Monitoring and management of the New Zealand fairy tern/Tara iti (Sternula nereis davisae) and other shorebirds at Mangawhai, for the 2022-2023 Breeding Season

Isabella Holst and Shannan Courtenay
Department of Conservation

Tara iti/New Zealand Fairy Tern

The New Zealand fairy tern (Sternula nereis davisae), or tara iti, with a population of fewer than 40 individuals, is New Zealand's rarest breeding endemic bird (Hansen, 2006; Ismar et al, 2014). This endemic subspecies is under intensive management by the Department of Conservation to protect, and increase, the remaining population at its five breeding sites: Mangawhai, Papakānui, Waipū, Te Ārai, and Pākiri.

Mangawhai sand spit is the largest breeding site for tara iti, with the bulk of the populations' breedin
 nesting there each season. Three large shell patches have been used for nesting in the recent past: Soluth Sea Valley (SSV), North Bund, and Dredge. Over the past few years, tara iti have predominantly nestrd at SSV, a natural shell patch located on the eastern side of the Mangawhai sand spit. This site is also the stable due to its proximity to the mean high tide mark, small dunes, and the sparse vegetation surrourding t. Due to concerns of sand movement and flooding, SSV was dismantled pre-season (in 2021, and again $\mathrm{N}^{2(2)}$) and attempts were made to enhance the Dredge site to encourage nesting there.

Dredge is an artificial breeding site consisting of four slightly separate shellathes on the estuary side of the sand spit. All six breeding pairs at Mangawhai this season nested with 4 mof one another on one of these shell patches (Dredge Bowl). Of the three pairs that re-nested, two ushd scrapes that had already been used for nesting this season, and the other nested in between them. Dredg calso used regularly as a roosting site for unpaired males, immature tara iti and Northern New Zealand rotyerels, particularly during November and December 2022.

Six breeding pairs laid thirteen eggs in nine nests thiseson. Between day seven and fifteen, five eggs from three nests were taken to Auckland Zoo to becomart of the planned captive rearing programme.
Due to nest abandonment during adverse weather, the remaining four eggs from three nests at Mangawhai were recovered to the Auckland Zoo betweepy two and day fifteen. Two of these embryos did not develop and the other two embryos became part of the tive rearing program, as there were no wild nests available to return them to.

Three pairs laid second cutches 14-16 days after abandonment/release. Of the four eggs in these three nests, two were predated, likely by hrier, at days eleven and thirteen; one embryo did not develop; and the other egg was uplifted during adyer. Sleather and eventually transferred to Waipu nest 469, where it hatched on 11 January 2023.

Table 1. Summary of tara iti nests of $22 / 23$ season. *As these eggs were part of the captive rearing program, please see the captive rearing report for further information on the outcome.

Figure 1. Number of tara iti breeding femalef breeding site from 2010-2011 breeding seascen the 2022-2023 season. Productivity is the number of chicks fledged per laying female.
*** 5 of the 7 chicks that "fledged" ${ }^{\text {Witbln }}$ the captive program and were subsequently released were from Mangawhai eggs

Predator Control

The number of tra in the vegetation and dunes around North Bund and 19 Steve Allans installed in three targeted areas. A total of 117 traps whed across the sandspit; 42 DOC200's, 38 Victor professional rat traps, 19 Steve Allans, 14 Victorlerglds, 4 cage and box traps. A total of 20 predators were caught this year. See Table 8 for more inf reration.

Harrier numbers were low this season, as were other predator numbers. Although cats were caught along the edge of the Wildlife Refuge, there was no evidence of cats found on the sandspit from mid-November until end of January.

On 1 January 2023 two tara iti eggs were predated from nest 471, likely by a harrier. A trap-shy harrier became a problem at Dredge for a week between 25/12/2022-01/01/2023. Targeted trapping was unsuccessful until 1 January 2023, when an adult female and juvenile harrier were caught, however the two tara iti eggs had been predated earlier that morning.

Figure 2. Predator capture data from the 2017-2018 breeding season to the 2022-2023 season at Mangawhai site

Compliance and advocacy
There were only five advpeachportunities this season, and no reported compliance issues. It's likely the adverse weather reducedspars it use, resulting in fewer people on the refuge. Over the summer holidays estuary use increased doats and jet skis would often break the five-knot speed limit. Low-flying aircraft were notanisuse thic γ^{\prime}.
Shorebirds
Du t anding habits and limited time of rangers, the data collected on other shorebirds on the Mangawhai sandspit does not accurately reflect their true numbers. However, there were noticeably less NNZ dotterels and variable oystercatcher nests and chicks around than in the previous two seasons. This season rangers recorded only 13 NNZ dotterel nests with six fledglings, and 16 variable oystercatcher nests with 10 fledglings. Three banded dotterel pairs attempted to nest in and around North Bund this season, however there were no confirmed fledglings. Two pied stilt chicks were also observed near the lake at North Bund, though no nests were found.

Caspian terns and red-billed gulls began nesting in October. Caspian terns nested in the same location on the beachfront north of SSV. Rangers recorded 52 nests with 19 chicks fledgling by early January 2023. Red-billed gulls nested at the estuary walkway entrance to North Bund this season, opposite the boat ramp. Rangers counted over 100 nests and 36 chicks; most had fledged by early January 2023. White-fronted terns did not attempt to nest on the sandspit this season.

TABLE OF CONTENTS

Summary of the breeding season 2
Tara iti/New Zealand Fairy Tern 2
Predator Control 4
Compliance and advocacy
Shorebirds 5
Tara iti / NZ Fairy Tern monitoring. 9
1.1 Introduction
. 2 Method 9
Nest 1 (M1): 460 10
Nest 2 (M2): 461 11
Nest 4 (M4): 465
Nest 4 (M4): 465 13 13
Nest 5 (M5): 466 14
Nest 6 (M5): 467 15
Nest 7 (M7): 470 16
Nest 8 (M8): 471 17
Nest 9 (M9): 472 18
Date 23
Site 23
Bird 23
Observation 23
Observer 23
2 Habitat Enhancement 25
2.1 Shell patch enhancement 25
2.3 Weed control 25
3 Shorebird Monitoring 26
3.1 Introduction 26
3.2 Methods 26
3.3 Results and Discussior- 26
3.3.4 Other Species 28
4 Predator Control. 29
4.1 Introduction29
4.2 Methods
4.2 Methods 29
4.3 Resulisad Discussion 30
4.4 Predat Dontrol outside of the tara iti breeding season 34
5 Compliare and Advocacy 39
50 In oduction 39
5.2 Methods 39
5.3 Results and Discussion 39
Watercraft 39
5.4 Advocacy 41
6Recommendations 42
7 Acknowledgements 43

1.1 Introduction

With an estimated population of less than 40 individuals, The New Zealand fairy tern, or tara iti (Sternula nereis davisae), is New Zealand's rarest endemic breeding bird (Hansen, 2006). Tara it are one of three subspecies of the Australasian species. The two other subspecies occur in New Caledonia (S. n. exsul), and Australia (S.n nereis). Tara ti have a conservation status of Threatened-Nationally Critical in New Zealand (Ismar et al Ferreira et al., 2005), whereas the species Sternula nereis is ranked as "Vulnerable" globally (Ismar et 1 Tara inti are the smallest tern species found in New Zealand, weighing around jog, and are described as solitary breeders (Ismar et al, 2014).

