Proposed Regional Coastal Plan

Kermadec and Subantarctic Islands

Redline version reflecting commissioner’s decisions
Contents

Introduction 3

Purpose of the regional coastal plan

Structure of the document

Jurisdiction and legal framework

<table>
<thead>
<tr>
<th>Statutory requirement for the plan</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurisdiction</td>
<td>4</td>
</tr>
</tbody>
</table>

Values of the coastal marine areas of the islands

<table>
<thead>
<tr>
<th>Values of the Subantarctic Islands</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural character—geology, ecosystems, flora and fauna</td>
<td>6</td>
</tr>
<tr>
<td>Māori values of the Subantarctic Islands</td>
<td>9</td>
</tr>
<tr>
<td>Cultural and historic heritage values of the Subantarctic Islands</td>
<td>10</td>
</tr>
<tr>
<td>Current use values</td>
<td>11</td>
</tr>
<tr>
<td>Conservation management on the Subantarctic Islands</td>
<td>11</td>
</tr>
<tr>
<td>Scientific research in the Subantarctic Islands</td>
<td>12</td>
</tr>
<tr>
<td>Tourism</td>
<td>12</td>
</tr>
<tr>
<td>Fishing</td>
<td>13</td>
</tr>
<tr>
<td>Wreck exploration and salvage</td>
<td>14</td>
</tr>
</tbody>
</table>

Values of the Kermadec Islands	14
Seabirds	15
Cetaceans in the Kermadec region	16
Cultural and historic heritage in the Kermadec Islands	17
Current use values	21

Issues, objectives, policies and methods of implementation

Issue 1 Natural character	23
Natural character objectives	24
Natural character policies	24
Issue 2 Kaitiakitanga of the coastal marine area	32
Kaitiakitanga of the coastal marine area of the Kermadec Islands	32
Kaitiakitanga of the coastal marine area of the Subantarctic Islands	32

| Issue 3 Cultural and historic heritage | 33 |

Rules

Occupation	37
Structures	38
Discharges from land	40
Shipwrecks	42
Disturbance	43
Use of water	44
Introduction

The preparation of a regional coastal plan (RCP) for New Zealand’s offshore islands by the Minister of Conservation is a legal requirement under section 31A of the Resource Management Act (RMA). The offshore islands include the Kermadec Islands and the Subantarctic Islands (Snares Islands/Tini Heke, the Bounty Islands, the Antipodes Islands, the Auckland Islands, Campbell Island/Motu Ihupuku and the islands adjacent to Campbell Island/Motu Ihupuku).

The isolation of these islands (see Fig. 1) is a key reason for the Minister of Conservation being responsible for the preparation and monitoring of this regional coastal plan. Their isolation is also key to the islands’ retention of natural features and abundant unique and diverse flora and fauna, as summarised in the values section.

Purpose of the regional coastal plan

The plan aims to give effect to the purpose of the RMA by providing for the sustainable management of the coastal marine areas of the Kermadec and Subantarctic Islands.

Sections 12, 14 and 15 of the RMA restrict certain activities in the coastal marine area unless expressly allowed by a rule in a regional coastal plan or a resource consent. This plan contains objectives, policies and methods including rules, which establish the framework within which certain uses are permitted and proposals for activities can be assessed. The plan provides certainty for existing and potential users of the coastal marine area through the provision of these rules.

Structure of the document

This document is structured as follows:

1. The jurisdiction/extent of this plan and the legal framework that it sits within
2. Summaries of the values of the two groups of islands
3. The issues of concern that threaten the values, and the objectives, polices and methods to address them
4. The rules controlling activities within the coastal marine areas of the two groups of islands
5. Other matters (i.e. administrative charges, integrated management and information to be submitted with a coastal permit application)
6. Appendices with other relevant information
Jurisdiction and legal framework

Statutory requirement for the plan

It is a legal requirement for the Minister of Conservation to prepare this regional coastal plan. Section 31A of the Resource Management Act 1991 (RMA)—emphasis added—states:

31A Minister of Conservation to have certain powers of local authority

(1) The Minister of Conservation—

(a) has, in respect of the coastal marine areas of the Kermadec Islands, the Snares Islands, the Bounty Islands, the Antipodes Islands, the Auckland Islands, Campbell Island, and the islands adjacent to Campbell Island, the responsibilities, duties, and powers that a regional council would have under section 30(1)(d) if those coastal marine areas were within the region of that regional council; and

(b) may exercise, in respect of the islands specified in paragraph (a),—

(i) the responsibilities, duties, and powers that a regional council would have under this Act if those islands were within the region of that regional council; and

(ii) the responsibilities, duties, and powers that a territorial authority would have under this Act if those islands were within the district of that territorial authority.

(2) The responsibilities, duties, and powers conferred on the Minister of Conservation by subsection (1)(b) are in addition to the powers conferred on that Minister by subsection (1)(a).

(3) The responsibilities, duties, and powers conferred on the Minister of Conservation by this section are in addition to the responsibilities, duties, and powers conferred on that Minister by this Act.

Jurisdiction

Section 2(1) of the RMA gives the following definition for the coastal marine area:

Coastal marine area means the foreshore, seabed, and coastal water, and the air space above the water —

(a) Of which the seaward boundary is the outer limits of the territorial sea:

(b) Of which the landward boundary is the line of mean high water springs, except that where that line crosses a river, the landward boundary at that point shall be whichever is the lesser of—

(i) One kilometre upstream from the mouth of the river; or

(ii) The point upstream that is calculated by multiplying the width of the river mouth by 5:

Given the small size of rivers on New Zealand’s offshore islands, a simple approach to river mouth boundaries has been adopted—a continuation of the line of Mean High Water Springs (MHWS)¹ straight across the mouth of all rivers.

¹ Refer to Glossary for definition of MHWS.
Figure 1. Location of the Kermadec and Subantarctic Islands.
While this plan focuses on the management of activities within the coastal marine area, it recognises that there will be some management issues that cross the MHWS boundary. There will also be activities that take place on the land above MHWS that may affect the coastal marine area. Activities below MHWS are managed under this plan, while activities above mean low water mark are managed by the Conservation Management Strategies for both groups of islands, and activities that straddle the boundaries will need to be managed in an integrated manner.

Values of the coastal marine areas of the islands

The Kermadec and Subantarctic Islands and their coastal marine areas are unique. The islands themselves have one of the highest levels of protection in New Zealand statute as nature reserves under the Reserves Act 1977. The Subantarctic Islands are also national reserves under the Reserves Act and are internationally recognised world heritage areas. This world heritage status applies out to 12 nautical miles. For both groups of islands, there is significant land–sea dependency. Hence, an ecosystem-based approach that provides for well-integrated management of the land–sea interface is required, and will be provided by integrated planning with the Conservation Management Strategies for the two groups of islands.

Values of the Subantarctic Islands

Natural character—geology, ecosystems, flora and fauna

New Zealand’s Subantarctic Islands are made up of five groups of islands: Snares Islands/Tini Heke; Bounty Islands; Antipodes Islands; Auckland Islands; and Campbell Island/Motu Ihupuku and the islands surrounding it.

The Subantarctic Islands are located on the Pacific Plate, on two plateaus on the continental shelf that is to the south and east of the bottom of the South Island off mainland New Zealand. Three of the island groups are on the Campbell Plateau to the south-southeast: Snares Islands/Tini Heke, the Auckland Islands and Campbell Island/Motu Ihupuku. The other two groups, the Bounty Islands and the Antipodes Islands, are on the Bounty Plateau to the east-southeast. The two plateaus are sometimes referred to collectively as the Southern Plateau.

There are some key differences in the geological history of the individual island groups. The parent rock of the Southern Plateau is granite and metamorphic rocks more than 100 million years old. These rocks are similar in composition to the western mountains of the South Island of New Zealand and Marie Byrd Land in West Antarctica. Snares Islands/Tini Heke and the Bounty Islands, the two most northerly groups of islands, are made up of granite and metamorphic rocks of this ancient landmass.

Because of the distances between each island group and their different geological ages, each has its own unique assemblage of marine algae, invertebrates and fish. Each marine assemblage has a reasonable level of endemism and is as distinctive as the terrestrial flora and fauna of these islands. Diving surveys around the Bounty and Antipodes Islands in April 2005 showed that these areas support as many species as renowned areas such as Galapagos Island and Puget Sound (Department of Conservation & Ministry of Fisheries 2006: page 11)². Diving surveys in February 2009 showed striking differences in the types
of species that colonised the inshore areas of the Bounty and Antipodes Islands. These
differences could be attributable to a range of factors, such as currents and the position of
the islands on the Bounty Plateau, but geology is considered a key factor.

The Bounty Islands are composed of smooth outcrops of ancient granite (early Jurassic)
about 180 million years old. They are more closely related to the Jurassic granite of
West Antarctica than to New Zealand rocks. The islands have virtually no vegetation
above the high tide mark, other than Cook’s scurvy grass Lepidium oleraceum, which
was discovered in 2004. The shoreline has a continuous fringe of the common bull kelp
Durvillaea antarctica. A severe storm can cover the entire island group in salt spray.

Biological diving surveys in February 2009 that investigated the nearshore marine
communities of the New Zealand Subantarctic Islands showed that the islands are
significantly different from each other, both in terms of their species composition and their
potential ecological function. For example, while Antipodes Island rocky reefs support fairly
typical subantarctic shallow subtidal marine communities dominated by nongeniculate
coraline algae, the rocky reefs of the Bounty Islands are dominated by filter- and
suspension-feeding invertebrates, such as encrusting sponges, barnacles and mussels.

There is virtually no soil development on the Bounty Islands. The higher altitude islands
carry a film of hard, polished guano deposited by generations of seabirds and enamelled
to the rock surfaces, but elsewhere winter rains wash away bird droppings from the
previous summer. Hollows become filled with brown organic sludge formed from decaying
carcasses, moulted penguin feathers, excreta, food scraps and seaweed washed up by waves
or brought ashore by the Bounty Island shags as nesting material. The shags have coped
with the lack of terrestrial plant material for nesting by collecting brown seaweed from the
sea. The mollymawks use penguin feathers to reinforce their nests. Despite the lack of soil
development and vegetation, the Bounty Islands provide a graphic demonstration of the
role of these subantarctic islands as breeding grounds.

Campbell and Auckland Islands have a more diverse range of marine habitats, which
include large embayments and sheltered harbours. Contrasting geology, oceanographic
conditions, and nutrient input from seabird and pinniped colonies may all contribute to the
observed nearshore community structures of the islands. Each of the island groups supports
distinct marine assemblages, with their own suite of endemic species and subspecies. Many
of these endemic species are conspicuous and common, such as the endemic species of bull
kelp found only at Antipodes Island, which grows down to 20 metre depths, with plants up
to 5 metres in length.

The terrestrial and marine environments of the Subantarctic Islands are closely linked.
Many species that utilise the islands for shelter, nesting or resting are dependent on the
surrounding seas for food; and the islands and vegetation they support receive significant
nutrient enrichment from the sea via the input of guano. For example, Antipodes Island
has soil and supports a diverse terrestrial flora, which includes large tussocks, Poa litorosa.
The soil and vegetation provides a ‘filter’ for nutrients brought to the island by pinnipeds
and seabirds. The alga Prasiola crispa is found around penguin colonies and in seabird
nests on Antipodes Island, surviving on marine-derived nutrients provided by birds. In
contrast, as noted above, the Bounty Islands have virtually no soil or terrestrial flora. The
guano and excrement produced by seabirds and fur seals at the Bounty Islands runs off the
steep islands, directly into the nearshore marine environment, without the ‘filter’ provided
by soil and vegetation at Antipodes Island. The entire Bounty Islands nearshore marine
environment receives significant enrichment from the rich supply of marine-derived
nutrients, which likely helps to support the diverse encrusting communities found there.

The Subantarctic Islands are significant island refuges for a range of plants and animals found nowhere else in the world. They are important breeding grounds for countless seabirds, penguins and marine mammals, and the habitat of some special plants. The southern ocean is equally important as habitat and a vast feeding ground for wildlife.

Significant natural features of the New Zealand subantarctic region include:

- The endemic New Zealand sea lion, which has its principal breeding grounds at the Auckland Islands
- Among the greatest diversity of penguin species found in the world, comprising four breeding species (Snares crested, erect crested, the yellow-eyed and rockhopper—three of which are endemic) and seven transient species
- 40 seabird species breed on the islands—11% of all seabird species in the world and 30% of the world’s petrels
- The world’s only breeding populations of southern royal albatross and Campbell albatross
- The world’s largest populations of wandering albatross, white-capped mollymawk and Salvin’s mollymawk
- Over five million\(^3\) (estimated) breeding seabirds on the 328-hectare Snares Islands/Tini Heke
- The world’s rarest cormorant, duck, snipe and penguin species (Bounty Island shag, Campbell Island teal, Campbell Island snipe and yellow-eyed penguin, respectively)
- The main breeding ground for southern right whales in the southwest Pacific (Port Ross on Auckland Island)—formerly endangered
- 14 endemic species or sub-species of land birds
- 120 species of birds and 200 species of indigenous vascular plants
- A high level of endemic species of vascular plants (including some that are otherwise only found on Macquarie Island)
- The spectacular Subantarctic megaherbs, including the daisy genus *Pleurophyllum*, which is endemic to the New Zealand subantarctic biological region
- The colourful rātā forests and the southernmost tree ferns in the world on the Auckland Islands
- One of the world’s largest near-pristine islands (outside the Antarctic and Arctic)—Adams Island at 9896 hectares has never had an introduced mammal become established
- 11 geological sites and landforms of national and regional importance, including granite features (Tertiary dikes and sills), and volcanic features (columnar jointing, lava flows, an intrusive plug, a gabbro, scoria cones and a rare occurrence of peralkaline rhyolite)
- A fascinating human history of exploration, shipwrecks, sealing, whaling, farming and early scientific expeditions

Despite their small size, these islands are very important—largely because of their isolation. This isolation has enabled the retention of their many natural features and abundant wildlife, which has not been the case for so much of the remainder of New Zealand.

