection cantered at 175°E and 40°S (EPSG:9191), a 
standard format now accepted by the Department of Conservation (DOC) and Fisheries New Zealand 
(FNZ) (Wood et al., in prep).  

Two measures of spatially explicit uncertainty were produced: an estimate of our spatial coverage of 
species occurrence (95% KDE) and the standard deviation of the predicted basking shark distribution 
(i.e., model uncertainty). The calculated spatial coverage of species occurrence was assumed to be 
indicative of basking shark distributions, and thus, is presumed to have more certain predictions of 
the species’ distribution. Where predictions were projected outside the spatial coverage of species 
occurrence (i.e., where there are few or no sightings), it is assumed that the relationship between 
the environment and species’ records may be less robust and thus predictions outside this range 
contain some degree of uncertainty (e.g., similarly to the methods used in Stephenson et al. 
(2020b)). Standard deviation (SD) of the mean predicted habitat suitability were estimated through 
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the bootstrapping methods outlined in section 2.4.5 and are provided as uncertainty estimates of 
basking shark distribution. 

Ensemble model performance was assessed using AUC and TSS by comparing ensemble model 
predictions to all basking shark presence records and an equal number of randomly selected pseudo 
absence data. To ensure that the random selection of pseudo absence data did not provide 
misleading model performance metrics, this procedure was iterated 50 times and mean AUC and TSS 
score calculated for the ensemble model (Barbet-Massin et al., 2012). 

Partial dependence plots were made for the BRT and RF models to evaluate the effect of each 
predictor on species’ distribution by plotting the effect of the predictor on the response (basking 
shark presence) after accounting for the average effects of all other model predictors (Elith et al., 
2008). Ensemble partial dependence plots were created with an average of the BRT and RF partial 
dependence plots. 
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3 Results 

3.1 Basking shark records 
Most basking shark records (72%, n = 265) occurred in the spring and summer months (September to 
February), and the majority were reported from trawl fisheries (Table 2). Since 2000, most records 
(84%, n = 103) have been from fishing events, with one aerial record and 19 opportunistic sightings. 
In the past decade, all but two of the 45 basking shark records were from fishing interactions. 

3.2 Model performance 
AUC and TSS scores using evaluation data were very similar between models, with the RF model 
performing slightly better than the BRT model (AUC: 0.92 and 0.89; TSS, 0.72 and 0.69 respectively, 
Table 2). Both indices indicated the models were useful in predicting basking shark occurrence (> 
0.7). Measures of BRT and RF model performance scores had low variability (measured by the 
standard deviation of the mean), suggesting the models were performing consistently across 
bootstrap samples. Model fits between training data and evaluation data were similar, with model 
fits for the evaluation data slightly lower than the training data (as would be expected). The similarity 
of these fits provides some indication that the training data were not overfitted in the models. 

Table 3: Mean cross-validated estimates of model performance for the bootstrapped boosted 
regression tree (BRT) and random forest (RF) models.  

 
Deviance 
explained 

(training data) 

Deviance 
explained 

(evaluation 
data) 

TSS (training 
data) 

TSS 
(evaluation 

data) 

AUC (training 
data) 

AUC 
(evaluation 

data) 

BRT model 0.60 ± 0.03 0.36 ± 0.10 0.92 ± 0.02 0.69 ± 0.05 0.95 ± 0.01 0.89 ± 0.03 