This species relies on a combination of estuarine, marine, and sandspit systems for breed and such sites are now very limited within the species' range. Tara inti have five recent known breeding 1020 ns in New Zealand, all north of Auckland (Ismar et al, 2014). Four breeding sites are situated on the as coast (Mangawhai sandspit, Waipū sandspit, Te Ārai and Päkiri), and one on the west coast (Papakānui)

Monitoring of tara it by the Department of Conservation (DOC) has barr carried out since the 1980s (Ferreira et al., 2005). This has developed into an intensive seasonal monitoring programme that is undertaken over the breeding season. Full-time rangers and dedicated volunteers provide and onsite, management of the species.

1.2 Methods

Two rangers were present on site seven days a we from 19 September 2022-24 February 2023. The rangers' role consisted of monitoring tara ti, Northern Zealand dotterels, and variable oystercatchers; erecting fences and signs to protect nesting birds; morning the public and responding to non-compliant activities; trapping predators; and advocating for tai iii and other shore birds.
e
Access to the site was through Taint and onto the Mangawhai sandspit using tracks or below the mean high tide mark along the coast.
Tara inti monitoring conc 1 c d daily by rangers and volunteers, included: searching for breeding pairs, identifying nesting sids monitoring the nest, collecting data, and monitoring the chicks/fledglings. This included gatheriading and disturbance data.
At the bear of the breeding season, the rangers monitored the resident tara inti, recording their movements and h he ins to discover if any pair bonds had formed, and where eggs may be laid. After the eggs were laid, mon orang focused on the pair and their nest from a viewing hide, which reduced human disturbance on the site.

1.3 Results

The outcome of the breeding season is outlined in Tables 1-3.
Table 2. Results of the 2022-2023 Breeding Season for tara it at Mangawhai in comparison to previous seasons.

Seaso n	No. Breedin g Female s	Nesting Attempt s	No. Eggs	No. Known Fertile Eggs	No. Clear Eggs*	No. Eggs Transfe rred In	No. Eggs Transfe rred Out	No. Chicks Hatche d	No. Chicks Fledged	Product ivity M1Payli uys/ pairs)
$\begin{aligned} & 2012- \\ & 13 \end{aligned}$	3	3	5	4	1	2	2			1.0
$\begin{aligned} & 2013- \\ & 14 \end{aligned}$	6	6	11	7	4	2	0		9	1.5
$\begin{aligned} & 2014^{-} \\ & 15 \end{aligned}$	7	11	18	10	8	5	4		5	0.7
$\begin{aligned} & 2015- \\ & 16 \end{aligned}$	4	4	5	4	1	2		3	2	0.5
$\begin{aligned} & \text { 2016- } \\ & 17 \end{aligned}$	3	3	4	3	1		0	4	4	1.3
$\begin{aligned} & 2017- \\ & 18 \end{aligned}$	5	5	9	8	0	0	2	5	4	0.8
$\begin{aligned} & 2018- \\ & 19 \end{aligned}$	4	6	9	4	1	1	2	2	0	0.0
$\begin{aligned} & 2019- \\ & 20 \end{aligned}$	6	7	12	$8 \mathbf{x}$	3	0	2	6	5	0.8
$\begin{aligned} & 2020- \\ & 21 \end{aligned}$	6	11			2	11	15	8	1	0.2
$\begin{aligned} & 2021- \\ & 22 \end{aligned}$	6	8		13	0	1	3	9	7	1.2
$\begin{aligned} & 2022- \\ & 23 \end{aligned}$	6	9	13	10	3	0	10	0	0	0.0

*Eggs that are eitherinertile, fertile but not developed, or early embryonic death has occurred. In all instances embryonic dev nent is not visible without optical support.
Nest 1 (10) 460

| Date Found
 Parent band combination | $20 / 11 / 22$ and $22 / 11 / 22$ |
| :--- | :--- | :--- |
| No. eggs laid | WM-RW (female) \& R-pGM (male) |
| No. natal eggs hatched in natal nest | 0 |
| No. natal chicks fledged from natal nest | 0 |
| Trail camera date in/out | $22 / 11 / 22 / 6 / 12 / 22$ |

Nest location including GPS location	Dredge, E1744176, N6003419
Hide location and proximity to the nest	E1744228, N6003404 and E1744162, N6003329
Nest camera installation	$23 / 11 / 21$ at 1430, approximately 2m from the nest
Egg candling date and results	$05 / 12 / 2022$, fertile and developing

Nest Specific Information

Planned egg collection for captive rearing
A key decision regarding this nest was the planned removal of the egg to Aucklardzo for captive rearing. On 5 December 2022 at 1032 the eggs were collected and were replaced with two, trised, dummy eggs by two of the rangers on site. The male, R-pGM, returned to sit on the dummy eggs withio de minute and a changeover was observed 23 minutes later.

The natal eggs were placed directly into a cotton wool lined, pota MX45 incubator, connected to a battery pack. The incubator temperature was at $36^{\circ} \mathrm{C}$ and relative hum (RH) was 60% at the time of the transfer. At approximately 1100 two rangers walked the incubator an Lary pack to tern point where it was collected by two other rangers for transfer to Auckland Zoo

The nesting pair were released on 6 December 2.2 0941 and were next seen at Dredge on 9 December 2022. They re-nested on 19 December 2022.

Other information
A Northern NZ dotterel nest with was removed on 6 December 2022, approximately 30 m from nest 460 . No nest movement, other specianagement, or other tara iti nest management was required for this nest. The nesting area was checked daily any sign of predators. This is a historical pairing.

Date found	23/11/22
Parent ben 2 gmbination	W-BM (female) \& BK-M (male)
No.egrsa	1 -
N. Datar eggs hatched in natal nest	0
No. Natal chicks fledged from natal nest	0
Trail camera date in/out	23/11/22/21/12/22
Nest location including GPS location	Dredge, E1744179 N6003433
Hide location and proximity to the nest	E1744228, N6003404 and E1744162, N6003329

Nest camera installation	$23 / 11 / 21$ at 1430, approximately 2 m from the nest
Egg candling date and results	$5 / 12 / 2022$, fertile and developing

Nest Specific Information

Emergency egg collection
The nesting female abandoned incubation on 3 December 2022. During this time, the nesting male ched to incubate the egg over high tide. During low tide, the male would incubate for $30-60$ minute periods and spend a similar amount of time away from the nest.
On 7 December 2022 strong easterly winds hit Mangawhai. As winds increased through a day, the nesting male spent 2.5 hours off the nest over low tide, returning at 1429 . With weather predigad worsen overnight, the egg was recovered from site at 1456 and replaced with a dummy egg. The nestirg male returned to sit on the dummy egg within one minute.