The islands were listed as a world heritage area in 1998. The extent of that world heritage status extends out to 12 nautical miles, in recognition of the dependence of the islands’ biota on the sea. Each of the inter-connected land–sea ecosystems is crucial to the survival of a large number of endemic, threatened or endangered species.

The New Zealand subantarctic waters are on the migratory path of several whale species, including southern right, minke, sei, fin, blue and humpback baleen whales. The islands are also an important breeding site for southern right whales. Sperm whales, orca and dusky dolphins (toothed whales) are sometimes seen around the New Zealand Subantarctic Islands. Two small cetaceans, the hourglass dolphin and the very rare spectacled porpoise, are restricted to these latitudes and are occasionally seen in New Zealand subantarctic waters.

Māori values of the Subantarctic Islands

Three principal tribes of Te Waipounamu (South Island) and Stewart Island/Rakiura—Waitaha, Kāti Māmoe and Ngāi Tahu—occupied those lands in succession before the arrival of Europeans. Ngāi Tahu established their control of the rohe (tribal area) by intermarriage, diplomacy and warfare with Waitaha and Kāti Māmoe, so that today Ngāi Tahu holds mana whenua in southern New Zealand.

Ngāi Tahu also claims mana whenua for the southern islands, which are said to have been known to and used by expeditions seeking food and other natural resources prior to the arrival of Europeans. Ngāi Tahu has established its right under the Treaty of Waitangi to a reasonable share of the sea fisheries off its rohe within the 200 mile exclusive economic zone.

The Ngāti Mutunga iwi and the Mōoriri people of the Chatham Islands have links with the Auckland Islands (known to iwi as both Motu Maha and Maungahuka), specifically through the attempt to settle the Port Ross area in the period 1842–56. Separate claims concerning the Auckland Islands have been lodged with the Waitangi Tribunal. Mōoriri (Te Iwi Moriori Trust Board and Takat Henu Association of Rekohau Trust, Chatham Islands) have lodged a claim based on Whanaungatanga—an ancestral relationship to Maungahuka; and Te Rununga O Wharekauri (Ngāti Mutunga, Chatham Islands) has lodged a claim for recognition of mana whenua, based on the Port Ross occupation.

Another group of Ngāti Mutunga people on the Chatham Islands, who also have strong links to the Auckland Islands, do not support any claim to Maungahuka by their iwi—instead, this group supports the Ngāi Tahu claim.

The Department of Conservation is required to consult with tangata whenua, and it does so willingly and will continue to do so to ensure that iwi interests are taken into account in the Department’s decision-making processes for the Subantarctic Islands and surrounding ocean.

The Ngāi Tahu Claims Settlement Act 1998 (the Settlement Act) gives effect to the Deed of Settlement signed by the Crown and Te Runanga o Ngāi Tahu on 21 November 1997 to achieve a final settlement of Ngāi Tahu’s historical claims against the Crown.

The Settlement Act acknowledges the special association of Ngāi Tahu with taoka species found in the Southern Ocean, including hoiho (yellow-eyed penguin), tītī (petrels), toroa (albatrosses and mollymawks), rimurapa (bull kelp) and marine mammals.

As a part of the Crown’s settlement with Ngāi Tahu, protocols have been developed on how the Department and Ngāi Tahu will work together on specified matters of cultural significance to Ngāi Tahu.

Ngāi ai Tahu ki Murihiku are kaitiaki of the Southland region, including the southern islands. They have prepared a management plan: Te Tangi a Tauira—The Cry of the People, which consolidates Ngāi Tahu ki Murihiku values, knowledge and perspectives on natural resource and environmental management issues.

Proposed Regional Coastal Plan: Kermadec and Subantarctic Islands
Cultural and historic heritage values of the Subantarctic Islands

Archaeological and historical sites in the New Zealand Subantarctic Islands range from small archaeological deposits through to complete original buildings, and include introduced plants (such as flax at the Auckland Islands) and modifications of the natural environment (such as sections of beach cleared of large stones to form boat runs). They represent a range of human history of local, national and international significance; from the southernmost recorded extent of Polynesian settlement, to sites where the transit of Venus was observed by international scientific expeditions.

Many sites span the boundary between land and marine environments, and almost all have a maritime landscape context. Some sites and site complexes combine to form historic landscapes. For example, in Port Ross at the Auckland Islands, more sheltered anchorages are the hub for a number sites, including the Enderby Company settlement and outlying farmsteads; the Erebus cove cemetery; castaway provision depots, boatsheds and fingerposts; sealing bases; coastwatcher base and lookout; and sites of scientific observations, including the transit of Venus. There is a similar hub around the more sheltered waters at the head of Perseverance Harbour at Campbell Island/Motu Ihupuku around Camp and Tucker Coves. Because of the way in which heritage values cross between land and sea, many of the sites, buildings, places or areas extend landward of Mean High Water Springs. To achieve integrated management of these areas, they also need to be given appropriate recognition and protection in the Conservation Management Strategy for the Subantarctic Islands.

The islands were notorious for shipwrecks in the second half of the nineteenth century. Shipping traffic in the Southern Ocean around the Great Circle Route was at a peak, serving immigration and the gold rushes at this time, and an increasing number of wrecks occurred throughout the colonies. Reliance upon celestial navigation methods in overcast conditions, a strong southerly drift and a failure to carry up-to-date charts all increased the likelihood of being wrecked on subantarctic shores.

There are eight confirmed wrecks at the Auckland Islands, one at Campbell and two at the Antipodes. Given the number of vessels that were lost in the Southern Ocean, it is likely that more were wrecked on these islands, but without survivors to tell the tales. For most of the wrecks, only very approximate locations are known. The locations of the Grafton, Anjou, Derry Castle, and Dundonald at the Auckland Islands, and the Spirit of the Dawn and President Felix Faure at Antipodes Island can all be estimated with some certainty from historical records, but no underwater archaeological survey has been undertaken. Survey in these environments is extremely difficult and expensive, and the only investigations have been undertaken in association with attempted salvage operations searching for the reputed cargo of gold on the General Grant at the Auckland Islands.

In addition to the wrecks themselves, a number of sites associated with the activities of shipwreck survivors remain in the coastal marine environment. These include the boat run at the Grafton wreck site and the campsite of the Anjou survivors in Carnley Harbour, Auckland Islands; and the Derry Castle grave site on Enderby Island. Other survivor campsites are also in close proximity to the shore, as it was vital to survival to attract the attention of any passing ships.

Government relief for shipwreck victims from the 1860s until the 1920s took the form of the release of live animals and planting of vegetable crops; the provision of dried foods, clothes and equipment; the construction of depots to house provisions and provide limited shelter; the construction of castaway boatsheds and boats to provide transport to depots; and the installation of fingerposts to guide the way. Most boatsheds were located at the very edge of the tide to enable easy launching of the boats. Archaeological remains associated with
the boatsheds on Adams, Ewing, Rose and Disappointment Islands, and at Camp Cove in the Auckland Islands group are all in the coastal environment, and some spill over into the coastal marine area. They largely consist of foundation timbers, rusted iron fragments and boat runs. The depots and fingerposts that remain are also located very close to the shore.

The need to monitor for enemy shipping during World War II provided the next opportunity for scientists to spend time in the Subantarctic Islands, and has also left a range of historical buildings and archaeological features. Many of these are again in the coastal environment, but only a small handful of them span into the coastal marine area, such as the wharf piles at the base in Ranui Cove at the Auckland Islands. Coastwatching in the Subantarctic was initiated because of concerns about enemy ships using the islands for shelter. The only record of the islands being used in this way is by a German vessel called the Erlangen, which spent around 2 months in Carnley Harbour collecting firewood. Stone arrangements used as jetties during this stay can be seen at low tide, and it is possible that additional features lie unrecorded below the low tide mark.

Current use values

Given the remote location, challenging environmental conditions and national nature reserve status of the islands themselves, the current uses of the Subantarctic Islands are limited to:

- Conservation management
- Scientific research and monitoring
- Tourism
- Fishing
- Wreck exploration and salvage

It should also be noted that the distinction between conservation management and scientific research and monitoring is an arbitrary one: conservation work includes both management and research, and research can be for conservation purposes.

Conservation management on the Subantarctic Islands

The Department of Conservation manages the islands themselves, on behalf of the Government and the people of New Zealand, via the Conservation Management Strategy for the Subantarctic Islands 1998 to 2008 (the CMS). Every year, scientific and conservation management expeditions visit the Subantarctic Islands either to work with the flora and fauna or to maintain facilities and historic sites.

The marine environment of Auckland Islands is both a marine reserve and a marine mammal sanctuary under the Marine Reserves Act 1971 and the Marine Mammals Protection Act 1978, to the outer limits of the territorial sea.

A priority for management is the eradication of animal and plant pests, and the re-introduction of species lost in the past. The Campbell Island snipe and teal are both successful recovery stories following successful rat eradication.

4 The Conservation Management Strategy for the Subantarctic Islands was due to be reviewed in 2008; however, the timeframe has been extended out to 2012.

5 Note the Marine Protected Area Forum for the Southern Ocean has resulted in a decision by Ministers to create more marine reserves around Bounty, Campbell and Antipodes Islands and further fisheries restrictions. For further information, refer the Integrated management section of the plan.
Scientific research in the Subantarctic Islands

Southland Conservancy prepared the Subantarctic Islands Research Strategy in September 2003 as a guide to applicants who want to undertake research in the subantarctic region and to assist the Department of Conservation’s assessment of the proposals. Four research themes are described:

- Natural ecosystems (including ocean dynamics, food webs and foraging behaviour);
- Effects of introduced biota;
- Human impacts; and
- Non-biological sciences (geology, climatology, oceanography, atmospheric research).

The Research Strategy lists several study topics under each theme (refer section four of the Strategy).

Research projects require a research and collection permit, which can range from a few days to up to 5 years, and an entry permit for each trip to the islands. As with all visitors to the islands, researchers must comply with a minimum impact code and quarantine requirements.

The MetService has automated weather stations on Campbell Island/Motu Ihupuku and Enderby Island.

Tourism

The Subantarctic Islands have attracted visitors since 1788, when William Bligh mapped the Bounty Islands. Throughout the 1900s there were various visits to the islands from tourists en route to the Ross Sea area of Antarctica. But interest in the Subantarctic Islands as a destination themselves soon grew. The first New Zealand based tours were initiated in 1988, operating out of Dunedin and Bluff. The number and frequency of tours has grown since then.

There has been a major growth in tourism demand over the last 5 years, compared with the previous 20 years. The remoteness of these rugged, windswept islands, set amongst some of the wildest oceans in the world, combined with superb wildlife viewing opportunities make these islands key attractions for ecotourists, or tourists seeking remote destinations with a focus on nature tourism.

The Department believes there has been a growth in tourism interest in the Subantarctic Islands over the last 5 years, compared to the previous 20 years. This is from both small-scale eco-tourist operators (mostly small to medium sized vessels carrying up to 150 passengers) and the large cruise ships carrying 2000 plus passengers. Cruise New Zealand (representative of 95% of cruise ships visiting NZ) generally deters the large cruise ships from attempting to go too close or visit the southern Islands, and instead suggest they steam offshore of the Snares Islands on dawn or dusk to watch the tiki (sooty shear water) leaving or returning in their millions, from food foraging, and then to carry on to other mainland destinations.

The remoteness of these rugged windswept islands, set amongst some of the wildest oceans in the world, combined with superb wildlife viewing opportunities make these islands key attractions for eco-tourists or tourists seeking remote destinations with a focus on nature tourism. However, the wild oceans, remoteness and associated operational requirements make the islands a challenging environment to visit. As noted above, subantarctic tourism, offering an ecotourism experience, has mostly been limited to small to medium-sized vessels carrying up to 150 passengers to date. The current trend for visits from the smaller

ecotourist operators seems to be in decline. This could be for a variety of reasons, such as world economic conditions or changes to the requirements to be met by ships as required by international maritime regulations. There has, however, been sustained tourism by one ecotourist operator over the last 25 years.

Tourists are not permitted to land on Snares Islands/Tini Heke, Bounty, Antipodes or the other Auckland Islands (other than Enderby and the main island) because of their highly vulnerable nature. However, tourist vessels will sometimes let visitors view the islands from the sea and may let tourists get closer to the islands using inflatable dinghies (or zodiacs). This activity is known as ‘zodiac cruising’, where a cruise ship anchors or steams off the islands and passengers observe the islands’ seabirds and marine mammals closer to shore from zodiacs rather than actually landing on the islands. This allows passengers to experience the marine life, still obtaining a wilderness and wildlife experience, without actually landing on the islands. This activity is most common at the Snares Islands/Tini Heke since they are close to the route between the New Zealand mainland and the Auckland Islands.