RF model 0.75 ± 0.02 0.52 ± 0.07 0.88 ± 0.02 0.72 ± 0.04 0.98 ± 0.00 0.92 ± 0.02 

3.3 Variable selection and contribution 
The relative importance of each predictor and their influence on basking shark habitat suitability 
were consistent across BRT and RF models (Appendix C Figure 10, Figure 11). Measured by deviance 
explained, vertical flux (POCFlux, 26.0%), slope (Slope, 14.1%), and turbidity (Turbidity, 10.6%) were 
the three most important variables in predicting basking shark habitat suitability (Figure 4). 
Bathymetry (Bathy, 9.7%) and BPI broad (BPI broad, 9.6%) were also moderately important variables. 
There was a strong positive relationship of predicted basking shark HSI with vertical flux, highest in 
areas where vertical flux was 20 mgC m-2 d-1 or greater than what would be expected for the given 
depth. High HSI was predicted in gently sloping and less complex seafloor topologies with high 
turbidity. Two depth strata had high HSI - nearshore depths and depths between 200 and 550 m. A 
less clear relationship was observed between HSI and sea surface temperature (SST) and mixed layer 
depth (MLD), with low HSI occurring between temperatures of 12.5°C and 15°C and in areas where 
the mixed layer depth was approximately 75 m. There was a weak relationship between HSI and 
copepod (Copepoda) densities, with low HSI occurring with low levels of copepod densities, a peak in 
HSI at moderate copepod densities (10-20 counts per 5 nautical miles), and a plateau in HSI values at 
the highest levels of copepod densities (>25 counts per 5 nautical miles). HSI was lowest at moderate 
levels of chl-a concentration (Chl-a) (0.5-1.0 mg m-3) and highest at high chl-a concentration (>1.2 mg 
m-3).
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Figure 4: Partial dependence plots of the mean boosted regression tree (BRT) and random forest (RF) models for the nine variables, showing the influence of each 
predictor variable on the response. Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents the standard deviation.
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3.4  Predicted basking shark distributions 
Areas of high habitat suitability for basking sharks in New Zealand waters occurred along the 
continental slope, particularly along the 250 m contour along the North and South Islands, Mernoo 
Bank, Pukaki Rise, Puysegur, and around New Zealand’s offshore islands (Chatham Islands, Stewart 
Island, Bounty Islands, and Auckland Islands) (Figure 5, Figure 6). Within the spatial coverage of 
species occurrence, areas of moderate uncertainty (SD >0.2) included most offshore waters north of 
40°S, the deeper depths (>500 m) of the Hokitika Canyon, northern Chatham Rise, coastal waters off 
east coast of the South Island (Canterbury Bight), Foveaux Strait (between the South Island and 
Stewart Island) and Puysegur (Figure 7). The North Island and features further from the continental 
shelf, including Chatham Rise were outside of the estimated spatial coverage of species occurrence. 
In addition, moderate - high uncertainty (SD > 0.2) was reported along deep sea features north of 
New Zealand, including the Kermadec Ridge and Trench, the Colville Ridge, the Norfolk Ridge, and 
the Lord Howe Rise (Figure 7). 

 

Figure 5: The predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive 
Economic Zone (EEZ) modelled using the bootstrapped ensemble models. Areas outside 95% kernel density 
estimate (KDE) probability grid indicating lower confidence that can be placed in the predicted habitat 
suitability are covered by crossed black lines. 
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Figure 6: The predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive 
Economic Zone (EEZ) modelled using the bootstrapped ensemble models for A) West Coast South Island; B) 
East Coast South Island; C) south of South Island including Puysegur and Stewart Island; D) Chatham Islands; 
and E) Auckland Islands. Note that the Chatham Islands (D) is outside the KDE probability grid estimate. 
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Figure 7: Standard deviation of the predicted habitat suitability index (HSI) of basking shark in the New 
Zealand Exclusive Economic Zone (EEZ) modelled using the bootstrapped ensemble models. Areas outside 95% 
kernel density estimate (KDE) probability grid indicating lower confidence that can be placed in the predicted 
probability occurrence are covered by crossed black lines. 
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4 Discussion 
This study has provided the first insight into habitat suitability for basking sharks in the South Pacific. 
Here, we have used a novel approach to assess habitat suitability by incorporating a combination of 
static and temporally dynamic environmental (n = 8) and biotic (n = 1) predictors into ensembled HSI 
models. The BRT and RF models had good predictive power (AUC and TSS > 0.7) and both models 
performed similarly with low variability in the model fit metrics. The outputs produced here will be 
useful for fisheries risk assessment (e.g., spatially explicit risk assessment) and conservation needs, as 
well as providing guidance for future research efforts (e.g., areas of interest for future sampling). 
However, caution should be considered given the relatively few species presence records and lack of 
true absence data. 

