

12 December 2025

Whare Kaupapa Atawhai/
Conservation House 18
Manners Street Te Aro,
Wellington

6011
doc.govt.nz

Ref: OIAD-5776

Tēnā koe [REDACTED]

Thank you for your request to the Department of Conservation (DOC), received on 24 October 2025, in which you asked for:

*“...all survey results regarding sampling for kauri dieback in DOC parks including Coromandel Forest Park, Kaimai Mamaku Park, and Motutara Settlement Reserve (Goldie's Bush). I would like to see the locations that have been sampled and whether the results are positive or negative for *Phytophthora agathidicida*.“*

*“Secondly, could you please send me any scientific reports or studies in which a correlation has been found between where the walking tracks are, and where *Phytophthora agathidicida* has been found? If there is no such data, what scientific data is being used to determine that tracks should be closed for kauri protection?”*

On 19 November 2025 we extended the timeframe to respond to your request, to 12 December, due to the consultation necessary.

We have interpreted your request for survey results for Kauri Dieback in DOC parks to be limited to the listed reserves: Coromandel Forest Park, Kaimai Mamaku Park, and Motutara Settlement Reserve (Goldie's Bush). These are attached as Item One. Please note that the information provided is not a complete dataset. There is an ongoing proof of absence project in the Kaimai Mamaku Park. Some additional data is held but is still going through a data validation process. The results of this project will be publicly released in due course, by mid-2026.

It is worth noting the lead agency for kauri protection is the Ministry for Primary Industries (MPI). The Kauri Protection programme, Tiakina Kauri, holds a national database of Kauri Surveillance data. This includes data collected by DOC, MPI and other third parties. If you seek further sampling data, please contact MPI in the first instance.

With regard to scientific reports and studies, a reference list of some relevant research papers are provided as Appendix One.

Phytophthora agathidicida (PA) is a soilborne pathogen responsible for kauri dieback, a lethal disease affecting *Agathis australis* (kauri) through infection of its feeder roots. The pathogen is spread via soil movement, particularly under wet and muddy conditions, with human and animal traffic identified as significant vector risks. Consequently, walking tracks that traverse infected forest areas, especially when hygiene practices are not followed (e.g., failure to clean boots or gear that has come into contact with forest soil), can facilitate the anthropogenic dispersal of PA (Bradshaw *et al.*, 2020).

Burns et al. (2020) recommended either closing tracks or realigning them away from kauri stands as the most effective mitigation strategies. Where closure or realignment is not feasible, a range of measures—such as surface upgrades and root protection infrastructure—were advised to prevent contact between foot traffic and kauri feeder roots.

The 2021 Waitākere Ranges Kauri Population Health Monitoring Survey used an epidemiological approach with the intent to (1) understand kauri health, pathogen prevalence, disease prevalence and other impacts in order to monitor changes over the long term; (2) identify risk factors which are associated with disease or pathogen prevalence to inform potential management intervention options; (3) identify ecological impact variables to provide better information on the long-term impacts of kauri dieback within the forest and (4) understand the long-term impacts of management interventions and then focus intervention efforts on those identified as effective.

A total of 2140 randomly selected trees were surveyed and the soils beneath a subset of 761 of these trees were tested for PA presence (Froud et al 2021). While the survey wasn't specifically designed to prove a causal relationship between tracks and PA, it did find that proximity to tracks could not be ruled out as an important risk factor for the introduction and spread of PA. This is consistent with international results from other *Phytophthoras* sp. (Davidson et al 2005; Cushman et al 2008; Pau'uvale et al 2011).

In light of this evidence and associated recommendations, several tracks across the Coromandel Peninsula are currently closed. The decision to close a track is not taken lightly but has been pursued in situations where there is non-compliance with Rule 10 of the [National Pest Management Plan](#) (NPMP) or high upgrade costs to comply. Upgrades are prioritised based on upgrade and maintenance costs and visitor use numbers. The intent of Rule 10 is to ensure that areas of all tracks and roads open to the public that interface with kauri (kauri hygiene zones) are constructed and maintained to a consistent minimum standard. This standard aims to reduce the risk of introduction or spread of PA from kauri hygiene zones and prevent contact with kauri feeder roots. Closures may also occur to minimize the risk of spreading or introducing the pathogen into areas containing old, ecologically, and culturally significant mature kauri trees.

Item	Date	Document description	Decision
1	24 November 2025	Sampling Results – Maps for Coromandel Forest Park, Kaimai Mamaku Park, and Motutara Settlement Reserve (Goldie's Bush)	Released in full

You are entitled to seek an investigation and review of my decision by writing to an Ombudsman as provided by section 28(3) of the OIA.

Please note that this letter (with your personal details removed) and attached documents may be published on DOC's website.

Nāku noa, nā

Ben Reddiex
Director National Programmes
Department of Conservation
Te Papa Atawhai

Appendix One

References:

Bradshaw, R., Bellgard, S., Black, A., Burns, B., Gerth, M., McDougal, R., Scott, P., Waipara, N., Weir, B. & Williams, N. 2020. *Phytophthora agathidicida*: research progress, cultural perspectives and knowledge gaps in the control and management of kauri dieback in New Zealand. *Plant Pathology*, 69, 3-16.

Burns, B., Prime, K., Bellgard, S.,& Mejdr, T (2020). Independent Panel Review of Track Materials Used for Track Stability and Root Protection in Kauri Forests. Biosecurity New Zealand Technical PaperNo. 2020/08 Prepared for the Kauri Dieback Programme. [Biosecurity New Zealand Discussion/Technical/Information Paper template](#)

Cushman JH, Meentemeyer RK 2008 Multi-scale patterns of human activity and the incidence of an exotic forest pathogen. *Journal of Ecology* 96: 766 – 776.

Davidson JM, Wickland AC, Patterson HA, Falk KR, Rizzo DM 2005. Transmission of *Phytophthora ramorum* in mixed-evergreen forest in California. *Phytopathology* 95: 587–596

Froud, K., Chew, Y. C., Kean, J., Meiforth, J., Killick, S., Ashby, E., Taua-Gordon, R., Jamieson, A., & Tolich, L. (2022). 2021 Waitākere Ranges kauri population health monitoring survey. Auckland Council technical report, TR2022/8

Pau'uvale, A. L. V. I. N. A., Dewan, C., Mora, H., Waipara, N., & Bellgard, S. (2011). Kauri Killer on the Loose?—Study of Human Vectors and PTA Hygiene Treatments. LENS Junior Scientist Award Report.