Yachts will visit the islands on occasion. As noted above, tourists are not permitted to land on Snares Islands/Tini Heke, Bounty, Antipodes or the other Auckland Islands. Landing on the main Auckland, Enderby Island or Campbell Island requires an entry permit.

Fishing

Commercial fishing in the Southern Ocean is a major industry. Customary and recreational fishing, however, is uncommon because of the remoteness and extreme weather conditions, and a lack of suitable fish species—just the occasional fishing visits by small boats.

There are limitations on commercial fishing within the territorial sea, including:

- Fisheries Regulations prohibit all vessels trawlers greater than 46 metres and any foreign charter vessels from fishing in the territorial sea.
- Benthic Protection Areas established by Fisheries Regulations prohibit bottom trawling and dredging within the territorial seas of the Bounty, Campbell and Antipodes Islands.
- The territorial sea of the Auckland Islands is both a marine reserve and a Marine Mammal Sanctuary out to 12 nautical miles.

Within these constraints, the bulk of the fishing activity within the territorial sea is bottom longlining for ling around the Bounty Islands. Ling is primarily a bottom-dwelling, eel-like species occurring mainly at a depth of 200 to 700 metres over the Campbell and Bounty Plateaus. Deep sea bottom longline fishing for ling occurs can occur at any time of the year but is most likely to happen between August and December around the Snares Islands/Tini Heke and Bounty Islands. This targets the spawning concentrations in spring.

There is a small rock lobster fishery around the Snares Islands/Tini Heke. There is also potential for a deep sea crab fishery to develop, however, it is largely experimental at this stage off Campbell Island, with quota allocated under the quota management system (QMS).

Although there is a marine reserve around all the Auckland Islands out to 12 nautical miles, and as such fishing is prohibited, there is significant fishing effort in the waters immediately outside this zone. This is primarily bottom trawling for scampi. These vessels tend to be

7 Note the Marine Protected Area Forum for the Southern Ocean resulted in a decision by the Ministers of Fisheries and Conservation to create marine reserves around Bounty, Campbell and Antipodes Islands and further fisheries restrictions. Refer to the ‘Integrated management’ section of the plan for further details.
less than 25–45 metres in length—smaller than most other commercial fishing vessels in the southern ocean. Although the fishery is beyond the territorial sea boundary, there is a history of these scampi vessels regularly coming close into shore within the territorial sea of Auckland Island for shelter during rough weather, which in winter can be up to 3 to 4 weeks at a time. Fishing vessels of all sizes up to 105 metres in length may seek shelter near the coast of Auckland and Campbell Islands in severe weather systems.

Wreck exploration and salvage

There have been expeditions to hunt for shipwrecks in the past. In particular there is considerable interest in searching for the General Grant off the main Auckland Island. Although the Auckland Islands are a marine reserve out to 12 nautical miles, there is express provision in the Marine Reserve (Auckland Islands – Motu Maha) Order 2003 to allow for continued exploration for the General Grant. To do so, however, requires the approval of the Director-General of Conservation, as well as authorisation from the Historic Places Trust and a coastal permit under this plan.

Values of the Kermadec Islands

The Kermadec Ridge is an active volcanic arc with a string of volcanoes along its entire length. The Kermadec Islands are the summits of these volcanoes, rising from a sub-oceanic ridge that extends from New Zealand to Tonga. The islands themselves are relatively young with a terrestrial history of no more than two million years, which is reflected in the low levels of faunal and floral endemism.

The islands are made up of four groups of islands extending 240 kilometres along the western ridge of the Kermadec Trench. Raoul Island and the Herald Islets form the northernmost group of islands, and L’Esperance Rock is the southernmost island. Macauley, Curtis, Cheeseman and Haszard Islands lie between Raoul and L’Esperance Rock (refer to Fig. 1 in the jurisdiction section).

The Kermadec Islands Marine Reserve is the largest no-take marine reserve in the world. Covering 748,000 hectares, it surrounds the entire coastal marine area of the island group. Lying between latitude 29°S and 32°S, the coastal marine area is New Zealand’s only subtropical marine habitat. The islands were sufficiently far away from the mainland to escape heavy fishing pressure before being declared a marine reserve in 1990, so are thought to be one of the world’s most unmodified marine habitats.

The Kermadec Islands are biogeographically isolated and surrounded by vast expanses of low-nutrient oceanic waters. The islands have a high degree of endemism within the shallow-water fauna. The giant Kermadec limpet (Patella kermadecensis) is an endemic, mid-intertidal herbivore that is highly significant in influencing intertidal ecology.

The reef communities reflect a transition between tropical and temperate reefs, and are characterised by a distinctive mix of endemic, tropical, subtropical and temperate species. Rock faces and boulders are covered in a blend of short, turf-forming algae and hard and soft corals. Dense kelp forests found elsewhere in New Zealand are absent. The Kermadec region is the only place in New Zealand where hermatypic (reef-building) corals are found in subtidal areas. Water temperatures are too low for reefs to develop, but individual coral colonies up to 2.4 metres in diameter are common. Further out, the continental slope is steep and narrow comprising extensive areas of fine sand and mud slopes.
Many of the plants and animals are wide-ranging tropical species that occur throughout the Indian and western Pacific Oceans. Few are common and populations of these species are probably replenished by larvae from Norfolk Island or even the Australian Great Barrier Reef, making their presence precarious. Species diversity is relatively low in many plant and animal groups due to the geographical isolation and the lack of some habitat types such as sheltered bays, fringing reefs, lagoons and estuaries. Through the Kermadec chain there is latitudinal variation in the presence and abundance of some groups, and tropical species decline in diversity and abundance southwards, whereas temperate species decline northwards. Overall, the flora and fauna are more similar to that of Norfolk and Lord Howe Islands. Endemic fauna includes one coral, six fish and 68 molluscs. There is insufficient information about other animal groups at the Kermadec to determine their degree of endemism.

Species of significance in the Kermadec Islands coastal marine area include:

- More than 165 species of algae.
- 17 species of reef corals and 7 soft coral species. The Kermadecs is the only place in New Zealand where reef-building corals are found in subtidal areas. Although water temperatures are too low for reefs to develop, individual corals can grow up to 2.4 metres in diameter.
- Herbivorous fish, a distinctive feature of Kermadec reefs, including the caramel drummer (*Girella fimbriata*), Kermadec scalyfin (*Parma kermadecensis*) and Kermadec triplefin (*Enneapterygius kermadecensis*).
- The only major unexploited population of spotted black grouper (*Epinephelus daemelii*) in the world. These fish grow up to 2 metres long and play a major role in reef dynamics, probably feeding on large crustaceans and fish.

Seabirds

The Kermadec Islands form a seabird refuge of major international importance. Most recent estimates place the total Kermadec seabird population at 10–15 million seabirds. Seabirds breed on the islands but spend most of their lives at sea: a seamless activity from land to air to sea. All seabirds utilise the coastal marine area, and birds are an integral part of the natural character of the islands.

Thirty-five bird species are known on the islands, five of which are found nowhere else in the world. Most Kermadec seabirds are tropical or sub-tropical taxa, a major point of difference with the rest of New Zealand’s seabird fauna (Gaskin 2009). Significant species include ‘tropical’ birds such as the red-tailed tropic bird, the masked booby, two species of noddy, terns and the grey ternlet.

The Kermadec Islands are the key breeding site for a number of New Zealand’s endemic seabirds, including the white-naped petrel, Kermadec little shearwater, Kermadec storm petrel and New Zealand sooty tern, and hold the world’s largest population of black-winged petrels (Gaskin 2009). Furthermore, 99.9% of the world’s population of black-winged petrels breed on Macauley Island.

Kermadec waters are also utilised by seabirds that breed outside the region. To date, 40 seabird taxa have been recorded for the Kermadec region and in seas north and northeast of the New Zealand mainland. Of these, six are tropical seabirds and the remainder are southern-breeding seabirds (Gaskin 2009).

Cetaceans in the Kermadec region

Seven cetacean species (bottlenose dolphin, killer whale and five great whales) have been recorded from the Kermadec Islands. Of these the blue whale (*Balaenoptera musculus*) is only known from a single stranded specimen. A further 28 species may be present based upon extrapolation from their known ranges.

Very little scientific research has been conducted on the cetaceans inhabiting the Kermadec archipelago however a considerable amount of information on commercially hunted species is contained in American whaling log books and journals\(^9\). The Kermadec Islands and surrounding waters were one of three main locations for hunting sperm whales (*Physeter macrocephalus*) in the New Zealand region, beginning in 1792 and continuing into the 1880s. Sperm whales are thought to aggregate in the region to feed on squid and although present throughout the year whaling data indicate they are most abundant from January to May, with numbers peaking in May as individuals and groups migrate through the region to tropical waters further north\(^9\).

Although whaling vessels took very few humpback whales (*Megaptera novaeangliae*) around the Kermadec Islands, the region is an important migratory corridor for the endangered Oceania subpopulation\(^10, 11\) (Constantine et al. 2010; Garrigue et al. 2010). These whales feed in Antarctic areas V and VI and migrate south through the Kermadec archipelago from September to November\(^10, 12, 13, 14, 15\). DOC staff counted 112 humpback whales (3.2% of the estimated Oceania population) in the coastal waters of Raoul Island on one day during the peak of the migration in October 2009\(^10\). While satellite tagging has shown that some New Caledonian humpback whales migrate through the Kermadecs it is not known where the bulk of them come from, however it is likely they include whales originating from Fiji, Tonga, Niue and French Polynesia\(^10, 11, 16\). Humpback whales probably do not feed in the waters around the Kermadec Islands but cows and calves have been observed lingering in Denham Bay, Raoul Island, suggesting the islands may function as a relatively sheltered stop-over allowing cows with dependent calves to rest before continuing on to Antarctica.

The only resident or semi-resident species in the waters surrounding the islands is a small form of bottlenose dolphin (*Tursiops cf. truncatus*). The relatively small size of the Kermadec dolphins is unusual for bottlenose dolphins inhabiting oceanic habitats and suggests they may be genetically distinct. They probably feed on a variety of small benthic and pelagic fishes and squids. Anecdotal observations of staff stationed on Raoul Island suggest a seasonal habitat shift, possibly to offshore waters or another part of the ridge, with sightings of dolphins being less frequent around the island during winter. Population size and connectivity are unknown, as are all other aspects of this species’ biology.

There has been no systematic survey of cetaceans occurring on the north Kermadec Ridge, including the coastal waters of the Kermadec Islands.

\(^12\) Chilton, C. 1911: The crustaceans of the Kermadec Islands. *Transactions of the New Zealand Institute* 43: 544–573.

Cultural and historic heritage in the Kermadec Islands

Polynesian settlement

Polynesians were the first to discover and settle in the Kermadec. Radiocarbon dates from archaeological deposits at Low Flat on the northern coast of Raoul Island suggest that the island was first settled during the late 13th or early 14th centuries AD. The settlement appears to have been of relatively short duration, as acceptable dates from both above and below the intermediary ash and pumice layer fall within a narrow age range. The presence of Pacific rat (*Rattus exulans*) and possible artefact finds at Sandy Bay on Macauley Island suggest it was also visited by Polynesians, but Macauley’s lack of fresh water, and a failure to report any more conclusive archaeological deposits, suggest it was unlikely to have been occupied for any significant length of time. The presence of obsidian from Mayor Island (Tuhua), found on Raoul Island during 1978 archaeological excavations, confirms that Raoul was visited on a return voyage from New Zealand, although this does not preclude settlement from the tropical Pacific. Interestingly, in spite of its poor flaking attributes making it a low-quality raw material for flake tools, Raoul Island obsidian has been reported in archaeological context on Norfolk Island, which suggests that the people who visited in prehistory were actively exploring the subtropical latitudes of the Pacific. Botanical remnants associated with the Polynesian settlement most notably include the candlenut (*Aleurites moluccana*), cabbage tree (*Cordyline fruticosa*), karaka (*Corynocarpus laevigatus*), and tara (*Colocasia esculenta*). The Kurahaupō is one of the principal waka from which the iwi of Te Aupōuri descend. Oral tradition as told by Te Aupōuri kaumātua and kuia is that on its way to Aotearoa the lashings of Kurahaupō were loosened and the canoe damaged, and the vessel was nearly wrecked at Rangitāhua (Kermadec Islands). Most of the crew were later brought on to Aotearoa by the larger Aotea and Mataatua canoe, but a few of the crew remained at Rangitāhua where they repaired the Kurahaupō before continuing their journey to Aotearoa. After much hardship those who had remained at Rangitāhua made landfall and the circumstances of that event are well ingrained in oral tradition. The captain of the Kurahaupō from Rangitāhua to Aotearoa was a man named Pōhurihanga. On arrival in Aotearoa Pōhurihanga married a woman named Maieke. Their descendents include well known ancestors like Tōhē and Te Kura who are in turn tupuna of Te Ikanui and his wives, Tihe and Kohine, from whom the iwi of Te Aupōuri descend. Many of the traditional accounts of the settlement of New Zealand refer to Raoul Island. Unfortunately, these accounts appear to have been influenced by early 20th century ‘ethnographic conjecture’, namely the equating of the island with the Rangitaua of Māori Pacific voyaging tradition. Lieutenant Colonel Gudgeon first made the case for equating Raoul Island with Rangitaua in 1903. It was on that basis that the Kermadec Islands were known as Rangitāhua in the Cook Islands, and on the basis of his acceptance of the belief that the karaka had been introduced from Raoul to New Zealand. Sir George Grey’s account of ‘The emigration of Turi’ published in 1854 in *Polynesian Mythology* had referred to the *Aotea* stopping for repairs at Rangitāhua, and S. Percy-Smith’s translation of Tautahi’s *Ko Aotea Waka* referred to the introduction of karaka from a place known as Rangitaua, but neither equated this place with Raoul Island. Gudgeon’s assertion was compounded by the later works of Elsdon Best and Sir Peter Buck, who appear to have accepted Gudgeon’s belief that Raoul Island was the Rangitaua in Māori traditions. A fuller account of earlier ethnographic speculation is contained in Leigh Johnson’s *In the Midst of a Prodigious Ocean*17.