4.1 Drivers of basking shark distribution  
Basking shark habitat suitability was largely influenced by variables representing ocean processes. 
Overall, areas with high levels of vertical flux of particulate organic matter at the seabed had high 
habitat suitability – which is likely indicative of higher levels of primary production in the surface 
ocean and higher prey density in the mesopelagic layers and at the seafloor. In the Northeast 
Atlantic, basking sharks are often observed in shallow, highly productive coastal waters during spring 
and summer months where they feed on zooplankton blooms (Sims, 2008). Basking sharks were 
previously observed in similar environments (e.g., east coast of the South Island) around New 
Zealand (Francis and Duffy, 2002).  

Given that there is little population differentiation across global regions, it is plausible basking sharks, 
and possibly different groups of individuals, engage in large inter-oceanic and trans-oceanic 
migrations throughout New Zealand and the wider Pacific Ocean over prolonged periods of time 
(Lieber et al., 2020). The inclusion of dynamic (mean monthly) environmental variables here may 
allow the models to capture temporal change in patterns of basking shark distribution, including 
seasonal changes and interannual variability. The mismatch in the sighting data and satellite record 
precludes using the models to reproduce long-term trends in shark sightings. In our results, both 
inshore and offshore regions were highlighted as areas of high habitat suitability. This is particularly 
evident in the bimodal effect of the bathymetry predictor, where basking shark habitat suitability 
was observed to be highest in very shallow depths (<100 m), and again at depths between 200 and 
500 m. This result is consistent with previous work where basking sharks have been shown to exhibit 
seasonal vertical space use in the Northeast Atlantic, with tagged individuals occupying shallow 
depths (<100 m) in the summer months and depths greater than 1000 m in late winter/early spring 
(Doherty et al., 2019). 

While bathymetry (and slope) were also found be important predictors, their effect may be partially 
influenced by basking shark availability to fisheries (see below). Basking sharks have been shown to 
dive as deep as 1264 m and have been regularly documented at depths of 600–1100 m (Francis and 
Duffy, 2002; Gore et al., 2008; Doherty et al., 2017). The species has also been shown to follow 
distinct water masses at depth, remaining at depths of 250 m or more for months without coming to 
the surface (Braun et al., 2018; Dewar et al., 2018). Basking sharks are known for complex diel 
vertical movements, which are thought to be influenced by shifts in prey availability and 
oceanography (Sims et al., 2005; Dewar et al., 2018). In well-stratified deep waters, basking sharks 
exhibit normal diel vertical movements (shallow depths at night, deeper depths during daylight), 
while sharks occupying inshore, inner-shelf areas near thermal fronts conduct reverse diel vertical 
movements (shallow depths during the day, deeper depths at night) (Sims et al., 2005). This may 
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explain, at least in part, why more contemporary sightings of basking sharks have been made by 
fisheries operating during daylight hours (when sharks are occurring at their preferred deeper depth 
range) but does not offer insight into the disappearance of inshore observations or why individuals 
are no longer seen at the surface in the region.  