The natal egg was placed directly into the MX45 incubator, with the ter rature at $29^{\circ} \mathrm{C}, \mathrm{RH} 55 \%$. The onsite rangers walked the incubator and attached the battery back to Tern Pint, arriving at 1527 , incubator at $33^{\circ} \mathrm{C}, \mathrm{RH}$ 65%. The egg was driven to the ranger's house and transferred intdy Brinsea Ovation EX incubator at approximately 1730 , set at $36.5^{\circ} \mathrm{C}$ and $\mathrm{RH} 58 \%$.

The next day the dummy egg had been abandoned. Teege was taken to the Auckland Zoo in the MX45 incubator, set at $36^{\circ} \mathrm{C}, \mathrm{RH} 57 \%$, and became part of the raptive rearing program. W-BM was next sighted at Dredge on 24/12/2022, with BK-M.

Other information
W-BM abandoned incubation when theryo was 10 days old and was next seen at Dredge 15 days later, on 18 December 2022.

W-BM and BK-M were a newpd his season. Previously BK-M was paired with KB-M who is presumed dead. Whereas, W-BM was pre ious paired with nil-pGM, who still has a foraging territory at Mangawhai estuary and has been observed with RNM at Dredge.

On 24 Novemb/80 two NNZ dotterels were spotted making scrapes, and copulating, approximately 2 m from the nest. The apes were removed by the ranger on the same day.

On 2 ed ber 2022 at 1258, two large logs were placed approximately 4 m away from the nest to help protect it from Rorth easterly and easterly winds. The nesting male returned to the nest after placement. No nest movement, or other tara iti nest management, was required for this nest. The nesting area was checked daily for any sign of predators.

Nest 3 (M3): 463
Date found
24/11/22

| Parent band combination | K-KM (female) \& W-KM (male) |
| :--- | :--- | :--- |
| No. eggs laid | 1 |
| No. natal eggs hatched in natal nest | 0 |
| No. natal chicks fledged from natal nest | 0 |
| Trail camera date in/out | $26 / 11 / 22 / 6 / 12 / 22$ |
| Nest location including GPS location | E1744152, N6003394 |
| Hide location and proximity to the nest | E1744228, N6003404
 and E1744162, N6003329 |
| Nest camera installation | $23 / 11 / 21$ at 1511, approximately 2 m
 the from |
| Egg candling date and results | $5 / 12 / 2022$, fertile and developing |

Nest Specific Information

Planned egg collection for captive rearing A key decision regarding this nest was the planned removal of the egg to Auckland Z_{L} o for captive rearing. On 5 December 2022 at 1032, the egg was collected and was replaced with a sterilcammy egg by two of the rangers on site. The female (K-KM) returned to the nest within three minute

The natal egg was placed directly into a cotton wool lined, portable d 45 incubator, connected to a battery pack. The incubator temperature was at $36^{\circ} \mathrm{C}$ and relative humidity (R NS 60% at the time of the transfer. At approximately 1100 , two rangers walked the incubator and pack pack to tern point. It was then collected by two other rangers for transfer to Auckland Zoo.

This nest was furthest from the other active nests pair were seen at the shell patch the following not display any signs of renesting.

Other information

No nest movement, other species narsement, or other tara it nest management was required for this nest. The nesting area was checked daily r ray sign of predators. This is a historical pairing.
Nest 4 (My):

Nest camera installation	$30 / 11 / 21$ at 1008, approximately 2 m from the nest
Egg candling date and results	$5 / 12 / 2022$, fertile and developing

Nest Specific Information

Planned egg collection for captive rearing
A key decision regarding this nest was the planned removal of the egg to Auckland Zoo for captive ratan. On 5 December 2022 at 1033, the natal eggs were collected and replaced with 2 sterilised dummy eggs by th rangers onsite. The male, pGM-R, returned to the nest within one minute and a changeover between the ir was observed 47 minutes later.
The natal eggs were placed directly into a cotton wool lined, portable MX45 incubator, pack. The incubator temperature was at $36^{\circ} \mathrm{C}$ and relative humidity (RH) was 60% at trat of the transfer. At approximately 1100 , two rangers walked the incubator and battery pack to tern point where it was collected by two other rangers for transfer to Auckland Zoo.

On 6 December 22 at 0941 the pair were released from the dummy eggs
The pair were next seen at the shell patch on 9 December 2022, 20 nested at Dredge on 20 December 2022.

Other information

On the morning of 7 December 2022, a NNZ dotterel 1 tand R -KM, dragging her off the nest by her nape. The attack lasted less than three seconds. At 1033, two NN 又dterel eggs were found behind a patch of pīngao (Ficinia spiralis), approximately 2 m from nest 46 hese eggs were removed, and the scrape destroyed. No nest movement, or other tara iti nest managemen required for this nest. The nesting area was checked daily for any sign of predators. This is a historical pairney.

Nest Specific Information

Emergency egg collection

On 7 December 2022 when strong easterly winds hit Mangawhai, this nest was left unattended between 0952 and 1124. No changeovers were observed throughout the day and the bird on the nest left again at 1225 . With weather predicted to worsen overnight, the egg was recovered from site at 1456 and replaced with a dummy egg.

The natal egg was placed directly into the MX45 incubator, at $29^{\circ} \mathrm{C}, \mathrm{RH} 55 \%$. The onsite rangers walked the incubator and attached the battery back to Tern Point, arriving at 1527 , incubator at $33^{\circ} \mathrm{C}, \mathrm{RH} 65 \%$. The egres transferred into the Brinsea Ovation EX incubator at approximately $17: 30$, set at $36.5^{\circ} \mathrm{C}$ and $\mathrm{RH} 58 \%$.

The next day the dummy egg had been abandoned. The natal egg was taken to the Auckland Zor inthe MX45 incubator, set at $36^{\circ} \mathrm{C}, \mathrm{RH} 57 \%$, and became part of the captive rearing program.

The nesting female was next seen at Pākiri on 12 December 2022. The nesting male war seen at Dredge in Mangawhai on 14 December 2022.

Other information

RM-K last nested at Mangawhai in the 2020/2021 breeding season.
No nest movement, or other tara iti nest management, was requiredfor this nest. The nesting area was checked daily for any sign of predators.

Nest 6 (M5): 467

Emergency egg collection
When the rangers arrived onsite at high tide on 7 December 2022 the nesting pair were not present at the shell patch. After two hours a tara iti adult (KM-R) returned to sit on the nest. No changeovers were observed throughout the day and the male, KM-R left again at 1158. With weather predicted to worsen overnight, the eggs were recovered from site at 1456, and replaced with two dummy eggs.

The natal eggs were placed directly into the MX45 incubator, at $29^{\circ} \mathrm{C}, \mathrm{RH} 55 \%$. The onsite rangers walked the incubator and attached the battery back to Tern Point, arriving at 1527 , incubator at $33^{\circ} \mathrm{C}, \mathrm{RH} 65 \%$. The egg was transferred into the Brinsea Ovation EX incubator at approximately 1730 , set at $36.5^{\circ} \mathrm{C}$ and $\mathrm{RH} 58 \%$.

The next day the nesting pair had abandoned the dummy eggs. The natal eggs were taken to the Auckland Zoo in the MX45 incubator, set at $36^{\circ} \mathrm{C}$, RH 57%. On arrival at Auckland Zoo eggs were candled and found to be not developing.