European discovery

European discovery of Raoul Island occurred on three separate occasions. The first of these was Captain Sever’s visit to the Kermadecs aboard the convict transport *Lady Penrhyn* in 1788. After discovering Curtis and Macauley on 31 May and 1 June, respectively, the surgeon’s diary of 2 June reports sighting ‘land of a very considerable extent’ to the north of Macauley. However, as the island was windward of the *Lady Penrhyn*, which was bound for Tahiti, it was decided not to make the detour. The French explorer D’Entrecasteaux in command of the vessels *Recherche* and *Esperance* was the next to sight Raoul in 1793. Unaware of Sever’s sighting, D’Entrecasteaux claimed discovery of Raoul and named the island chain Kermadecs after the captain of the *Recherche*. Raoul is believed to have been named after the quarter-master Joseph Raoul. The third European discovery of Raoul was made by Captain Raven of the *Brittania*. While aware of Sever’s discovery of Macaulay, Raven was not aware of his discovery of Raoul, or its subsequent discovery and naming by D’Entrecasteaux. Raven accordingly gave his discovery the well-considered name Sunday Island on the basis that he visited it that particular day of the week.

Whaling

French and American whaling vessels frequented the Kermadec Islands during the 19th century, and the waters around the Kermadec Islands were commonly known as the French Rock whaling grounds. A study of the logs of over 1600 American whaling vessels documented the catches of sperm and southern right whales, and in doing so demonstrated that the Kermadecs were a significant whaling ground, both as a point where concentrations of sperm whales were found to be at their greatest, and as an area that could be exploited twice a year. At its height in the 1830s, up to 30 vessels might be seen in a single day in the vicinity of L’Esperance Rock. The whaling fleet was predominantly ship-based, but Raoul was exploited as a source of fresh water and of wood to fuel the fires for trying whales at sea. The discovery of a whalers’ try pot on the beach at Denham Bay, recalled by Alf Bacon, is not inconsistent with this activity, but remains unsubstantiated. It was during this period that goats and pigs were liberated on Raoul and Macauley to establish a population that might provide a source of fresh meat for whalers.

European settlement

It was also during the 19th century that the first attempts by Europeans were made to settle on Raoul Island. The first of these appears to have been by James Reed, his family and deserters from the whaling vessel *Cheviot*, who established a settlement at Denham Bay from 1836. Reed established cultivations and on occasion was able to supply provision to visiting ships until his departure from the island in 1845. Other early settlements were made by the Bakers (1837–48); Vincennes (1840s); Halsteads (c.1840–63); Cooks (1851–53); Peters (1840s–63); Coverts (c.1857–70); and Johnsons (c.1857–60s). The most enduring settlement was that of the Bell family, who lived both at Denham Bay and Low Flat between 1878 and 1914. The Bells were an industrious family and established plantations of a wide variety of produce including taro, yams, kumara, beans, maize, oranges, lemons, limes, citrons, shaddocks, cherimoya, pawpaw, bananas, guavas, sugar cane, peanuts, figs, grapes, tobacco, tea and coffee, as well as ‘ordinary vegetables’ besides. Bell had employed Niuean labourers for a limited time in the 1880s to help clear bush and speed his cultivations.

Slave traffic

In March 1863, Denham Bay was visited by the Portuguese slave ship *Rosa Y Carmen*. On board were 271 Pacific Islanders, captured for indentured labour in Peruvian plantations. While at sea, infectious disease spread on board the ship and ravaged the captured islanders. Captain Marutani put into Denham Bay to allow the islanders to recover. By the time he departed, over 150 of the islanders had died as a result of an infectious disease, including the settler Halstead and his son, who were resident in Denham Bay at the time.
Annexation

Raoul Island was first charted for the British Admiralty by Captain Denham of the *Herald* in 1854. Denham's son Fleetwood fell ill and died during this expedition, and was subsequently buried above the beach at Denham Bay. The first annexation of Raoul occurred in July 1886 when Captain Clayton of the HMS *Diamond* erected a flagstaff with a proclamation of sovereignty attached at the northern end of Denham Bay. The first the Bells knew of this was when they came across the flagstaff some time after the departure of Clayton. The New Zealand Government annexed the Kermadecs the following year in August 1887. Disregarding the protests of Thomas Bell, the island was subsequently divided into lease runs to be disposed of at auction from 1889. Thomas Bell was awarded title to 275 acres on the northern side of the island. Two of the runs were leased by Hovell and Ellisore, who established the Kermadec Islands Fruit and Produce Association settlement. Members arrived in late 1889 but soon found that the picture painted of their new home in New Zealand did not match up with the reality of Denham Bay. Half of the new settlers returned within 6 months of their arrival; among those who stayed were the Hovells, Robsons and Carvers.

Following on from the departure of the Bells and World War I, the war several other attempts were made to settle the island. Alf Bacon, Charles Parker and Jim Ashworth settled briefly on the island from 1926, but left following the death of Parker in 1927. Bacon was involved in a subsequent settlement from 1929 as part of a syndicate known as the Sunday Island Settlement Association. Bacon’s third and final attempt at settlement was in 1935 with Bruce Robertson.

Castaway depots

Following the annexation, castaway depots were established on Macauley Island, Curtis Island and L’Esperance Rock. The Macauley depot was sited above the Lava Cascade, and the Curtis depot near the landing in McDonald’s Cove. Two goats were also liberated on the top of Curtis as a fresh food source for castaways. These were serviced on an annual basis, but appear never to have been required by legitimate shipwreck survivors. The L’Esperance depot itself was wrecked within a year of being established and a pragmatic decision was made not to replace it. The Curtis Island castaway depot was RAIDed in 1917 by the German naval captain Count Felix Von Luckner, following his escape from Motuiehe Island.

WWI

During World War I, Raoul Island was briefly used as a haven by Captain Nerger and the crew of the German commerce raider *Wolf*. Forced to seek a temporary anchorage to suppress a fire in the coal hold, Nerger anchored the *Wolf* off Sunshine Cove in May 1917. While repairs were being affected to the damaged boilers, Nerger was fortunate enough to encounter the cargo steamer *Wairuna* en route from Auckland to San Francisco with stores on board including 1500 tons of coal, fresh produce and 42 live sheep. On account of the recent fire, the *Wolf* was hardly in a state to give chase, but despite this Nerger dispatched his sea plane *Wolfchen* to order the captain of the *Wairuna* to surrender his vessel or be bombed. Captain Saunders of the *Wairuna* complied with this request, and the steamer was taken back to Raoul so that the much-needed supplies could be transferred to the raider. On 16 June, Saunders and his crew were taken on board the *Wolf* and the *Wairuna* was taken out to sea to be scuttled.

On leaving Raoul, the four-masted schooner *Winslow* was sighted, destined for Samoa. Nerger ordered the *Wolfchen* up to order the surrender of the schooner, which was also captured and taken back to Raoul. While the supplies from the *Winslow* were being transferred to the *Wolf*, the *Wairuna* was towed out a second time to be scuttled. The *Winslow* was towed out to sea to be scuttled 5 days later and was eventually left burning and drifting towards the shore as the *Wolf* continued on its way to New Zealand to lay mines off North Cape.
Meteorological station

During the 1930s, remote islands such as Midway and Wake Islands in the north Pacific were being developed for long-distance ocean air services. Raoul’s topography and exposed coasts made it unsuitable for this purpose, so it was decided to reserve the island only for meteorological and aeradio facilities. Meteorological records were first kept on Raoul by the Carver family from 1889, and subsequently during Oliver’s 9-month scientific expedition in 1908. A meteorological station was first established in 1937 and data were conveyed by radio for aviation and south Pacific meteorological services. In August 1939, a second expedition left Auckland in the auxiliary ketch Miena to establish a more permanent meteorological facility. Landing facilities were established at Fishing Rock in 1939 and at Boat Cove in 1940. The first buildings to be erected were the hostel, hospital and store, and a series of six single-accommodation huts were located to the east of the hostel in the location of the present-day annex building. The new complex was largely completed by 1940, and a further grant of funding allowed for the construction of the meteorological station office. At the same time, 100 acres of oranges were planted behind the hostel intended to supply the New Zealand market. A 30-acre farm was established to the west of the station to provide the meteorological station staff with fresh produce.

WWII

From 1942 to 1945, a coastwatchers station was maintained on Raoul, no doubt anxious to avoid a repeat of the losses to allied shipping sustained there during WWI. By 1940, there were 62 coastwatching stations around New Zealand, and towards the end of the war stations had been established on Norfolk Island, the Chathams, and the subantarctic Auckland and Campbell Islands. Despite these precautions, the German commerce raiders Orion and Komet used the southern end of the Kermadecs as a rendezvous after sinking the Rangitane in 1940, and Japanese submarines operated in the Kermadecs without success.

Heritage in the coastal marine area

Historic heritage in the CMA is limited to the shipwrecks and vessels scuttled during WWI. As no shipwrecks are known to have occurred in the Kermadecs prior to 1900, these wrecks are not protected under the archaeological provisions of the Historic Places Act, but several do have significant heritage values, most notably the Wairuna (1904–17) and the Winslow (1899–1917), due to their WWI association. Losses to New Zealand coastal shipping were limited due to the fact that German raiders seldom had opportunity to venture into the south Pacific. The rarity of such losses, combined with the fact that the locations for many remain unknown, elevates the potential significance of the Winslow and Wairuna. Reports of divers relocating the Wairuna have been published in Sid Marsh’s book Divers Tales, but the location of the vessel remains undisclosed.

Of the remaining wrecks, the barque Malmen (1892–1902) and the schooner Petrel (1898–1935) are also potentially archaeologically significant as vessels of 19th century construction, but on the basis of available information the chances of these vessels being located are remote. They are noted as ‘lost off’ and ‘wrecked near’ the Kermadecs, suggesting their loss some distance out to sea. The wreck of the MV Picton (1917–78) in Sunshine Cove is interesting in that timbers bearing the official number are still visible on the foreshore.

The remaining wrecks have interesting stories but are of limited archaeological value or historic consequence. The Columbia River (1916–21) has been blamed for the introduction of Norway rats and cats on Raoul. Wrecks for which locations can be reliably confirmed include the remains of the yacht Shiner below the landing platform at Boat Cove, the yacht Salano near Hutchinsons Bluff, and the Japanese trawler Kinei Maru (1980–86), which dominates the beach at Denham Bay. The no-take provisions of the marine reserve and
nature reserve, while not intended for the benefit of historic heritage, probably have the indirect benefit of ensuring that these wrecks and those that are yet to be rediscovered remain undisturbed and able to be appreciated by those fortunate enough to visit the islands.

Current use values

Conservation and restoration

The Department of Conservation has a permanent base on Raoul Island. The major work being undertaken on Raoul is the restoration of the island's ecosystem. The Department also undertakes a contract for the Metservice, which involves the releasing of a daily weather balloon. The Department changes permanent staff every 12 months and volunteers every 3–6 months.

All mammalian pests have been eradicated from Raoul Island. Goats were eradicated from Raoul Island in 1984 by the Forest Service, rats in 2002 and cats in 2004. The Department of Conservation undertook an operation to rid Macauley of rats in 2006, the success of which has yet to be confirmed.

Fishing Rock landing was originally established in 1939 for the meteorological station and is still the main location for landing personnel and supplies by tender today. The landing is located close to a dangerous rocky surf beach. In good conditions, the landings can be easy, but at any time it is easy to slip and risk injury or, at worst, be crushed between the boat and rocks, as the large swell leaves little room for boats to manoeuvre.

The Boat Cove landing was constructed in 1940, and the landing and wall, like that of Fishing Rock, have significant historic values. The Boat Cove landing is not currently useable as both temporary wooden bridges have been destroyed and there is no access to the landing platform. However, the site does provide an alternative landing to Fishing Rock when weather conditions make the latter site unusable.

Research

Research to date has focussed on the marine area of depths of about 2500 metres, particularly in the vicinity of active hydrothermal venting and seamounts\(^{18}\). There has been a lot of scientific research undertaken at depths below 100 metres, even though such depths can be close to the islands because of the steepness of the island structures.

As the coastal marine area of the Kermadec Islands has been subjected to a very low level of human-induced disturbance, the islands provide researchers with a unique opportunity to assess a subtropical marine ecosystem with a relatively high level of naturalness.

Future research is needed to document the biodiversity of coastal marine areas of the islands. Considering the sensitivity of some of the habitats in the region, particularly hydrothermal vents, non-destructive sampling techniques should be used where possible; that is, seabed imagery, obtained by towed cameras, submersibles and ROVs, should be considered the primary means by which to determine the composition of seabed assemblages. Direct sampling will be necessary to determine the identity of some species and to collect material for genetic and microbial studies, but this should be kept to a minimum in the vicinity of hydrothermal vents.