Water temperature had relatively minimal influence on basking sharks occurrences. Basking sharks 
appear to have a broad thermal range and are therefore relatively unrestricted by temperature (Sims 
et al., 2003). They can cross tropical regions by submerging into deeper, colder water (Skomal et al., 
2009) and one individual was encountered in tropical waters off Indonesia (Fahmi and White, 2015). 
While gradual changes in sea temperatures may have minimal effect on basking sharks, ocean heat 
waves and processes associated with sea surface temperatures might be more relevant, and are 
expected to shift with climate change. By 2100, climate change projections predict sea surface 
temperature will increase by 2.5°C, which in turn is predicted to lead to declines in surface mixed 
layer depth (by 15%), primary production (4.5%) and particle flux (12%); with the largest changes in 
macronutrients predicted in eastern Chatham Rise and southern Sub-Antarctic waters (Law et al., 
2018). Such changes in the marine environment may alter food availability for basking sharks and 
also cause an alteration in their distribution. Elsewhere , basking shark movement patterns have 
been linked to shifts in prey availability and oceanography (Sims et al., 2005; Gore et al., 2008; Dewar 
et al., 2018). One tagged individual was shown to remain in an area with putative upwelling and high 
abundance of phytoplankton in the Western Atlantic for up to a month (Gore et al., 2008). In the 
Northeast Atlantic, a northward shift in basking shark distribution in response to long-term 
zooplankton declines was found to correspond with declines in basking shark catch in Irish fisheries 
to the south from 1948 to 1975 (Sims and Reid, 2002).  

The biotic predictive layer included here was found to have lower influence on habitat suitability 
compared to some of the environmental predictors. Prey availability is highly patchy and temporally 
variable; thus, it is possible a static variable reflecting prey abundance was unable to accurately 
represent the spatial distribution of prey. However, the inclusion of biotic predictors in the model is 
important in understanding species’ relationship with the marine environment in unobserved space 
and has been identified as a potential link in understanding effects in climate change. Although prey 
preference for New Zealand sharks is poorly understood, there is some relationship between New 
Zealand basking shark distribution and copepod abundance, as seen in the North Atlantic (Sims and 
Merrett, 1997).  

The environmental predictors used in this work were comprehensive and many were dynamic. 
Predictors including chl-a concentration and vertical flux that are often used as an index of 
phytoplankton abundance (primary production) and are strongly liked to primary consumers such as 
copepods. Here, these predictors were found to positively influence basking shark HSI and could be 
further explored to better understand historic and future basking shark distribution. In recent 
decades, dramatic shifts in chl-a concentration have been reported the South Pacific and the 
Southern Oceans. Significant declines in chl-a concentration were observed in spring and summer 
months in the South Pacific from 1979–2000 and significant increases linked to extreme summer 
marine heatwaves in the Southern Ocean between 2002 and 2018 (Gregg and Conkright, 2002; 
Montie et al., 2020). Similar models used in this project could be explored to predict basking shark 
distribution response to future climate change forecasting. 
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4.2 Basking shark habitat suitability in New Zealand 
Areas of high basking shark habitat suitability included the east and west coasts of the South Island, 
Puysegur, and the southern edge of the Campbell Plateau. Some areas of Chatham Rise, specifically 
around Mernoo Bank and off the southern slope of Pitt Island (Chatham Islands), were also identified 
as areas of high habitat suitability. Much of Chatham Rise, however, was outside the spatial coverage 
of species occurrence and thus habitat suitability predictions hold a higher degree of uncertainty. 
Chatham Rise is a known hotspot for chondrichthyan diversity in New Zealand waters (Finucci et al., 
in prep), but interestingly, basking sharks have very rarely been reported from here. Chatham Rise, 
as well as Puysegur, have relatively low densities of copepods (see Appendix B, Figure 1-9) and may 
not be optimal feeding grounds for basking sharks. 

Given the long temporal span of the data, model predictions may be more representative of past, 
and not current, suitable habitat for basking sharks in New Zealand waters. Some predicted inshore 
habitat suitability was likely influenced by past inshore sightings. Basking sharks were previously 
reported across northern New Zealand and were observed as regular visitors to the Hauraki Gulf 
during the spring months of the late 19th century (Cheeseman, 1891). The predictions made here are 
smoothed over time, as there is a mismatch between the availability of basking shark records (121 
years) and environmental data (approximately 20 years). As mentioned above, it is possible that the 
models have highlighted seasonal patterns of distribution by indicating both inshore and offshore 
regions as areas of high habitat suitability with the presence of bimodality in the bathymetry HSI. 
However, we hypothesize these patterns could also be indicative of behavioural shifts in distribution, 
with basking sharks shifting to deeper and offshore habitat in recent decades, but further work is 
required to confirm this. 