KM-R was next seen at Dredge shell patch on 11 December 2022, and pGY-pGYM on 13 December 202. This pair renested on 21 December 2022.

Other information pGY-pGM is a 3 -year-old female who nested with KM-R last season., however their eggs (id not hatch. No nest movement, or other tara iti, nest management was required for this nest. The nestir area was checked daily for any sign of predators.

Nest 7 (M7): 470

Nest Specific Informa

Emergency eqd lection

On 03 Jand 023 already strong winds were predicted to increase to gale force over 2-3 days. The eggs were uplifted replaced with a dummy egg. The nesting bird returned to incubate the dummy egg within one
mi ut placement.
The natal egg was placed directly into the MX45 incubator, at $29^{\circ} \mathrm{C}, \mathrm{RH} 55 \%$. The onsite rangers walked the incubator and attached the battery back to Tern Point, arriving at 1020 , incubator at $33^{\circ} \mathrm{C}, \mathrm{RH} 65 \%$. The egg was transferred into the Brinsea Ovation EX incubator at approximately 1430 , set at $36.5^{\circ} \mathrm{C}$ and $\mathrm{RH} 58 \%$.

On 06 January 2023 at approximately 0820, the egg was transferred from the Brinsea Ovation EX incubator to the MX45 incubator which was at $36^{\circ} \mathrm{C}$. At approximately 0830 , the rangers departed and arrived at the Waipū

Southern carpark at approximately 0900, the incubator was $36^{\circ} \mathrm{C}$. At 1158 , a ranger entered the site to transfer the egg into nest W469. The ranger departed the site at 1200 , and the adult female tara iti was back on the nest at 1200.

Although logs had been placed approximately 2 m from nest 470 to protect it from the easterly and north easterly winds, the dummy egg was abandoned on 05 January 2023.

Other information
No nest movement, or other tara iti nest management, was required for this nest. The nesting area waded daily for any sign of predators.

Nest 8 (M8): 471

Nest 8 (M8): 471	
Date found	20/12/2022 and 20/12/2022
Parent band combination	$\mathrm{R}-\mathrm{KM}$ (female) \& pGM-R (male)
No. eggs laid	2
No. natal eggs hatched in natal nest	0
No. natal chicks fledged from natal nest	0
Trail camera date in/out	21/12/2022/01/01/202
Nest location including GPS location	Dredge, E1744151, N6093390
Hide location and proximity to the nest	E1744228, NG00 (40) and E17441~2, Nooo3329
Nest camera installation	21/12/2 022 t 1045, approximately 10 m from nest
Egg candling date and results	No. condled

Nest Specific Information

Egg predation
When the ranger arrived onsitet low tide on 1 January 2023, R-KM or pGM-R were not at the shell patch. The two eggs were gone, and what looked like remains were found on the edge of the shell patch and in the dunes behind the nest. No p\&gqtor prints were found. Review of the nest camera showed it was triggered at 0514 on 1 January 2023, alth it was too dark to make out the photo.
Two dumnv -as were placed in the nest, and PGM-R returned to incubate the dummies at 1341. However, the nesting 20 were not seen at the shell patch over the following days, and the dummy eggs were collected on 8

Other information
On 26 December 2022, a harrier attempted to take a large variable oystercatcher chick from near the estuary but was deterred by the ranger and shorebirds in the area. After briefly seeing the oystercatcher chick after the attack, it was not seen again. It was presumed dead as its parents had returned to the area the following day without the chick.

A series of five traps had been set up in the flight path of the harrier and around Dredge. On 27 December 2022 two of these had been set off. Evidence indicated that the harrier was familiar with traps as it had come in through the back of the hazing to approach the bait. The traps were adjusted to target a trap-shy harrier.

At 0730 on 1 January 2023, two harriers were caught in the traps, an adult female and a juvenile, likely male. No harriers were observed flying over the shell patch for the remainder of the season.

No nest movement, or other tara iti nest management, was required for this nest.

Nest 9 (M9): 472

Nest 9 (M9): 472	
Date laid and/or found	28/12/2022
Parent band combination	PGY-pGM (female) \& KM-R (male)
No. eggs laid	
No. natal eggs hatched in natal nest	
No. natal chicks fledged from natal nest	
Trail camera date in/out	21/12/2022 / 08/01/2023
Nest location including GPS location	Dredge, E1744166, N62 3401
Hide location and proximity to the nest	E1744228, N60034 and E1744162:N 603329
Nest camera installation	$21 / 12 / 2022$ (t) 45 , approximately 10 m from n st
Egg candling date and results	4/1/2023, not developing

Nest Specific Information

Emergency egg collection
On 3 January 2023, already stro g winds were predicted to increase to gale force over 2-3 days. The eggs were uplifted and replaced with a minute of placement.

The natal egg was directly into the MX45 incubator, at $29^{\circ} \mathrm{C}, \mathrm{RH} 55 \%$. The onsite rangers walked the incubator and med the battery back to Tern Point, arriving at 1020 , incubator settings were $33^{\circ} \mathrm{C}$ and RH 65%. The egg whserred into the Brinsea Ovation EX incubator at approximately 1430 , set at $36.5^{\circ} \mathrm{C}$ and $\mathrm{RH} 58 \%$.
On 2nary 2023 at approximately 0845, the egg was candled and was not developing. The egg was taken for analysis.

Although logs had been placed about 2 m from the nest to protect them from the easterly and north-easterly winds, the dummy egg was abandoned on 5 January 2023.

Other information

No nest movement, or other tara iti nest management, was required for this nest. The nesting area was checked daily for any sign of predators.

Overall discussion of nest success/failures

This season was impacted by frequent and intense low-pressure systems, above average rainfall and strong, north-easterly and easterly winds (NIWA Taihoro Nukurangi 2022). In early October, a polar southerly d temperatures down to $6^{\circ} \mathrm{C}$, however, by the second half of the month temperatures were above averas and which continued throughout the remainder of the season. It was the warmest November on record for fotearoa New Zealand and sea surface temperatures were 1.1-1.7 ${ }^{\circ} \mathrm{C}$ above average (NIWA Taihoro Nukura gin 2022).
Due to the timing, intensity, and length of two major storms, direct intervention was requit tior all eggs not intended for the captive rearing program or predated. Even with added protection to the Gests, all dummy eggs were abandoned throughout these storms resulting in the transfer of four eggs to \boldsymbol{N} transfer to Waipū nest 469. The two eggs from nest 471 were predated before Curnne Hale hit in early January. Except for nest 467, all eggs were transferred when they were between $-1 \mathbf{d}$ days old. The two eggs laid by female pGY-pGM and male KM-R, from nest 467 were transferred prior to a torm at ages two and four days old. This pair laid another egg in a second clutch which was candled at day al three embryos did not show any signs of development. This pair nested for the first-time last season bailarly the two embryos did not develop.