Being volcanically active, there are a number of sensors on the islands and GNS Science has recently installed tsunami monitoring equipment on Fishing Rock.

Archaeological research to date has been limited to non-systematic survey and has focussed on seeking an understanding of a small number of sites. No archaeological research has been undertaken since the 1990s. However, future research is needed to gain a better understanding of the role the Kermadecs played in settlement within the Pacific zone and when this occurred. This is particularly pertinent given the vulnerability of archaeological sites in the active coastal zone.

Tourism

Given the islands’ isolation and difficult landings, they represent a fairly limited niche tourism market—mainly centred on wildlife and diving. Raoul Island is the only island in the group on which recreational tourists are able to land. Yachts that wish to land on Raoul Island must obtain a landing permit, which is countersigned by Customs NZ before leaving New Zealand. If yachts turn up at Raoul from the Pacific without a permit, they are not legally allowed to stop at Raoul—customs regulations require that they make their way directly to a port in New Zealand to clear customs.

Ships and yachts present a biosecurity risk of introducing non-indigenous species via both hull fouling and pests that could be on board above the water line, particularly rodents. The introduction of a competitively dominant, sessile organism into the marine environment could result.
Issues, objectives, policies and methods of implementation

Issue 1 Natural character

Recognise the significant natural character values of the coastal marine areas of the Kermadec and Subantarctic Islands and of the islands themselves, and ensure they are preserved, by restricting activities with the potential for adverse effects on natural character and minimising the risk of oil spills and biosecurity breaches.

The Subantarctic and Kermadec Islands have significant natural character values—All of the Subantarctic and Kermadec Islands and their marine environments have significant natural character values—they are remote and unique, and have a high degree of endemism. In recognition of these values, the islands themselves (the land parts) are nature reserves, and the Subantarctic Islands are also national reserves, under the Reserves Act 1977, the highest form of protection under New Zealand statute. The Subantarctic Islands also have world heritage status out to 12 nautical miles. Accordingly, development is not considered appropriate, and use of the coastal marine area needs to be considered in light of its capacity to support activities without adversely affecting the natural character.

Natural character includes the natural processes, elements and patterns that are present in an area. Natural character can be considered as comprising both the ‘biophysical’ and the ‘experiential’ elements. Biophysical elements of the coast include elements such as geology, climate, and natural communities and ecosystems. Experiential values cover those that are experienced by humans, such as recreational or visual amenity, but also cultural and and/or historical elements.

The significant natural character values combined with the isolation of both the Kermadec and the Subantarctic Islands and the fact that access is predominantly by boat make the risks of biosecurity breaches and oil spills the largest threats to the islands and their coastal marine areas.

The planning boundary between the dry and wet parts of the islands is an arbitrary one for the ecosystems. For both groups of islands, the biota depends heavily on the coastal marine area. Each inter-connected land–sea ecosystem is crucial to the survival of a large number of endemic, threatened or endangered species.

Achieving the natural character objectives 1.1, 1.2 and 1.3 (below) is pivotal to achieving the purpose of the RMA for the islands—sustainable management of the natural and physical resources of the Kermadec and Subantarctic Islands. These are the overarching objectives of this plan and seek to preserve the significant natural character values of the islands whilst providing for the increasing interest in the use of the coastal waters of the islands.

Activities undertaken in the coastal marine area can give rise to adverse effects in three ways:

- Directly
- Indirectly—by facilitating activities that then give rise to other adverse effects (e.g. the presence of a vessel in a bay will create noise and light effects)
- Cumulatively—in conjunction with other similar or different activities in the area (e.g. the presence of more than one vessel in a bay will increase the impact of noise and light)

These adverse effects can occur over both short and long timeframes. Individual activities by themselves may have a minimal impact, but the combined influence of all activities in any given area may give rise to adverse effects. The ability of areas to absorb or assimilate...
use is limited, and at some point the intensity of use will give rise to unacceptable impacts. Natural character and amenity values of remote coastal marine areas are easily adversely affected by the number and types of activities that may occur there. A significant component of the ecotourist expeditions is the remoteness and wilderness values of the islands. Multiple vessels in a bay will diminish this value.

Natural character objectives

1.1 To preserve natural character.
1.2 To enable use that is consistent with the preservation of natural character.
1.3 To protect the indigenous biological diversity of the Kermadec and Subantarctic Islands and their coastal marine areas by avoiding the adverse effects of activities on all of the nationally significant indigenous community types flora and fauna communities present.

Natural character policies

A range of activities have the potential to affect natural character and exacerbate the risks of biosecurity breaches and oil spills. The policies to manage these risks and achieve the natural character objectives are grouped under the following sub-headings:

• Maintenance of biodiversity and biosecurity
• Control of surface water activities
• Control of discharges of contaminants
• Controls on structures, disturbance, deposition and reclamation

Maintenance of biodiversity and biosecurity

Marine biodiversity refers to the variety of all biological life, including plants, animals and microorganisms, the genes they contain and the ecosystems in which they live in the marine environment. Many New Zealanders value our coastal waters and oceans in a non-material, spiritual way. Māori have a special affinity with the oceans, and this is recognised in the Treaty of Waitangi. Many New Zealand industries depend on biological resources and healthy ecosystems, such as New Zealand’s $1.2 billion a year commercial fishing industry. As noted above in the values section of the plan, the Subantarctic Islands and their marine environment are valued for tourism, and commercial fishing in the Southern Ocean is a major industry.

Many of our native species are found nowhere else on earth. There is a high degree of endemism on all the island groups. The New Zealand sea lion is a prime example, with its principal breeding ground at the Auckland Islands. Huge numbers of seabirds also breed at the islands, a number of which are endemic to individual islands.

There is a strong interdependence between the terrestrial island habitats and the nearshore and offshore marine environments—the islands are vital for species such as marine mammals and seabirds that need to return to land to feed, breed and moult, etc.

There is broad scientific agreement that marine biodiversity is seriously threatened by human activities. According to the US Committee on Biological Diversity in Marine Systems, the most serious threats to marine biodiversity are:

• Fishing operations
• Chemical pollution and eutrophication
• Alteration of physical habitat by invasions of exotic species
• Global climate change

19 www.biodiversity.govt.nz/seas/biodiversity
20 www.biodiversity.govt.nz/seas/biodiversity
The threat of biosecurity breach is a key issue. Introductions of exotic organisms, whether new to New Zealand or just new to the coastal marine areas of the islands, are a particular risk that needs to be carefully managed. The most common mechanisms of introduction of harmful marine organisms are ballast water discharges and attachments of fouling on vessel hulls.

Introductions of harmful organisms to both the marine and terrestrial environments could change the structure of communities in both environments; for example, an introduced species could aggressively compete with indigenous species for habitat and food, causing changes in the food chain. If the new organism is an aggressive coloniser that out-competes existing indigenous species, its presence could result in their local extinction or extinction of a species. Alternatively, an introduction of a harmful marine organism that grazes on marine vegetation could change or destroy habitat that is of importance as a nursery area for juvenile marine species.

Introductions of exotic flora and fauna into the coastal marine area can give rise to the following adverse effects, ultimately affecting natural character, life-supporting capacity and intrinsic value of ecosystems:

- Predation on local resident indigenous fauna
- Competition with indigenous fauna species for the same food supply
- Loss of habitat of indigenous flora and fauna
- Destruction of habitats, which can alter coastal processes and increase the risk of erosion
- Loss of amenity and intrinsic values of ecosystems
- Genetic pollution
- Financial costs resulting from changes to the ecosystems and the values that are important to the ecotourist/expedition cruise industry

For these reasons, it is necessary that the risk or potential for the introduction of new species to an area be strictly managed.

POLICIES

1. To assess any applications for activities in the coastal marine area of the islands to ensure they will not give rise to adverse effects on the natural and physical resources of the islands, including, but not limited to, indigenous flora and fauna and the life-supporting capacity of ecosystems.

2. To maintain and protect biodiversity and the intrinsic values of ecosystems by reducing the risk of introductions of harmful or invasive species from above the waterline of vessels, by requiring checks prior to departure for the islands to ensure vessels avoid introductions of harmful organisms, including, but not limited to:
 - Pest animals (particularly rodents and insects)
 - Exotic plants
 - Fouling of equipment that is used in the water but stored on deck

3. To maintain and protect biodiversity and the intrinsic values of ecosystems by reducing the risk of introductions of harmful or invasive species via hull fouling by restricting access inside 1000 metres from MHWS of the islands to those vessels that can:
 - Provide evidence of a dry dock cleaning and hull maintenance regime, appropriate to the vessel and its operating environment, that is consistent with the specifications of the manufacturer of the anti-fouling system; and
• Demonstrate that they present a low risk of introducing organisms not native to the islands by an in-water diver inspection and certification; or
• Obtain a discretionary coastal permit—for which the application must include an independent risk assessment by a qualified contractor.

4. To maintain records of inspections and samples taken from vessel hulls and niche areas during inspections and/or risk assessments.

5. If an operator opts to have a risk assessment of fouling on a vessel's hull and niche areas, to process the coastal permit application as expeditiously as possible and endeavour to process on a non-notified basis wherever possible.

6. To provide for and encourage appropriate research that builds knowledge and understanding of the intrinsic values of the ecosystems.

OTHER METHODS

1. The Department of Conservation will, in consultation with users of the coastal marine area of the islands, develop a guideline for the inspection of the dry parts of vessels to check for harmful organisms and how to deal appropriately with any found.

Control of surface water activities

Users of the surface waters of the islands include commercial fishing interests in the Subantarctic Islands—for passage, shelter, and fishing, tourists from both commercial ecotourist operators and cruise ships, scientists and other researchers, operational management staff, individuals involved in interpretation (i.e. photographers or documentary makers), and recreational yachts.

Both the Kermadec and the Subantarctic Islands are nature reserves (and the Subantarctics are also national nature reserves). As such, public access above mean low water springs is controlled under the Reserves Act 1977, within Conservation Management Strategies (CMS), and an entry permit is required to land on the islands.

Access to the coastal marine area is difficult given the isolation of the islands from mainland New Zealand, and is usually by boat—helicopter access is generally just for emergency evacuations. The policies and rules of this plan seek to provide for public access in a way that addresses the risk of oil spills and biosecurity breaches—and also in a way that protects and promotes the wilderness experience.

In the Subantarctic Islands, there is demand to increase the number of permits to land on the islands (as noted above, this is managed in the CMS under the Reserves Act 1977). There is also interest from tourist operators wanting to visit the Subantarctic Islands without landing but by viewing them from the water by zodiac (ancillary craft).

Surface water activities around the islands need to be managed to maintain a high quality environment that preserves natural character, including landscape and amenity values, and the preservation of the landscape and amenity and preserves remoteness and wilderness values. Some areas are more at risk than others. Those areas that have landing sites for those with entry permits and areas identified as preferred anchorages are likely to be more at risk, as are those harbours and bays that are suitable for sight-seeing tourist vessels exploring by zodiac. The sustainable management of the natural character, landscape and amenity values of the islands, including remoteness, requires some restrictions on activities, such as only one commercial tourist vessel visiting a bay or harbour in any one day.

The control of surface water activities is based on zones of access relative to vessel length. Vessel length is used as a broad brush proxy for numerous factors that can influence risk of oil spill and/or biosecurity breach, such as: vessel length; propulsion system; number, 81

81 For the Subantarctic Islands, there is a research strategy in place called ‘The New Zealand Subantarctic Islands Research Strategy 2007’ which identifies research priorities for those islands.
type and location of propellers; number, type and position of rudders; presence and power of bow and/or stern thrusters; windage of the vessel relative to its power; age of vessel; fuel type, duration of access etc. A provision that encompassed all of these factors would almost certainly be unworkably complex and hence the preference for the broad brush proxy of vessel length. The zone inside 300 metres from MHWS, as the closest to shore, is the zone of highest risk. The 300 metres is selected on the basis that is the generally accepted limit the Norwegian rat can swim. The rationale for the zones is that they attempt to provide an accepted level of risk for existing use as a permitted activity where possible, based on vessel length as a proxy for the numerous variables noted above that would contribute to a vessels risk assessment. The degree of risk is further exacerbated by the remoteness of the islands and the environmental conditions that would hamper any response efforts.

POLICIES

7. To provide for public access to the coastal marine area of the islands, by vessels, in a manner that addresses both the need for navigation safety, thereby reducing the risk of an incident resulting in an oil spill, and the associated risk of a biosecurity breach, by restricting vessel access close in to shore relative to vessel size.

8. To avoid adverse effects on southern right whales when they are breeding and nursing in Port Ross by restricting vessel access.

9. To identify preferred anchorages as exceptions to the access restrictions to allow for safe anchorage for vessels that need to be close in to shore for safe anchorage because of their size of an appropriate size.

10. To avoid cumulative adverse effects on natural character values and the intrinsic values of ecosystems by limiting the number of commercial tourist vessels within different parts of the coastal marine area of the Subantarctic Islands.

11. To provide for vessels that facilitate monitoring, research and operational activities in the coastal marine area of the Kermadec and Subantarctic Islands that will contribute to building knowledge of and support sustainable management of the coastal marine area of the islands.

12. To provide for unrestricted public access to the surface waters of the coastal marine area of the islands by ancillary craft.

OTHER METHODS

2. The Department of Conservation will encourage operators of commercial tourist vessels to provide passage plans to the Department in advance, to allow early detection of any potential overlaps in itineraries.