There were a number of areas where the spatially explicit uncertainty (measured as the SD) was 
relatively high, indicating the relationship between basking sharks and the environment was more 
uncertain. In these areas, such as Cook Strait, the northern Chatham Rise, and Foveaux Strait, few 
basking shark sightings where available and uncertainty might be linked to low sample size. 
Uncertainties regarding the most northern predictions of habitat suitability (north of 40°S) may, in 
part, be explained instead by a lack of information on copepod density north of 40°S (Pinkerton et al., 
2020). Our understanding of basking shark use of the pelagic habitat remains relatively unknown, 
largely due to the spatial bias in observations. 

Differences in habitat suitability among sexes or size classes, a common observation among shark 
species, were not examined at this time due to the relatively small sample size of basking sharks 
across the region and the absence of size and sex data for most records. 

The estimate of spatial coverage of species occurrence (top 95% of the KDE of basking shark 
occurrences) provides a representation of the likely geographic (and in turn environmental) space 
occupied by basking sharks within New Zealand waters. Predicted distribution outside of this area, as 
well as in areas within New Zealand waters where records are scarce, should be treated with caution 
as the prediction will not be underpinned by occurrence records and thus represents prediction into 
unsampled space. In this study, the environmental threshold reflects the distribution of presences 
only – and thus retains any spatial biases associated with these datasets. In particular, the spatial 
distribution of presences is related to the distribution of fishing effort and human population centres 
(for opportunistic sightings) and may not be an accurate representation of hotspots. However, using  
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the top 95% of the KDE of basking shark occurrences provides a more conservative estimate of this 
species’ spatial distribution, which can be useful in determining when modelled predictions are 
occurring outside of sampled environmental space. This measure provides a meaningful threshold 
with which to classify broad areas as ‘uncertain’. 

4.3 Future directions 
The lack of basking shark records in New Zealand waters during recent years highlights the need to 
better understand the underlying causes for this. However, without dedicated offshore surveys and 
research efforts, and the paucity of fisheries-independent data, current records are reliant on 
interactions with fisheries, especially trawl fisheries (Francis, 2017). Because of this, our knowledge 
of New Zealand basking shark distribution is essentially limited to areas of relatively high historic and 
current trawl fishing effort (Baird and Wood, 2018). Most basking shark interactions occur during the 
spring-summer months, corresponding to when fishing vessels target commercially important 
species, such as spawning aggregations of arrow squid (Nototodarus sloanii) (Hurst et al., 2012). As a 
protected species, it is mandatory to report basking shark interactions with fisheries. However, there 
is uncertainty in the levels of reporting, and observer coverage is relatively low in some fisheries 
(e.g., inshore fisheries), so that presence records are likely underestimated (Francis, 2017). 
Understanding habitat use will assist in assessing risk to fishing activities and could be incorporated 
into management frameworks such as the spatially explicit risk assessment that New Zealand has in 
place for other protected species (Large et al., 2019).  

Identifying areas of high habitat suitability could also assist in decision making processes for future 
research efforts. Previous research has identified the need to tag free-swimming basking sharks to 
better understand species movement, habitat use, and interactions with fisheries (Francis, 2017). 
This will require the ability to find individuals at the surface, and at an accessible location. By 
identifying areas of high habitat suitability, research efforts can be directed to specific areas of 
interest to increase the tagging success. For example, the Auckland Islands has been identified as an 
area of high habitat suitability for basking sharks where historic surface sightings exist (Parrott, 
1958). This area is also known to be a hotspot for southern right whales (Eubalaena australis) during 
the Austral winter months (Rayment et al., 2015). Southern right whales follow the Subtropical Front 
(STF), a continuous feature within the Southern Tropical Convergence at latitudes 39° – 42°S, 
characterized by elevated primary productivity (Murphy et al., 2001; Mackay et al., 2020). Southern 
Ocean oceanographic fronts have been identified as important foraging areas for a range of marine 
predators (Bost et al., 2009) and may also be important for basking sharks.  