Three females each laid only one single egg clutch thiraron. One of these females abandoned the nest when the embryo was 10 days old and was not seen for 15 d .vs. Although this was a new pairing, the male, BK-M continued to incubate the egg for another five dapuntil it was taken to Auckland Zoo. Although the chick hatched it did not survive. See Captive Rearint for more details.
It is possible that weather made fishing ir the estuary difficult for tara iti this season. Based on observed matefeeding and flight direction, the makin vironment may have been an important source of food leading up to, and during, nesting. Four femalecset long periods away from their nests, with changeovers regularly occurring only once in a 3-4 houperiod over low tide. In late December, the weather settled for a week during the summer holidays, howeve incubation patterns remained similar. This short period of calm weather coincided with extensive of the estuary by humans and dogs, which likely impacted foraging ability.

Foraging territorie dere determined in October and the estuary continued to be checked regularly for any changes (see 80 ndix map below). Although most foraging territories within the Mangawhai Estuary were similar to Ma Lason, KM-nil, an unpaired male was observed foraging in parts of the estuary previously used by $\mathrm{M}-\mathrm{R}$ d (86 M . KM-R also extended his territory on both edges by approximately 50 m , pushing into $\mathrm{W}-\mathrm{KM}$ and BK storaging territories. The nesting male pG-YM, who was paired with RM-K from nest 466, was not observed at the estuary throughout the season and his foraging territory has not been identified. R-YM was not observed in his foraging territory by rangers, but others confirmed sightings of him there early in the season. North Bund, and South Sea Valley shell patches were not used for nesting by tara iti this season. Around 150 metres of coloured flagging had been installed at South Sea Valley in early September to discourage tara iti from nesting there. This shell patch is exposed to north easterly, and easterly winds and is also at risk of tidal inundation. Throughout November and December, most of the shell at this site was covered with sand and tara iti were seen on the beachfront but not on the shell patch. An unpaired male, R-YM was occasionally seen at

North Bund in October, but by November this shell patch was only being used by NNZ dotterels, variable oystercatchers, and banded dotterels.
Other nest site management included: positioning logs to protect nests from strong winds and sand movement, and removing other shorebird nests at Dredge within approximately 40 m of any fairy tern nest. Logs 1-2m long were installed approximately 2 m from the nests, usually the day before an expected weather event. Birds were recorded returning to incubation within three minutes of placement. This technique can be effective for reducing sand movement and wind intensity but as some nests are positioned on steep mounds, the logs/sandbags do not always work.

On 8/12/2022 a NNZ dotterel was observed pulling R-KM off nest 465 by her nape. R-KM returned to the nest immediately and the dotterel walked behind the mound. Later that morning rangers found the dr tevel nest in some pīngao, approximately 2 m from nest 465 . The two eggs were removed and placed in aw Zealand dotterel nest on the beach. That same day another NNZ dotterel nest was found approximaty 40 m from nest 466. The egg was removed and place in a NNZ dotterel nest near the estuary. There war (0) further issues with shorebirds.

Unpaired and juvenile tara iti were present at Dredge throughout the seasor not cause much disturbance. Nesting pairs showed mostly tolerant behaviour toward then

Table 3. Egg Measurements, Candling Results and Fate of

Nest Number	Pair: Nest	Date Found	Candlin g Date	Candle Age (d)	NGigb	Length \& Width (mm)	Candling Result / Comments	Fate of Egg \& Chick,
460	 R-pGM	$\begin{aligned} & 20 / 11 / 22 \\ & 22 / 11 / 22 \end{aligned}$		R				Captive rearing programme
461	W-BM \& BK-M	23/11/22	$5,81 / 22$	12	n / a	$\begin{aligned} & 34.5(\mathrm{~L}) \\ & 25(\mathrm{~W}) \end{aligned}$	Fertile \& developing	Captive rearing programme
463	$\begin{aligned} & \text { K-KM } \\ & \& \\ & \text { W-KM } \end{aligned}$		See Capt	report				Captive rearing programme
465		$\begin{aligned} & 25 / 11 / 22 \\ & 28 / 11 / 22 \end{aligned}$	See Capt	ve report				Captive rearing programme
	RM-K PG-YM	25/11/22	5/12/22	10	n/a	$\begin{aligned} & 35.5 \text { (L) } \\ & 23.4 \text { (W) } \end{aligned}$	Fertile \& developing	Captive rearing program
467	$\begin{aligned} & \text { PGY- } \\ & \text { pGM } \\ & \text { \& } \\ & \text { KM-R } \end{aligned}$	$\begin{aligned} & 3 / 12 / 22 \\ & 6 / 12 / 22 \end{aligned}$	14/12/22	$\begin{aligned} & 12 \\ & 9 \end{aligned}$	n/a	n/a	Clear	Did not develop

Figure 3. Tara iti feeding territories within Mangawhai estuary over the 2022-2023 breeding season.

Table 4. Colour key for forgaing male foraging territories corresponding to Figure 3.

Territory	Male Bands	Partner Bands	Nest Location
Pink	M-R	Unpaired	N/A
Light Blue	R-pGM	WM-RW	Dredge, 460, 470
Orange	(K)-pGM	Unpaired	N/A
Lilac	R-YM	Unpaired	N/A
Purple	BK-M	W-BM	Dredge, 461
Blue	KM-(W)	Unpaired	N/A
Green	KM-R	pGY-pGM	Dredge, 467, 472
Yellow	pGM-R	R-KM	Dredge, 465, 471
Teal	W-KM	K-KM	Dredge, 463
Unknown territory	PG-YM	RM-K	Dredge, 46a

Table 5. First 2022-2023 breeding season sightings of other NZ Fairy Tern by Ranss at Mangawhai sandspit.

Date	Site	Bird	Observation	Observer
19/9/2022	Estuary	W KM	Foraging in pink territory	Shannan Courtenay
29/9/2022	Dredge	RM pGB	Roosting at the bowl	Arthur Bensana
29/9/2022	Dredge	pGM R	Roosting at the bowl	Arthur Bensana
3/10/2022	Dredge	BR WM	Roosting at the bour	Shannan Courtenay
3/10/2022	Dredge	K KM	Roosting at the ${ }^{\circ}$	
3/10/2022	Dredge	WM RW	Roosting a the powl	
3/10/2022	Dredge	(K)-pGM	Roosting at the bowl	
3/10/2022	Dredge	M R	Roostir 6 the bowl	
3/10/2022	Dredge	R KM	Ressing at the bowl	
3/10/2022	Dredge	R pGM Roosting at the bowl		
3/10/2022	Dredge	R YM R Roosting at the bowl		
3/10/2022	Dredge	pGY ${ }^{\text {CM }}$	Roosting at the bowl	
4/10/2022	Estuary	KM	Foraging in lime foraging territory. Seems to be trying to lure pGY pGM from teal foraging territory into lime	
4/10/2022	Estury	R KM	Foraging in blue territory	
5/10/2022	, $\mathrm{P}_{\text {ary }}$	BK M	Foraging in his old territory	
5/10/2022	Ostuary	W BM	Foraging with BK M	
15/10/24	Dredge	RM K	Copulation with pGM R at bowl	
- 0 , 202	Dredge	pGM YB	Resting on shell at the bowl	
17/10/2022	Dredge	WB YM	Juvenile, roosting	
17/10/2022	Dredge	K M	Resting on shell at the bowl	
17/10/2022	Dredge	KM-(W)	Resting on shell at the bowl	
24/10/2022	Dredge	YM YR	Attempted copulation with pGM-nil at the bowl	
24/10/2022	Dredge	PGM nil	Attempted copulation at the bowl	