Control of discharges of contaminants

(See the following section for accidental oil spills from maritime incidents and ship-to-ship fuel transfers.)

Control of discharges of contaminants to the coastal marine area should be managed to ensure the high water quality and air quality is maintained. Discharges of contaminants in the coastal marine area of the islands will chiefly be from vessels, with some additional discharges from land. These discharges could be to the air, including discharges of noise and light, or to the sea.

Discharges from vessels are largely regulated under the Resource Management (Marine Pollution) Regulations 1998, which regulate oil, noxious liquid substances, treated and untreated sewage, garbage, clean or segregated ballast water, and discharges as part of normal operations of a ship or offshore installation. The regulations also control the dumping of waste and other matter into the coastal marine area from ships, offshore
installations and aircraft, and the incineration of waste, in a marine incineration facility, in the coastal marine area. Ballast water discharges are managed by an Import Health Standard developed in accordance with provisions of the Biosecurity Act 1993.

Vessel owners/operators need to be aware of potential risks of what may seem like harmless discharges, such as kitchen waste. Kitchen waste could contain listeria, for example, which could have significant adverse effects on wildlife. Anyone using the waters in the coastal marine area of the islands is urged to be very cautious with discharges, to avoid potential adverse effects on wildlife, ecosystems and habitats.

Discharges from land to the coastal marine areas of the islands are minimal. Storm water discharges are negligible and there are no reticulated storm water or waste water systems. This is not expected to change. In the interests of preserving the significant natural character values of the islands and their coastal marine areas, further development will be avoided other than what is necessary to maintain health and safety.

Discharges of sewage from land can be difficult issues—as noted, there are no reticulated waste water systems. Sewage management is generally very basic, such as digging long drops where soil type is suitable or individuals containing and removing it in ‘honey pots’ if visits are short. Any form of sewage discharge to water is particularly offensive to tangata whenua and should be avoided where possible.

The threat of an oil spill is a key issue. The challenging conditions of strong winds and currents, and the need for vessels to travel slowly when close to the islands present navigation safety risks. This is especially the case for large vessels. The threat of an oil spill from any one of the vessels that visit the islands is ever present, and as the number and/or the size of vessels interested in visiting the islands increases, so does the risk of oil spills. Incidents and oil spills can also result from poor management and/or maintenance.

Fuel transfers are also a potential oil spill risk. Ship-to-shore fuel transfers need to be provided for to ensure the fuel supplies on the islands are kept stocked up, particularly for use in the event of emergencies. Ship-to-ship fuel transfers at sea, however, are considered to be a significant risk that should be avoided.

Severity of impact from oil spills is closely related to the type of fuel, the amount (the bigger the vessel, the larger the volume of fuel), and the exposure of the area to the spill. Heavy fuel oil would have the most severe impact. While diesel still presents a risk to some wildlife (a severe risk to the Campbell Island teal, the world’s rarest duck, and shags), it is the easiest type of fuel spill to manage, as it will disperse and evaporate in a high energy environment. Similarly, the severity of discharges to air is closely related to fuel type. Marine diesel will burn cleaner than a heavy fuel oil, assisting with reducing emissions.

The noise in many parts of the coastal marine area of the islands will predominantly comprise noise generated by natural sources (e.g. the surf breaking on the shore, and the sea lapping against rocks). Given the high-energy environments of the Kermadec and Subantarctic Islands, the background noise will be substantial most of the time. Artificial noise (excluding bird calls played from loud speaker to attract birds back to Raoul Island), however, generated from within the coastal marine area has the potential to adversely affect the health and wellbeing of fauna, amenity values and natural character both within and adjacent to the coastal marine area.

Artificial light in the coastal marine area also has the potential to adversely affect the health and well-being of flora and fauna, natural character and amenity values. Seabirds in particular are vulnerable to lights at night—they have a tendency to be attracted to artificial lights on vessels at night, resulting in deck strike injuries or mortalities. Artificial light can also adversely affect insects.
POLICIES

13. To prohibit the use and transport of heavy fuel oil and ship-to-ship transfers of any fuel type in the coastal marine areas of the Kermadec and Subantarctic Islands.

13. To avoid the discharge of untreated human sewage directly to water in the coastal marine area from land, and only allow the discharge of treated sewage where:
 (i) There has been adequate consideration of alternative methods, sites and routes for undertaking the discharge; and
 (ii) The action is informed by an understanding of tangata whenua values and the effects on them.

14. To acknowledge that:
 (i) There is a small and intermittent discharge of untreated sewage from land to the coastal marine area from a toilet on Campbell Island/Motu Ihupuku.
 (ii) There are technical difficulties that affect the management of sewage on Campbell Island/Motu Ihupuku—such as peat soils, high water table and remoteness of the island.
 (iii) Options and/or alternatives to treat or remove the current discharge will be investigated and implemented within 5 years of this plan becoming operative.

15. To avoid discharges of contaminants to water or air and, where avoidance is not practicable, to remedy or mitigate the adverse effects of such discharges on ecosystems and habitats22.

16. To encourage anyone undertaking activities in the coastal marine area of the islands to minimise the generation of artificial noise and, where artificial noise cannot be avoided, to remedy or mitigate the effects as far as practicable.

17. To encourage anyone undertaking activities in the coastal marine area of the islands to minimise the generation of artificial light (excluding lights required for navigation) and, where use of artificial light cannot be avoided, to remedy or mitigate the effects as far as practicable.

OTHER METHODS

3. The Department of Conservation will encourage all users of the coastal marine areas of the islands to minimise the use and generation of artificial light and generation of artificial noise. This may be in the form of guidelines.

4. The Department of Conservation will work with stakeholders to develop best practice guidelines for the undertaking of ship to ship fuel transfers, where they are allowed, in order to reduce the risk of potential incidents.

Avoiding and reducing the impacts of accidental discharges of contaminants

The threat of an oil spill (an accidental discharge of hydrocarbons and contaminants) is a key issue. The challenging conditions of strong winds and currents present navigation safety risks, particularly when vessels are close to shore. This is especially the case for large vessels. The threat of an oil spill from any one of the vessels that visit the islands is ever present, and as the number and/or the size of vessels interested in visiting the islands increases, so does the risk of maritime incidents and oil spills. Incidents and oil spills can also result from poor management and/or maintenance.

22 Most discharges from ships and offshore installations are regulated by the Resource Management (Marine Pollution) Regulations 1998. In particular, refer to regulation 4.
Severity of impact from oil spills is closely related to the type of fuel, the amount of fuel (the bigger the vessel, the larger the volume of fuel), and the exposure of the area to the spill. Heavier grade fuel oils (and fuel oil components) would have the most severe impact because the heavy grade oil components could persist in the environment for many years, and also because the heavier grade fuel oils (the ‘residual oils’ that are left after the refining process distills off diesel and other products) also contain a range of contaminants that were present in the crude oil. While diesel still presents a risk to some wildlife (a severe risk to the Campbell Island teal, the world’s rarest duck, and shags), it is the easiest type of fuel spill to manage, as it will disperse and evaporate in a high-energy environment (see the New Zealand National Oil Spill Contingency Plan—Annex 9—Subantarctic Islands). Similarly, the severity of discharges to air is closely related to fuel type. Marine diesel will burn cleaner than a heavier fuel oil, assisting with reducing emissions.

This plan will prohibit the carriage and use of heavy fuel oil as fuel or the carriage of heavy fuel oil as cargo in the coastal marine areas of the Subantarctic and Kermadec Islands. The terms of the ban and the definition of what constitutes a heavy fuel oil (HFO) are the same as for the Antarctic Area HFO ban that came into force under MARPOL Annex 1 Chapter 9 in August 2011. Apart from cruise ships entering the Snares Islands – Tini Heke coastal marine area briefly in order to observe tītī, it is only some fishing vessels in operation around the Subantarctic Islands that currently use heavier grade oils as fuel. For those fishing vessels, a 5 year transition period before the full ban on using HFO as a fuel (or carrying it as a cargo) comes into force has been included to give the fishing industry adequate time to plan and prepare for an HFO ban and the additional costs it will impose. During the transition, fishing vessels using HFO will be allowed to enter the coastal marine area largely as happens at present, namely for shelter from storms or to address crew care issues, subject to conditions to reduce the risk of a spill or the impact of any spill.

Fuel transfers are also a potential oil spill risk. Ship-to-shore fuel transfers need to be provided for to ensure the fuel supplies on the islands are kept stocked up, particularly for use in the event of emergencies. Ship-to-ship fuel transfers at sea, however, are considered to be a significant risk. Provision is made for small scale or emergency transfers (such as if a vessel’s fuel becomes contaminated), subject to conditions to reduce the risk of a spill or the impact of any spill.

POLICIES

18. To prohibit the carriage and use of heavy fuel oil as fuel or the carriage of heavy fuel oil as cargo in the coastal marine areas of the Subantarctic and Kermadec Islands.

19. To give fishing vessels that currently operate around the Subantarctic Islands and currently use fuel that falls within the definition of heavy fuel oil a period of 5 years to plan and prepare for the heavy fuel oil ban, with restrictions during the transition period that will still allow most of the normal operations of those vessels to continue.

20. To immediately prohibit all ship-to-ship transfers of heavy fuel oil.

21. To allow ship-to-ship transfers between vessels of clean distillate fuels such as Marine Gas Oil or Marine Diesel Oil, provided that they are undertaken using best practice and in such a way as to avoid or greatly reduce the likelihood of, and consequences from, any oil spills.

Controls on structures, disturbance, deposition and reclamation

Given the significant natural values of the islands, activities that involve placement of new structures, disturbance, deposition and reclamation should be restricted to that which is necessary and unavoidable. Such activities may include disturbance as a result of approved wreck salvage operations (refer to ‘Issue 3: Cultural and historic heritage’ for management
approach to shipwrecks); localised disturbance to the sea bed by anchoring; maintenance of existing structures; and placement of equipment to monitor volcanic or seismic activity, such as tsunami warning devices.

The existing landing platforms at Fishing Rock and Boat Cove (including the adjacent rock wall) on Raoul Island, however, need to be upgraded. These are the best locations for the landing of people and supplies. Upgrading of these two facilities will involve more than maintenance of the existing structures because they have fallen into such a state of disrepair that they are difficult to use. In the interests of addressing the risks of both navigation safety incidents and oil spills, the provisions of this plan should enable upgrade of these facilities to take place.

POLICIES

22. To avoid the placement of new structures on the foreshore or seabed, unless they are necessary for the maintenance of existing infrastructure and/or for monitoring of seismic or volcanic activity or for other scientific monitoring.

23. To provide for the continuation of safe and effective functioning of existing working structures by providing for the maintenance of those working structures within their existing footprint. (Refer objectives and policies of ‘Issue 3: Cultural and historic heritage’, where the working structure is also a historic structure.)

24. As an exception to policies 22 and 23, to provide for the upgrading of existing landing platforms at Fishing Rock and Boat Cove (including the adjacent rock wall) on Raoul Island, including the placement of new structures, disturbance, deposition and reclamation.

25. To avoid activities that involve disturbance of the foreshore or seabed to the extent practicable and, where disturbance is unavoidable, to keep the effects and area of disturbance to a minimum, and to remedy or mitigate those effects.

26. To avoid activities that involve deposition of material on the foreshore or seabed and reclamations of foreshore and seabed and, where deposition is unavoidable, to keep the effects of the deposition to a minimum, and remedy or mitigate those effects.

27. To allow minor disturbance associated with approved research when non-invasive methods are not practicable and/or samples are needed.

28. To allow minor disturbance associated with the placement of a temporary mooring to continue to provide for the safe mooring of Mr Stuart Cave so long as he continues to hold CRA8 quota and fish that quota in the vicinity of the Snares Islands/Tini Heke.
Issue 2 Kaitiakitanga of the coastal marine area

The broad issue to be addressed is to provide for kaitiakitanga of the natural and physical resources of the coastal marine area of the islands, and ensure that the relationship and values of the tangata whenua for both groups of islands are maintained. Given the different circumstances and histories of the two groups of islands, they are considered separately in this issue.

Kaitiakitanga of the coastal marine area of the Kermadec Islands

Under section 6 of the Act it is a matter of national importance, in promoting sustainable management, to recognise and provide for the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, wāhi tapu, and other taonga. Section 7 of the Act also requires the Minister of Conservation when carrying out his/her functions and powers under the Act to have particular regard to kaitiakitanga.

Section 2 of the Act defines kaitiakitanga as the ‘exercise of guardianship by the tangata whenua of an area in accordance with tikanga Māori in relation to natural and physical resources; and includes the ethic of stewardship’. In relation to the Kermadec Islands the Minister of Conservation will consult with Ngāti Kurī and Te Aupōuri as both iwi have expressed an association with the Islands.

Objective

2.1 To establish and build a relationship with tangata whenua in the management of the coastal marine area of the Kermadec Islands.

Policies

29. To liaise and consult with tangata whenua with regard to the management of the Kermadec Islands coastal marine area.

30. To recognise and provide for the tangata whenua relationship with the Kermadec Islands and values by:
 - Encouraging applicants for new coastal permits to consult with tangata whenua.
 - Consulting tangata whenua when monitoring or reviewing this coastal plan.