More data on at-sea distribution of basking sharks is required to understand habitat use, threat 
overlap, and population status throughout the New Zealand and South Pacific region. The total South 
Pacific basking shark population size is unlikely to be high; in the Northeast Atlantic, basking shark 
numbers likely do not exceed 10,000 individuals (Lieber et al., 2020). This may make species’ 
detection more difficult in the vast marine space of New Zealand’s EEZ. Aerial surveys have been 
successful in detecting New Zealand basking sharks over large spatial scales, and such surveying has 
been useful for estimating regional population sizes (Francis and Duffy, 2002; Westgate et al., 2014). 
However, surveys last conducted in 2010–2011 off Banks Peninsula failed to locate any basking 
sharks (Chapman and Duffy, 2011). Basking sharks may travel or feed in subsurface habitat, and 
therefore go undetected in aerial surveys. Alternative means of tracking these animals, such as 
autonomous underwater vehicles (AUV) (Hawkes et al., 2020), should be explored.  
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Appendix A Environmental and biotic variables 

Table 1: Spatial environmental and biotic predictor variables collated for species distribution models 
from Stephenson et al. (2020) and not included in the final model. Further details for each environmental 
variable are available in Stephenson et al. (2020a) and details on the biotic variables are available in Pinkerton 
et al. (2020). 

 

Abbreviation Full name Temporal 
resolution  Description Units 

Beddist Benthic 
sediment 
disturbance  

Static One-year mean value of friction velocity 
derived from (1) hourly estimates of surface 
wave statistics (significant wave height, peak 
wave period) from outputs of the 
NZWAVE_NZLAM wave forecast, at 8-km 
resolution, (2) median grain size (d50), at 250 
m resolution, (3) water depth, at 25-m 
resolution. Benthic sediment disturbance 
from wave action was assumed to be zero 
where depth ≥ 200m. 

ms-1 

BotNi Bottom 
nitrate 

Static Annual average water nitrate concentration 
at the seafloor (using NZ bathymetry layer) 
based on methods from Reynolds et al. 
(2002). The oceanographic data used to 
generate these climatological maps were 
computed by objective analysis of all 
scientifically quality-controlled historical data 
from the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) 
Atlas of Regional Seas database (CARS2009, 
2009). 

umol l-1 

BotOxy Dissolved 
oxygen at 
depth 

Static Annual average water oxygen concentration 
at the seafloor (using NZ bathymetry layer) 
based on methods from Reynolds et al. 
(2002). Oceanographic data from CARS2009 
(2009). 

ml l-1 

BotPhos Bottom 
phosphate 

Static Annual average water phosphate 
concentration at the seafloor (using NZ 
bathymetry layer) based on methods from 
Reynolds et al. (2002). Oceanographic data 
from CARS2009 (2009). 

umol l-1 

BotSal Salinity at 
depth 

Static Annual average water salinity concentration 
at the seafloor (using NZ bathymetry layer) 
based on methods from Reynolds et al. 
(2002). Oceanographic data from CARS2009 
(2009). 

psu 

BotSil Bottom 
silicate 

Static Annual average water silicate concentration 
at the seafloor (using NZ bathymetry layer) 
based on methods from Reynolds et al. 
(2002). Oceanographic data from CARS2009 
(2009). 

umol l-1 
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Abbreviation Full name Temporal 
resolution  Description Units 

BotTemp Temperature 
at depth 

Static Annual average water temperature at the 
seafloor (using NZ bathymetry layer) based 
on methods from Ridgway et al. (2002). 
Oceanographic data from CARS2009 (2009). 