$24 / 10 / 2022$	Dredge	BpG RM	Juvenile, on shell at the bowl	
$26 / 10 / 2022$	Dredge	pG YM	Arrived at the bowl with RM K	
$26 / 10 / 2022$	Dredge	BM-pGB	Resting on shell at the bowl	
$24 / 10 / 2022$	Dredge	pGB YB	Resting on shell at the bowl	
Key: B = blue, G $~=~ g r e e n, ~ M ~=~ m e t a l, ~ p G ~=~ p a l e ~ g r e e n, ~ R ~=~ r e d, ~ Y ~=~ y e l l o w, ~ U B ~=~ u n b a n d e d ~$ $*$ $*$				

Habitat EnHANCEMENT

2.1 Shell patch enhancement

Since 2008, DOC, with support from the Tara iti Community, have been creating raised shell patches and enhancing existing ones for tara iti to nest on across all the breeding sites. The aim of this is to reduce the impacts of high tides and storm events which have washed out low-lying nests in the past. It also aims to stabilize the nest sites by stopping or slowing sand movement which can cover nests.

During 2020, at Mangawhai two new patches were created, and two existing patches received new shell, seulced from the Whangarei harbor and the Mangawhai Sandspit itself. 37 tonnes of shell were helicoptered 0 the spit with the assistance of the NZ Defence force.
In 2021, the decision was made to disable SSV as it was an unstable site. This site was disac with the installation of five lines of 100 m of coloured flagging, about 5-10m apart, covering the elled area. The flags were suspended 0.5 m off the ground. No attempts to nest in this area were maran in 2021 . The flagging was again installed in 2022, also with no nesting attempts made.

The other shell patches were sprayed and hand-weeded to clear vegetatia 1 por to the start of the breeding season.

Figure 4. Ranger install noflagging at South Sea Valley (SSV)

At Mang hai site weed control was carried out targeting weed species such as gorse, pampas, saltwater pas, rum, lupin, and marram grass which modify sand dune systems.

In 2022, during pre-shorebird breeding season, a concentrated effort to target lupin was carried out in the middle area of the spit. The lupin is a known cover for rabbits on the sandspit, control was deemed necessary to reduce rabbit numbers alongside the toxin operation.

3.1 Introduction

Mangawhai Refuge is used as a breeding and feeding ground for many native and endemic New Zealand birds. Among these are the endemic Northern New Zealand dotterel (Charadrius obscurus aquilonius), of which approximately 2,200 individuals remain. These birds, along with the endemic variable oystercatcher (Haematopus unicolor) and banded dotterel (Charadrius bicinctus), nest at Mangawhai sandspit in the dure . and on the beachfront.

These species share very similar breeding ecology. They are monogamous, and nests are usually Aa.d over the summer months. Nests are usually simple scrapes in the substrate or laid straight on vegetatin. Normally a clutch comprises 2-3 eggs, and incubation is shared between the parents. Chicks depart th n ast soon after hatching and remain with the parents until fledging (Dowding, J. E, 2014; Lord, A et al. (0).).

When time allowed, the rangers searched for, and monitored dotterel and oysterc treer nests to gain an understanding of the breeding success of these birds. Caspian terns and red gulls were also loosely monitored.

3.2 Methods

NNZ dotterels, variable oystercatchers, and banded dotter not consistently monitored throughout the 2022-23 season. The rangers kept a daily lookout for any as and chicks on the sandspit, but this was dependent on time. Monthly surveys were taken of in diviguals in October, November, and January, and where possible, nests, eggs, and chicks were recorded. Nests were discovered by observing the behaviour of the adult birds. If any adults displayed territorial behayiondicating there was a nest nearby, the rangers would spend time searching for the nest with minimal distrance to the birds. Once found, a record was made of the nest location and how many eggs/chicks werefound.
Due to the nature of the site, nests dyoth species were often difficult to find. The rangers continued to check potential nest sites to attempt to confirm a nest. In all cases of dotterel, nests were inferred by the presence of chicks in an area, rather than sically locating each nest.

3.3 Results and (Dascussion

This season nuMr of NNZ dotterel and variable oystercatcher nests were low compared to the last two years, with rang rify recording 13 New Zealand dotterel nests, with 6 fledglings, and 16 variable oystercatcher nests, with 10 forlings.
It i iip hat many nests were washed away with the tide, which regularly reached the dune line this season. At least ane variable oystercatcher chick was predated by a harrier and two were caught as by-catch in DOC 200 traps near North Bund. The remains of two NNZ dotterel eggs were found in December.
Three banded dotterel pairs attempted to nest in, and around, North Bund this season. However, there were no confirmed fledglings.

Table 6. NNZ dotterel, variable oystercatcher, and banded dotterel breeding success over the 2022-2023 season.

* = Assumed fledged for those seen at 2 weeks or older

3.3.4 Other Species

Caspian terns and Red-billed gulls began nesting in October 2022. Caspian terns nested in the same location on the beachfront north of SSV. Rangers recorded 52 nests with 19 chicks fledged by early January 2023. Red-billed gulls nested at the estuary walkway entrance to North Bund this season, opposite the boat ramp. Rangers counted over 100 nests and 36 chicks; most had fledged by early January 2023.

White-fronted terns did not attempt to nest on the sandspit this season, although up to 16 individuals wereen resting on the beach in front of the Caspian tern colony. Pied stilts also nested at North Bund this year a (d) although two chicks were seen, no nests were found.

4.1 Introduction

Mangawhai site is visited by various pests and/or predators of tara iti, including Felis catus (cats), Rattus norvegicus (Norway rats), Rattus rattus (ship rats), Mus musculus (house mice), Mustela erminea (stoats), and Circus approximans (Australasian harriers) throughout the breeding season. Predator control is critical to the breeding success of tara iti on Mangawhai site.

4.2 Methods

A total of 117 traps were set on the Mangawhai sandspit this season, consisting of DOC $20{ }^{\circ} 8$ rigor Professional Rat Traps, Victor legholds, cage/box traps, and Steve Allen (SA2) traps. From 12 Octoberade; DOC 200 and Victor Professional Rat Traps, targeting mice, rats and stoats, were checked weekly. Fror October 2022, SA2 traps, targeting cats, were checked every three days. Live traps, targeting Australasankarriers and cats, were used from 08 October 2022 until 1 January 2023. Data was recorded on TrapNZand a Microsoft Excel spreadsheet.