Kaitiakitanga of the coastal marine area of the Subantarctic Islands

Ngāi Tahu ki Murihiku are kaitiaki of the Southland region, including the southern islands. They have prepared a management plan Te Tangi a Tauira—The Cry of the People to:

- Describe the values underpinning the relationship between Ngāi Tahu ki Murihiku and the natural environment;
- Identify the primary issues associated with natural resource and environmental management in the area from the perspective of Ngāi Tahu; and
- Articulate Ngāi Tahu ki Murihiku policies and management guidelines for natural resource and environmental management, wāhi tapu and wāhi toanga.

The issue to be addressed is that of recognition of and provision for the physical, historical and cultural relationship of Ngāi Tahu ki Murihiku with the coastal marine area of the Subantarctic Islands, including:

- The exercise of tino rangatiratanga by iwi and hapū in the coastal marine area;
- The role of tangata whenua as kaitiaki of coastal resources;
- The values and perspectives of tangata whenua with respect to the spiritual qualities of water (its mauri and wairua); and
• The protection of wāhi tapu, e.g. urupā, coastal battlegrounds, tauranga waka, mauri stones, toko taunga ika and other taonga.

Objective

2.2 To recognise and provide for the relationship and values of Ngāi Tahu ki Murihiku with the coastal marine area of the Subantarctic Islands in a manner reflective of their status as tangata whenua and in accordance with tikanga/tikaka Māori.

POLICIES

31. To adopt procedures and approaches to enable Ngāi Tahu ki Murihiku to exercise their role as kaitiaki and participate as a partner in coastal management decisions

32. To actively consult Ngāi Tahu ki Murihiku, and encourage resource consent applicants to actively consult, when an activity could affect a site identified in this plan as being of significance to Ngāi Tahu ki Murihiku, or adversely affect the values of Ngāi Tahu ki Murihiku.

33. To provide copies of all coastal permit applications for activities in the coastal marine area of the Subantarctic Islands to Ngāi Tahu ki Murihiku.

34. To recognise and provide for the protection of taonga species, including the following:
 - Hoiho
 - Toroa
 - Pakea
 - Miromiro
 - Tutukiwi
 - Parāoa
 - Pokotiwha
 - Ihipuku
 - Tohorā
 - Titī
 - Kekeno

35. To consult with Ngāi Tahu ki Murihiku when monitoring or reviewing this coastal plan.

Issue 3 Cultural and historic heritage

The issue to be addressed is to recognise and provide for the protection of historic heritage from inappropriate use and development.

The definition of historic heritage in the RMA (refer glossary) includes (among other things) cultural heritage. However, given the significance of cultural heritage in the islands, this plan refers to cultural and historic heritage for clarity and emphasis.

The cultural and historic heritage of the Kermadec and Subantarctic Islands provides us with evidence of past human activity. Sites of cultural and/or historic heritage in the coastal marine area of both groups of islands need to be protected from activities that have the potential to adversely affect them.

The management of cultural and historic heritage in the coastal marine area is more difficult than on land because of the harsh effects of the coastal environment—even more so in the coastal marine area of the Kermadec and Subantarctic Islands. The Subantarctic Islands are subject to an extreme climate and high-energy environment, being located in the ‘Roaring Forties and Furious Fifties’. The Kermadec Islands are located in a highly dynamic volcanic environment. For both groups of islands, many historic sites are of an extremely delicate nature and more susceptible to human, animal and natural impacts than sites in other types of environments.

23 This policy does not include coastal permit applications for a risk assessment of fouling on a vessel’s hull or niche areas, which, as provided in policy 5, will be processed on a non-notified basis and assessed as expeditiously as possible.
It follows that active conservation (or preservation) of cultural and historic heritage in the Kermadec and Subantarctic Islands is also more difficult because of the climate, environment, the delicate nature of many sites, and the difficulty and expense involved in undertaking such work because of the isolation of the islands. The isolation of the islands also means that it is difficult to monitor natural deterioration and human impacts on cultural and historic sites.

Objectives

3.1 To protect and, where appropriate, conserve cultural and historic heritage sites of significance.
3.2 To recognise and provide for the protection of sites, areas and values of special spiritual, historical and cultural significance to tangata whenua.
3.3 To facilitate research into and understanding of sites of historic and cultural heritage, and promote awareness and appreciation of those sites.

POLICIES

36. To protect the sites of cultural or historic heritage listed in Appendix 2.
37. To conserve the following sites of cultural or historic heritage, which are a subset of Appendix 2:
 • Grafton Wreck and Epigwaitt Castaway Hut Site, Auckland Island
 • Northeast Harbour Whaling Station, Campbell Island/Motu Ihpuku
38. To only allow activities at any of the sites listed in policy 36 in accordance with the provisions of a Historic Work Plan; and at the sites listed in policy 37 in accordance with the provisions of a Conservation Plan; approved by the Department of Conservation.
39. To identify sites of special spiritual, historical and cultural significance to tangata whenua and record in Appendix 2 if tangata whenua wish to do so.
40. To protect all sites with cultural or historic heritage value, whether previously identified as significant and/or included in Appendix 2 or not. Activities that would modify, damage or destroy the sites with cultural or historic heritage value should be avoided. However, where complete avoidance is not possible, remedying or mitigating the adverse effects of activities that would modify, damage or destroy the sites or their values shall be undertaken.
41. To protect sites of cultural or historic heritage value, whether previously identified as significant and/or included in Appendix 2 or not, in situ unless it can be demonstrated that an artefact is rare or has significant importance such that it should be removed for research and preservation.
42. To generally consider appropriate any methods of archaeological investigation for the purpose of approved research that will enhance knowledge and understanding of a cultural or heritage site that will not damage, modify or destroy the site, subject to tangata whenua concerns for Māori sites.
43. To potentially consider appropriate an activity involving archaeological excavation of sites of cultural or historic heritage value when alternative, less destructive methods can not be used. Under such circumstances, excavation will be kept to a minimum.

24 This site was a whaling station between 1911 and 1914. Jetty remains and ringbolts are evident in the inter-tidal area, and there is a sea wall around most of the point. A significant part of the site, however, is on terrace above, above MHWS.
25 Note: Archaeological sites associated with human activity that occurred before 1900 are protected by the Historic Places Act 1993. An archaeological Authority will be required from the New Zealand Historic Places Trust to destroy, damage or modify these sites.
44. In assessing an application for an activity that has the potential to affect cultural or historic sites that, having considered the policies above, is appropriate, including shipwreck salvage and archaeological investigation, to have regard to:
 a) The intrinsic values of the sites, including the relationship that people might have with the site and the extent to which it will be maintained.
 b) Māori spiritual, historical and cultural values and the outcome of tangata whenua consultation.
 c) The integrity of the site, including, in the case of a structure, its physical appearance, and the extent to which it will be maintained.
 d) The extent to which the activity will enhance knowledge and understanding of the heritage site.
 e) The extent to which the proposed modifications will maintain or enhance the efficient operation of any existing operational facility.
 f) The possibility of the activity being undertaken somewhere else (i.e. away from the location of the heritage values or outside the coastal marine area of the Subantarctic Islands).

45. In respect of any application for an activity that has the potential to affect heritage sites, the applicant shall make provision for the recording of details of the site, including shipwreck salvage, by any or all of the following means:
 a) Photographic record
 b) Written record
 c) Identification at or near the site
 d) Archaeological investigation and recording to accepted professional standards
 e) Provision of information to the Minister of Conservation

46. To generally consider appropriate activities that facilitate research opportunities that will contribute to the knowledge and understanding of historic and cultural heritage and inform effective management of sites and artefacts, subject to tangata whenua concerns for Māori sites.

47. To generally consider appropriate activities that promote awareness and understanding of the value and significance of historic and cultural heritage.

OTHER METHODS

5. The Department of Conservation will prepare, update and implement Historic Work Plans or Conservation Plans for sites of cultural and historic heritage in Appendix 2, to national best practice standards and to the standards of ICOMOS NZ charter.

6. To achieve integrated management for cultural and historic heritage sites both above and below Mean High Water Springs, the Department of Conservation and the New Zealand Conservation Authority (NZCA) will endeavour to ensure consistency between the policies in this plan and the approach taken in Conservation Management Strategies for both the Kermadec Islands and Subantarctic Islands when they are reviewed.

7. The Department of Conservation will maintain and contribute to updating inventory systems, such as the NZ Archaeological Association Site Recording Scheme (ArchSite).

8. The Department of Conservation will encourage a greater public awareness and understanding of cultural and historic heritage sites in the coastal marine area to foster support for their preservation and protection by:
a) Providing advice and information on cultural and historic heritage resources in the coastal marine area where appropriate, including at locations away from the islands; and

b) Advocating the conservation of cultural and historic heritage resources in the coastal marine area where appropriate.

9. The Department of Conservation will review and update Appendix 2 as necessary.

Note:
Many sites of cultural and historic heritage, including shipwrecks, are archaeological sites that are subject to the provisions of the Historic Places Act 1993. Authority is required from the New Zealand Historic Places Trust prior to any activity being undertaken that would modify, damage or destroy any archaeological site as defined by the Historic Places Act, whether recorded or not.

Further authorisations are likely to be required if the site is located in a marine reserve. Approval of the Director-General of the Department of Conservation may need to be obtained for salvage or removal of all or parts of shipwrecks within the coastal marine area of the Auckland Islands, in accordance with the Marine Reserve (Auckland Islands – Motu Maha) Order 2003. An authorisation from the Director-General of the Department of Conservation may need to be obtained for salvage or removal of all or parts of shipwrecks within the coastal marine area of any other marine reserve, such as the Kermadec Islands Marine Reserve, in accordance with the Marine Reserves Act 1971.
Rules

Note: No rules can prevent vessels from accessing the territorial or internal waters for refuge in the event of an emergency or any other force majeure or when in distress or for the purpose of assisting others in distress or danger (refer UNCLOS26 article 18(2)).

Occupation

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Temporary occupation of land of the Crown the common marine and coastal area27 in the coastal marine area of the Subantarctic Islands for research purposes | 1 | • Research is consistent with the New Zealand Subantarctic Islands Research Strategy 2003, and any required permits under the Reserves Act have been obtained
• Occupation is for a period of no more than 6 months (the summer research season)
• The mooring is removed at the end of the research season
• The mooring will not be located within any heritage site as listed in Appendix 2
• Prior to placing the mooring, the area of foreshore and seabed shall be checked to the extent practicable to ensure the placement will not adversely affect any cultural or historic heritage values
• Prior to placing the mooring, the area of foreshore and seabed shall be checked to the extent practicable to ensure that any potential adverse effects on ecological values are minimised
• Advice of location and duration of occupation is to be provided to the Department of Conservation at least 2 weeks in advance of placing the mooring
• Any ropes or chains used are either new each season or have only been used at the same location in the Subantarctic Islands
• The mooring is clearly visible to other vessels in the vicinity | Permitted | 6, 11, 22, 36, 40 |
| Other occupation of land of the Crown the common marine and coastal area27 in the coastal marine area that is not permitted by rule 1 above | 2 | • Excludes occupation related to structures when there is a rule relating to structure placement that specifically provides for occupation | Discretionary | 1, 2, 3, 15, 16, 17, 22, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 40 |

26 UNCLOS is the United Nations Convention on the Law of the Sea (UNCLOS), also called the Law of the Sea Convention or the Law of the Sea treaty. It is an international agreement that defines the rights and responsibilities of nations in their use of the world’s oceans, establishing guidelines for businesses, the environment, and the management of marine natural resources.

27 Section 12(2) of the Resource Management Act 1991 was amended by the Marine and Coastal Area (Takutai Moana) Act 2011.
Structures

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Erection or placement of a structure for the purposes of scientific monitoring, research or monitoring of volcanic or seismic activity, and related occupation of the common marine and coastal marine area and related disturbance of the foreshore and seabed | 3 | • The monitoring of the effectiveness of this plan is to be carried out by either Department of Conservation staff or individuals on behalf of the Department.
• Disturbance will not affect any site of cultural or historic heritage listed in Appendix 2.
• Advice of location is to be provided to the Department of Conservation, at least 4 weeks in advance of undertaking the activity.
• Sediment disturbance at the time of construction will not reduce the visual clarity of water by more than 50% outside a 50-metre-radius zone of mixing.
• With respect to the coastal marine area in and around the entrance to Port Ross, construction dates are limited to the period of 1 November to 31 March.
• With respect to the coastal marine area in and around Adams, Dundas and Figure of Eight Islands, construction dates are limited to the period of 1 April to 30 September.
• Structure does not create a navigational hazard. | Permitted | 6, 15, 22, 25, 26, 27, 36 |
| Reconstruction, alteration or extension of the landing platforms at Fishing Rock and Boat Cove, and the rock wall at Boat Cove on Raoul Island, and related occupation of the common marine and coastal marine area, related disturbance of the foreshore and seabed, and any reclamation required | 4 | • The works will be undertaken by or on behalf of the Department of Conservation.
• Prior to undertaking any works, a historic work plan and heritage assessment will be developed that recognises the heritage value of the original platform and, where practicable, retains its heritage values, and the works will be undertaken in accordance with that plan assessment.
• Reclamation is kept to the minimum required to ensure that a safe landing platform is provided.
• Materials to be used in the works have had a full biosecurity inspection. | Permitted | 24, 25, 26 |
| Reconstruction or alteration of a structure listed in Appendix 2 for maintenance and related occupation of the common marine and coastal marine area and related disturbance of the foreshore and seabed, other than those structures provided for in rule 7 | 5 | • Activity is for the purpose of maintaining the structure in good repair.
• Prior to undertaking any works, a historic work plan and heritage assessment will be developed that recognises the heritage value of the site or structure and, where practicable, retains its heritage values, and the works will be undertaken in accordance with that plan assessment.
• Size of the structure will not increase beyond original size, except as provided for in rule 4 above.
• Sediment disturbance at the time of construction will not reduce the visual clarity of water by more than 50% outside a 50-metre-radius zone of mixing at any time.
• Advice of location and duration of works is to be provided to the Department of Conservation at least 4 weeks in advance of the activity occurring.
• Materials to be used in the works have had a full biosecurity inspection. | Permitted | 23, 25, 26, 38 |
| Reconstruction, alteration or replacement of an existing structure for maintenance, and related occupation of the common marine and coastal marine area and related disturbance of the foreshore and seabed | 6 | • Activity is for the purpose of maintaining the structure in good repair.
• The structure is not listed in Appendix 2.
• Size of the structure will not increase beyond original size.
• Sediment disturbance at the time of construction will not reduce the visual clarity of water by more than 50% outside a 50-metre-radius zone of mixing at any time.
• Advice of location and duration of works is to be provided to the Department of Conservation at least 4 weeks in advance of the activity occurring.
• Materials to be used in the works have had a full biosecurity inspection. | Permitted | 23, 25, 26, 40 |
Structures—continued