°C km-1 

BPI_fine BPI_fine Static Terrain metrics were calculated using an 
inner annulus of 2 km and a radius of 12 km 
using the NIWA bathymetry layer in the 
Benthic Terrain Modeler in ArcGIS 10.3.1.1 
(Wright et al. 2012). Bathymetric Position 
Index (BPI) is a measure of where a 
referenced location is relative to the 
locations surrounding it. 

m 

Chl-a.Grad Chlorophyll-a 
concentration 
spatial 
gradient 

Mean 
monthly 

Smoothed magnitude of the spatial gradient 
of annual mean Chl-a. Derived from Chl-a 
described above. 

mg m-3 km-1 

DET Detrital 
absorption 

Mean 
monthly 

Total detrital absorption coefficient at 443 
nm, including due to coloured dissolved 
organic matter (CDOM) and particulate 
detrital absorption. Estimated using quasi-
analytic algorithm (QAA) applied to MODIS-
Aqua data, blended with adg_443_giop 
ocean product (Werdell, 2019). 

m-1 

Ebed Seabed 
incident 
irradiance 

Mean 
monthly 

Broadband (400–700 nm) incident irradiance 
(E m-2 d-1) at the seabed, averaged over a 
whole year. Estimated by combining incident 
irradiance at the sea surface (Frouin et al., 
2012) ; this table), diffuse downwelling 
irradiance attenuation (KPAR; this table) and 
bathymetric depth at monthly resolution. 
Derived from blended coastal (QAA) and 
open-ocean attenuation products. 

E m-2 d-1 

Kpar Diffuse 
downwelling 
attenuation 

Mean 
monthly 

vertical attenuation of diffuse, downwelling 
broadband irradiance (Photosynthetically 
Available Radiation, PAR, 400–700 nm). 
Merged coastal and open-ocean product 
based on MODIS-Aqua data. Coastal: 
estimated from inherent optical properties 
(QAA). Ocean: estimated from K490 using 
Morel et al. (2007). 

m-1 

PAR Photo-
synthetically 
active 
radiation 

Mean 
monthly 

Daily-integrated, broadband, incident 
irradiance at the sea-surface based on day 
length, solar elevation and measurements of 
cloud cover from ocean colour satellites 
(Frouin et al., 2012). 

Einsteins m-2 d-1 

SeasTDiff Annual 
amplitude of 
sea floor 
temperature 

Static Smoothed difference in seafloor 
temperature between the three warmest 
and coldest months. Providing a measure of 
temperature amplitude through the year. 

°C km-1 
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Abbreviation Full name Temporal 
resolution  Description Units 

Sed.class Sediment 
classification 

Static Classification of Mud, Sand and Gravel layers 
(this table) using the well-established (Folk 
et al., 1970) classification. Subtidal rocky 
reefs (this table) were incorporated. This 
classification provides a broad measure of 
hardness Mud – Rock. 

NA;  
Mud;  
Muddy gravel; 
Muddy sandy 
gravel;  
sand;  
Gravely mud; 
Gravelly sandy 
mud; 
Gravelly sand; 
Gravel; 
Rock 

SstGrad Sea surface 
temperature 
gradient 

Mean 
monthly 

Smoothed magnitude of the spatial gradient 
of annual mean SST. This indicates locations 
in which frontal mixing of different water 
bodies is occurring (Leathwick et al., 2006). 
Derived from SST described above at two 
resolutions and merged. 

°C km-1 

SuspPM Suspended 
particulate 
matter 

Mean 
monthly 

Indicative of total suspended particulate 
matter concentration. Based on SeaWiFS 
ocean colour remote sensing data (Pinkerton 
et al., 2005); modified Case 2 atmospheric 
correction; modified Case 2 inherent optical 
property algorithm 

Indicative of 
total 
suspended 
particulate 
matter 
concentration 
(g m-3) 

TC Tidal Current 
speed 

Static Maximum depth-averaged (NZ bathymetry) 
flows from tidal currents calculated from a 
tidal model for New Zealand waters (Walters 
et al., 2001). Tidal constituents (magnitude A 
and phase phi, represented as real and 
imaginary parts X + iY = A*exp(i*phi)) for sea 
surface height and currents (8 components) 
were taken from the EEZ tidal model, on an 
unstructured mesh at variable spatial 
resolution. The complex components were 
bilinearly interpolated to the output grid. 