This season, a bait trial was undertaken across all tara iti breeding shes. This involved trialing the effectiveness of three different bait types:

- Macadamia nuts
- PoaUku long life lures
- Salted rabbit

At North Bund, an alternating line of 31 DGC and 32 Victor Professional Rat Traps were baited weekly with alternating macadamia, PoaUku or saltedrabit. From 14 November 2022, 12 traps in the centre of this line became flooded due to heavy rain. The were moved to higher ground, despite this, continuous bouts of heavy rain led to periodic flooding. Qquently, these traps were baited irregularly for the remainder of the season. At Dredge, an alternatind of seven DOC 200s and six Victor Professional Rat Traps were also baited weekly with alternating macadana, PoaUku or salted rabbit.
19 SA2 traps were disperalong three lines:

- North Bund situated around the northern part of the spit, near North Bund shell patch.
- Interna (6) - located in the vegetated centre of the spit, south of Dredge shell patch.
- Bqurg Zone (6) - located along the southern boundary fence of the refuge.

These rare baited every three days, initially with jelly meat, then eventually with alternating possum minc and terracotta salmon lures.

Throughout the season a total of 14 Victor legholds were deployed around North Bund, Dredge, south of Dredge, and the Boundary Zone. These were baited with eggs, decoy eggs, salted mackerel, salted rabbit, and fish oil depending on the target species. Additionally, from 7 November 2022, two cage traps, and one box trap, were set at Dredge, south of Dredge, and the Boundary Zone. This was in response to cat prints being found at Dredge and an influx of cats, caught along the boundary of the refuge and Tern Point land, by New Zealand Fairy Tern Charitable Trust trapper $\mathbf{9 (2) (a)}$. In late November, one leghold was moved to the edge of the wildlife refuge
to target cats but on the 1 Deceriber 2022, the trap was stolen by a member of the public and dog prints were found at the scene. It is worth noting that Victor legholds targeting Australasian harriers were only set when harriers were seen on site.

Throughout September 2022 to February 2023, a contractor was employed to target feral cats in the refuge. This work was completed during the night with the use of firearms and thermal imagery. The contractor would monitor for cat sign during the day and target those areas at night. On 13 November 2022, what appeared to be rinstelid footprints were found entering the Dredge nest site response, four additional DOC 200 traps, and one cage trap were deployed at Dredge and baited witl bedding, salted rabbit, and eggs.

Black backed gull nests were managed by pricking eggs fortnightly during November and ©e Ber. A total of 66 eggs from 45 nests were pricked.

4.3 Results and Discussion

A total of 2 c predators were caught over the 2022-2023 season, consisticg tustralasian harriers, Norway rats, and mice. The most caught preciator was Australasian harriers (11) fallowadby mice (6), then Norway rats (3) (Figure 8). The greatest number of predators (14) was caught duri vember, with Norway rats and mice only being caught during this month, and the greatest number of Aushmian harriers (5) also being caught during this month (Figure 9).

The greatest number of predators were caught in Vic or lgghold traps (11), followed by DOC 200 traps (6). Only two predators were caught in Victor Professional tepps, and one in a cage trap (Table 8). Out of the DOC 200 catches, five were at North Bund, at one at Dede hile both Victor professional catches were both at North Bund. It is worth noting that during the seask wraps at Dredge, particularly DOC 200s, were continuously impacted by sand - this may have reduce the number of predators caught in this area.

Out of a total of 11 Australasian h
ves caught the majority were adults (9) and more males (7) were caught than females (3). The greatest number Australasian harriers were caught in November (5), and equal numbers (2) were caught in October, Deceror, and January (Figure 9). From 25 December 2022, a trap-shy Australasian harrier avoided targeted rrys, and predated nest 471 on 1 January 2023, before being eventually caught later that day.

No cats or mugfers were caught by DOC rangers during the 2022-2023 season, although both cat and mustelid prints wer (1)d on the sand spit in mid-November. However, 15 cats were caught by NZ Fairy Tern Charitable Trustrabry 9 , 9 (2)(a) in the Boundary zone (11) and Tern Point (4). At least one cat was shot by contracted shorer. is likely that this contributed to lower numbers of cats out on the sand spit by creating a buffer.

By-catch included one Californian quail on the edge of the wildlife refuge and 2 VOC chicks at North Bund. The Californian quail was caught and predated overnight in a Victor leghold, and the VOC chicks were caught in DOC 200 traps.

Overall, numbers of predators caught by rangers on the sandspit this season were lower than previous seasons. A possible reason for this is that diphacinone and pindone administration reduced numbers of rats, and rabbits,
respectively. This would have reduced prey for other predators such as cats and mustelids. The low number of Australasian harriers may have been because of the low numbers of shore birds nesting on the sandpit this year, and therefore low food supply. This also may have driven the predation of nest 471.

Figure 7. Trap records map from Mangayhanate during September 2022 - March 2023

Table 8. Overview of traplines, their active monitoring period by DOC rangers and catch

Trap line	Location	Trap type	Bait	Active dates	Number of traps	Predators caught
NB	North Bund	DOC200	Macadamia, PoaUku, salted rabbit	$\begin{gathered} 12 / 10 / 2022- \\ 24 / 02 / 2023 \end{gathered}$	31	3 mice, 2 Norway rats
		Victor Professional	Macadamia, PoaUku, salted rabbit	$\begin{aligned} & 12 / 10 / 2022- \\ & 24 / 02 / 2023 \end{aligned}$	32	2 mice
D	Dredge	DOC200	Macadamia, PoaUku, salted rabbit	$\begin{gathered} 12 / 10 / 2022- \\ 24 / 01 / 2023 \end{gathered}$	7	mase
		Victor Professional	Macadamia, PoaUku, salted rabbit	$\begin{aligned} & \text { 12/10/2022 - } \\ & 24 / 01 / 2023 \end{aligned}$		
SA	North Bund	Steve Allen	Jelly meat, possum mince, salmon lure	$\begin{aligned} & 24 / 10 / 20 \times \\ & 15 / 01 \times 2083 \end{aligned}$	- 7	0
	Internal Loop	Steve Allen	Jelly meat, possum mince, saln on. lie	32/10/2022 - 15/01/2023	6	0
	Boundary Zone	Steve Aller	Jelly Meat, Bsum Mince, salmon lure	$\begin{aligned} & 11 / 10 / 2022- \\ & 15 / 01 / 2023 \end{aligned}$	6	0
L	North Bund,		Eggs/decoy eggs	$\begin{aligned} & 08 / 10 / 2022 \text { - } \\ & 01 / 01 / 2023 \end{aligned}$	9	11 Australasian harriers
		leghold	Salted rabbit, salted mackerel, fish oil	$\begin{aligned} & \text { 20/10/2022 - } \\ & 01 / 01 / 2023 \end{aligned}$	5	0
	Dredge, Shipping container	Cage/box trap	Salted rabbit, fish oil	$\begin{aligned} & 07 / 11 / 2022- \\ & 01 / 01 / 2023 \end{aligned}$	3	1 Norway rat
	Dredge	DOC200	Salted rabbit, egg	$\begin{aligned} & \text { 13/11/2022- } \\ & 24 / 01 / 2022 \end{aligned}$	4	o
		Cage trap	Salted rabbit, egg	$\begin{aligned} & \hline 13 / 11 / 2022- \\ & 01 / 01 / 2023 \\ & \hline \end{aligned}$	1	o

4.4 Predator control outside of the tara iti breeding season

At the Mangawhai site, and in Tern Point, winter trapping was carried out by 9(2)(a) (New Zealand Fairy Tern Charitable Trust) on a fortnightly basis using chicken eggs.