ms-1 

TempRes Temperature 
residuals 

Static Residuals from a GLM relating temperature 
to depth using natural splines – this 
highlights areas where average temperature 
is higher or lower than would be expected 
for any given depth 

°C 

VGPM Net primary 
production by 
the vertically-
generalised 
production 
model 

Mean 
monthly 

Daily production of organic matter by the 
growth of phytoplankton in the surface 
mixed layer, net of phytoplankton 
respiration. Estimated at monthly resolution 
based on satellite observations of chl-a, PAR 
and SST, and model-derived estimates of 
mixed-layer depth, using the vertically-
generalised production model (Behrenfeld 
and Falkowski, 1997). 

mgC m-2 d-1 
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Abbreviation Full name Temporal 
resolution  Description Units 

Oithona Oithona 
similis 

Static Cyclopoid copepods, dominated by Oithona 
similis (97%). The remaining 3% is 
unidentified (Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder (CPR) 
segment 

Euphausiidae Euphausiidae Static All adult and developmental stages of krill 
(generally not identified to species or genus). 
Most abundant identified species was 
Thysanoessa macrura (64%) (Pinkerton et al., 
2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder (CPR) 
segment 

Foraminifera Foraminifera Static Unidentified (97.8%) Foraminifera specimens 
(Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder (CPR) 
segment 

Fritillaria 
spp. 

Fritillaria spp. Static Solitary, free-swimming larvacean, 
unidentified beyond genus (Pinkerton et al., 
2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder (CPR) 
segment 

Pteropods Pteropods Static Pelagic gastropods, predominately Limacina 
spp. (98.9%) (Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder (CPR) 
segment 

Zooplankton Zooplankton Static Total abundance of all zooplankton types, 
including Oithona similis, Copepoda, 
Amphipoda, Chaetognatha, Euphausiidae, 
Foraminifera, Fritillaria spp., Oikopleura spp., 
Ostracoda, Pteropods, and “Other” 
(remaining identified organisms such as 
cephalopods and fish eggs comprising <1% of 
samples) (Pinkerton et al., 2020). 

Counts per 5 
nautical mile 
Continuous 
Plankton 
Recorder (CPR) 
segment 
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Appendix B Spatial distribution of environmental variables 

 

Figure 1: Bathymetry (Bathy) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 2: BPI broad (BPI broad) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 3: Annual mean chlorophyll-a concentration (Chl-a) within the New Zealand Exclusive Economic 
Zone (EEZ). 
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Figure 4: Annual mean mixed layer depth (MLD) within the New Zealand Exclusive Economic Zone (EEZ). 
  

-1500000 -500000 0 500000 1000000

-1
50

00
00

-5
00

00
0

0
50

00
00

10
00

00
0

Mixed layer depth

-200

-100

0

100

200



 

44 Exploring the drivers of spatial distributions of basking shark (Cetorhinus maximus) in the South Pacific 

  

Figure 5: Slope (Slope) within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 6: Annual mean sea surface temperature (SST) within the New Zealand Exclusive Economic Zone 
(EEZ). 
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Figure 7: Annual mean turbidity within the New Zealand Exclusive Economic Zone (EEZ). 
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Figure 8: Annual mean downward vertical flux of particulate (POCFlux) within the New Zealand Exclusive 
Economic Zone (EEZ). 
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Figure 9: Modelled average copepod (subclass Copepoda) density, averaged for three times of day, six 
months (October to March) and years 1998–2018 from (Pinkerton et al., 2020), reprojected for the New 
Zealand Exclusive Economic Zone (EEZ). Areas shown white either have no data, or no predictions were made, 
including because environmental conditions were outside the training data.  
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Appendix C Partial dependence plots 

 
Figure 10: Partial dependence plots of the mean boosted regression tree (BRT) models for the nine variables, showing the influence of each predictor variable on the 
response. Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents the standard deviation.  
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Figure 11: Partial dependence plots of the mean random forest (RF) models for the nine variables, showing the influence of each predictor variable on the response. 
Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents the standard deviation.  
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