At Mangawhai site two toxin operations were carried out by DOC Whangarei Operations from August 2022 to February 2023. A Pindone operation was carried out in July and August 2022 to target rabbits. Pre-operational monitoring found high levels of rabbits present using the McLean scale. The majority of rabbits are in the hinbly vegetated areas of the spit, with McLean levels $4-6$ in some areas. I'his operation was upscaled this sonser increase the target zones to include areas with significant rabbit sign (see figure 5). 200 g of Pindone pflets were laid on mats in areas of rabbit sign, three pulses of toxin were applied. Uptake, or consumption, fte toxin after the first pulse was quite high with a 77% on average bait uptake. The highest percentage of ar are was in the northern area of the spit with 87% average. and lowest in the southern area with a 57% avgateptake. The

Figure 5. Target areas of 2022 pindone operation.

During November 2022, a Diphacinone operation was carried out to target Norway rats. 300 g of RatAbate Paste $0.05 \mathrm{~g} / \mathrm{kg}$ Diphacinone was applied in mini Philproof bait stations in 9 lines in targeted areas on the spit (see figure 6). The target areas are known to have Norway rats present. Two lines were installed near the Dredge site as that is the site favoured by tara iti for nesting. Bait was left in the stations through December and January. Uptake of the bait was minimal with less than 50% bait take.

Figure 6. Bait station lines from 2022/2023 Diphacinone toxin application.
Key: NBL\# = North Bund Lines 1-5, DL\# = Dredge lines 1 \& 2, CDL = Central Dunes Lines 1 \& 2

Figure 10. Map of DOC traplines for the 2022-2023 breeding season

5.1 Introduction

Advocacy is a critical part of the ranger's role on site. Getting the public on board plays a large part in the protection of the species. As tara iti, dotterels, and oystercatchers all nest on the ground in open areas, they are often susceptible to nest disturbance, or destruction, due to human activities. Therefore, educating the public about the birds is critical at breeding sites so they are aware of the potential disturbance, and can be resporsble for their behaviour.
At Mangawhai, a range of activities are banned under various bylaws for the protection of nesting biraf. Monitoring any non-compliant activities is another essential component of the ranger's daily tas s .

5.2 Methods

The rangers checked the beach and estuary regularly for non-compliant activities wher were on site. Checks could be carried out by moving intermittently to the beach during periods \& monitoring, to check on the behaviour of the public and to look for any advocacy opportunities. When approaching any members of the public for either compliance or adv reasons, tactical communication was employed. All compliance incidents were recorded ad vidence gathered. If non-compliant activity continued, then the offender was reported to the appropriate authority.

5.3 Results and Discussion

There were no major compliance issues this seasond Qetober the rangers found dog footprints on the dune immediately southworpNredge. More dog signs were erected in the area. In mid-January there were siablings of horses on Big Dune, however this was in the evening when rangers we 8 not onsite. Further evidence of this incident was found on social media angersorted to a compliance officer. Contact with the offender was made and a warning was issued.

Low Flying Aircraft
Throughout the season low-firis aircraft were not an issue, with planes and helicopters both avoiding the restricted area.

Watercraft

Watercraft bethe five-knot restrictions daily over the summer holidays and long weekends. Jet skis were the most conda watercraft breaking the five-knot restriction. No further details were recorded for these events as the werefar too numerous and fast for rangers to record.

Table 9. Compliance and Law Enforcement incidents recorded at Site over the 2022-2023 Summer.

Due to the relative isolation of the sandspit and the bad weather, there were only five advocacy opportunities with the public throughout the season. Most interactions occurred on the beach near Tern Point.

In December, the ranger visited three campsites around Mangawhai to remind them about the nesting birds on

Several future recommendations have been made due to observation by rangers throughout the season:

Tara inti

1. Solar charged Ring cameras could be installed in the hide instead of on shell patch, reducing need to enter site to put cameras in.
2. New signage eg: "Please do not enter", "No horses", or tara iii specific sign.

Pre-breeding season

1. Mound enhancement at Dredge to enable better positioning of logs for nest protectiondring season.
2. New vegetation southeast of Dredge removed.
3. Set traplines up pre-season to minimise neophobic avoidance of traps.

Shorebird

1. Set up a monthly shorebird survey with the volunteers during the seas
2. Investigation into influx of blue penguins washing up on beachfront.

Predator Control

1. Adjust DOC 200 traps and Victor Professionals in Septerno help prevent chick bycatch.
2. Continue using SARs over winter along the southwest Crater of the refuge.
3. Use Victor professional traps on sand dunes inst ©aNOC 200 traps to reduce sand movement around traps.
4. Trial using A24's on sandspit, targeting rats.

Thank you to the Fairy Tern Charitable Trust and Mangawhai volunteers for your ongoing support and dedication to the tara iti. A special thank you to $9(2)(a)$ for organising volunteer logistics and
 course $9(2)(\mathbf{a})$ and $9(2)($ a) for their trapping efforts, including catching 15 cats before they could reach he sandspit. A big thank you 9(2)(a) and 9(2)(a) from About Tern Waipu for your extra assiftagce over the summer holidays.

Thank you to the incredibly hard working tara iti team at DOC for all your efforts this season. . Necial thank you to Tony Beauchamp for your brilliant technical advice, knowledge and support, and twh Alker and Nikki Hartley for their support and guidance. A shout out to Kelsie, Kallan, Jake and Jont or their help with egg transfers. We would also like to thank the other tara iti rangers for all their assistance?

Thanks to the Shorebirds Trust for their continued support of the New Zealn Thy Tern project. Thanks to the Tara Iti golf course, particularly $9(2)(a)$ and $9(2)(a)$ and trapping and conservation work. Thank you to Auckland Zoo for their help, support, and dedication to helping save this species.

8 REFERENCES

Dowding, J.E. (2014). Conservation assessment of the Variable Oystercatcher Haematopus unicolor.
International Wader Studies 20: 182-190.
Ferreira, S. M., Hansen, K. M., Parrish, G. R., Pierce, R. J., Pulham, G. A. and Taylor, S. (2005) Conservation of the Endangered New Zealand Fairy Tern. Biol. Conserv. $125: 345$ - 354.
Hansen, K. (2006). New Zealand fairy tern (Sterna nereis davisae) recovery plan, 2005-15. Science \& Technital Pub., Department of Conservation.
Ismar, S. M., Trnski, T., Beauchamp, T., Bury, S. J., Wilson, D., Kannemeyer, R., ... \& Baird, K. (2014). For 4 tray ecology and choice of feeding habitat in the New Zealand Fairy Tern Sternula nereis davisae. Bird onservation International, 24(1), 72-87.
Lord, A., Waas, J. R., Innes, J., \& Whittingham, M. J. (2001). Effects of human approaches tive fnorthern New Zealand dotterels. Biological conservation, 98(2), 233-240.
NIWA Taihoro Nukurangi. (2022, Oct - Dec, 2023 Jan). Monthly climate summaries Oecember 2001 to the present. https://niwa.co.nz/climate/monthly.