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Alteration or removal of an existing heritage structure for maintenance and/or conservation | 7 | • The structure is listed in Policy 34, 37
• The works are undertaken according to the requirements of a historic work plan, heritage assessment or a Conservation Plan as approved by the Department of Conservation and the Historic Places Trust
• The work is undertaken by or on behalf of the Department of Conservation
• No use of explosives | Permitted | 23, 25, 26, 37, 38, 41, 43, 45 |
| Erection or placement of a temporary structure for safe mooring purposes, and related occupation of the common marine and coastal marine area and related disturbance of the foreshore and seabed and access inside 300 metres from MHWS at Ho Ho Bay on Snares Islands/Tini Heke | 8 | • The mooring structure is placed and used by Mr Stuart Cave to moor a vessel for the purposes of obtaining crayfish as per Mr Stuart Cave’s quota allocation in CRA8
• This rule will only continue to apply if Mr Stuart Cave continues to hold quota in CRA8 and continues to fish for crayfish in the area around the Snares Islands/Tini Heke with a gap of no more than 36 months
• All structures and equipment used to secure the mooring must be removed if Mr Stuart Cave is going to be absent from the Snares Islands/Tini Heke for 4 weeks or more
• Any ropes or chains used are either new each season or have only been used at the same location in the Subantarctic Islands | Permitted | 22, 23, 25 |
| Erection, placement, reconstruction, alteration, extension, removal or demolition of any structure and any related occupation of the common marine and coastal marine area, and the activity or structure does not come within and/or comply with any of rules 3 to 8 | 9 | | Discretionary | 1, 2, 3, 15, 16, 17, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40 |
Discharges from land

Note 1: Discharges from ships and offshore installations in the coastal marine area are controlled by the Resource Management (Marine Pollution) Regulations 1998, pursuant to section 360(1)(a) and (ha) to (hh) of the Resource Management Act 1991. The Marine Pollution Regulations control discharges from ships, aircraft and offshore installations into the coastal marine area, including oil, noxious liquid substances, treated and untreated sewage, garbage, clean or segregated ballast water, and discharges as part of normal operations of a ship or offshore installation. The Regulations also control the dumping of waste and other matter into the coastal marine area from ships, offshore installations and aircraft, and the incineration of waste, in a marine incineration facility, in the coastal marine area. Ballast water discharges are managed by an Import Health Standard developed in accordance with provisions of the Biosecurity Act 1993. (Beyond 12 nautical miles, discharges from ships and offshore installations are controlled by Maritime and Marine Protection Rules under the Maritime Transport Act 1994.) Activities authorised by the Marine Pollution Regulations are exempt from the rules of the regional coastal plan, unless the regulations specifically deem an activity to be a discretionary activity in a regional coastal plan.

Note 2: Marine Reserves Act further restricts discharges within the Auckland Islands/Motu Maha Marine Reserve and discharges other than sewage in the Kermadec Islands Marine Reserve.

Note 3: These rules do not restrict noise and light discharges associated with SAR/medivac missions by helicopter.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TermS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge of stormwater into water or onto land in the coastal marine area contaminant (or result of natural enterimg water)</td>
<td>10</td>
<td>The activity will not involve: (a) The discharge of a contaminant or water into water; or (b) A discharge of a contaminant onto or into land in circumstances which may result in that contaminant (or any other contaminant emanating as result of natural a processes from that contaminant) entering water that, after reasonable mixing, either by itself or in combination with the same, similar, or other contaminants or water, is likely to give rise to all or any of the following effects in the receiving waters: (c) The production of any conspicuous oil or grease films, scums or foams, or floatable or suspended materials; (d) Any conspicuous change in the colour or visual clarity; (e) Any emission of objectionable odour; (f) Any significant adverse effects on aquatic life.</td>
<td>Permitted</td>
<td>16, 25</td>
</tr>
<tr>
<td>Removal of an existing outfall structure and associated disturbance</td>
<td>11</td>
<td>The activity will not involve: (a) The discharge of a contaminant or water into water; or (b) A discharge of a contaminant onto or into land in circumstances which may result in that contaminant (or any other contaminant emanating as result of natural a processes from that contaminant) entering water that, after reasonable mixing, either by itself or in combination with the same, similar, or other contaminants or water, is likely to give rise to all or any of the following effects in the receiving waters: (c) The production of any conspicuous oil or grease films, scums or foams, or floatable or suspended materials; (d) Any conspicuous change in the colour or visual clarity; (e) Any emission of objectionable odour; (f) Any significant adverse effects on aquatic life.</td>
<td>Permitted</td>
<td>16, 25</td>
</tr>
</tbody>
</table>

Continued on next page
Discharges—continued

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge of untreated sewage into water or onto land in the coastal marine area of Campbell Island</td>
<td>12</td>
<td>The discharge of untreated sewage until 5 years after the date this plan becomes operative</td>
<td>Permitted</td>
<td>14</td>
</tr>
<tr>
<td>Discharge of untreated sewage into water or onto land in the coastal marine area, except as provided for in rule 12</td>
<td>13</td>
<td></td>
<td>Prohibited</td>
<td>13, 14</td>
</tr>
<tr>
<td>Other discharges of contaminants to water or air in the coastal marine area, where the discharge does not come within rule 12 or comply with rules 10 and 11 to 12</td>
<td>14</td>
<td></td>
<td>Discretionary</td>
<td>1, 15, 19, 20, 21, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40</td>
</tr>
</tbody>
</table>
Shipwrecks

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvage, removal of any part (including cargo or other artefacts) or demolition of a shipwreck, and related disturbance of the foreshore and seabed in the coastal marine area of the Subantarctic and Kermadec Islands</td>
<td>15</td>
<td>• The salvage, removal or demolition is necessary to avoid a navigation safety risk; or • The salvage, removal or demolition is necessary or desirable to prevent the discharge of a contaminant; or • The salvage, removal or demolition is undertaken by, or on behalf of, the owner and is within 50 years of the shipwreck; or • The primary purpose of recovery of material is for research and scientific investigation of archaeological shipwreck deposits; and • The activity is not covered by rule 16 16.</td>
<td>Discretionary</td>
<td>1, 2, 3, 15, 16, 17, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45</td>
</tr>
<tr>
<td>Salvage, removal of any part or demolition of a shipwreck, and related disturbance of the foreshore and seabed in the coastal marine area of the Auckland Islands/Motu Maha Marine Reserve</td>
<td>16</td>
<td>• The activity is provided for by the Marine Reserve (Auckland Islands/Motu Maha) Order 2003</td>
<td>Discretionary</td>
<td>1, 2, 3, 15, 16, 17, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45</td>
</tr>
<tr>
<td>Salvage, removal of any part or demolition of a shipwreck, and related disturbance of the foreshore and seabed in the coastal marine area of the Subantarctic and Kermadec Islands unless the activity comes within rules 14 15 or 16 16 above</td>
<td>17</td>
<td></td>
<td>Prohibited</td>
<td>40</td>
</tr>
</tbody>
</table>

Advice Note 1: Approval of the Director-General of Conservation may need to be obtained for salvage or removal of all or parts of shipwrecks within the coastal marine area of the Auckland Islands, in accordance with the Marine Reserve (Auckland Islands/Motu Maha) Order 2003. An authorisation from the Director-General of the Department of Conservation may need to be obtained for salvage or removal of all or parts of shipwrecks within the coastal marine area of any other marine reserve, such as the Kermadec Islands Marine Reserve in accordance with the Marine Reserves Act 1971.

Advice Note 2: Many sites of cultural and historic heritage, including shipwrecks, are archaeological sites that are subject to the provisions of the Historic Places Act 1993, and may be recorded on the Register of Historic Places, historic areas, wāhi tapu and wāhi tapu areas. Authority is required from the New Zealand Historic Places Trust prior to any activity being undertaken that would modify, damage or destroy any archaeological site whether recorded or not, if the site or wreck is pre-1900.

Advice Note 3: Any contemporary shipwrecked vessels will be considered a deposit to the foreshore and seabed and regulated as such under rule 25 26.
Disturbance

Note 1: Any disturbance activities in a Marine Reserve will require a separate authorisation from the Director-General of Conservation in accordance with the Marine Reserves Act 1971, under the Marine Reserve Regulations.

Note 2: Archaeological sites associated with human activity that occurred before 1900 are protected by the Historic Places Act 1993. An archaeological authority will be required from the New Zealand Historic Places Trust to destroy, damage or modify these sites.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERRMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor disturbance, damage or destruction</td>
<td></td>
<td>• In any 12-month period, disturbance of material does not:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of foreshore and seabed, including any removal</td>
<td>47</td>
<td>• Exceed 5 cubic metres; or</td>
<td>Permitted</td>
<td>2, 3, 6, 7, 11, 15, 16, 17, 25, 26, 40</td>
</tr>
<tr>
<td>of sand, shell, shingle or other natural material</td>
<td>18</td>
<td>• Exceed 10 square metres;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for research</td>
<td></td>
<td>• Works do not involve the disturbance of a site listed in Appendix 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor disturbance, damage or destruction</td>
<td>48</td>
<td>• Disturbance is more than 300 metres from MHWS and 100 metres deep</td>
<td>Permitted</td>
<td>2, 3, 6, 7, 11, 15, 23, 24</td>
</tr>
<tr>
<td>of seabed, including any removal of sand,</td>
<td>19</td>
<td>• In any 12-month period, disturbance of material does not:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shell, shingle or other natural material for research</td>
<td></td>
<td>• Exceed 300 cubic metres; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Exceed 6000 square metres;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Works do not involve the disturbance of a site listed in Appendix 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance, damage or destruction</td>
<td>49</td>
<td>Works may only be undertaken:</td>
<td>Discretionary</td>
<td>1, 2, 3, 6, 7, 11, 16, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 42, 43, 44, 45, 46</td>
</tr>
<tr>
<td>of foreshore and seabed involving a site listed</td>
<td>20</td>
<td>• In accordance with the requirements of a Conservation Plan as approved by the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Appendix 2</td>
<td></td>
<td>Department of Conservation and the Historic Places Trust; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The work is to be undertaken by or on behalf of the Department of Conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other disturbance, or damage or destruction</td>
<td>29</td>
<td>Works may only be undertaken:</td>
<td>Discretionary</td>
<td>1, 2, 3, 6, 7, 11, 16, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 42, 43, 44, 45, 46</td>
</tr>
<tr>
<td>of foreshore and seabed, including any removal of sand, shell, shingle or other natural material, where the disturbance, damage or destruction is restricted by sections 12(1)(e) or 12(1)(e) of the Act, or removal of sand, shell, shingle or other natural material is restricted by section 12(2) of the Act</td>
<td>21</td>
<td>• In accordance with the requirements of a Conservation Plan as approved by the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Conservation and the Historic Places Trust; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The work is to be undertaken by or on behalf of the Department of Conservation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use of water

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rule</th>
<th>Standards/Terms/Conditions</th>
<th>Classification</th>
<th>Policy Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taking or use of open coastal water or water in embayments, harbours or inlets</td>
<td>24</td>
<td>- Not for extraction of constituents of water other than for conversion to freshwater for use on a vessel</td>
<td>Permitted</td>
<td>1, 2, 3, 6, 7, 11, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40</td>
</tr>
<tr>
<td>Taking, use, damming or diversion of coastal water in estuaries, or water from an aquifer, excluding the taking or use of water that is allowed by sections 14(3)(d) or (e) of the Act; or from any water for the purpose of extracting constituents of water</td>
<td>22</td>
<td></td>
<td>Discretionary</td>
<td>1, 2, 3, 7, 15, 26, 29, 30, 31, 32, 33, 34, 36, 37, 40</td>
</tr>
</tbody>
</table>

Harmful or invasive species

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rule</th>
<th>Standards/Terms/Conditions</th>
<th>Classification</th>
<th>Policy Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction of any species of flora and fauna new to the coastal marine areas of the Subantarctic and Kermadec Islands</td>
<td>23</td>
<td></td>
<td>Prohibited</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Deposition

Note 1: The Resource Management (Marine Pollution) Regulations 1998 (pursuant to section 360(h)(a) and (ha) to (hh) of the Resource Management Act 1991) as referred to above in relation to discharges, also regulate dumping from ships and offshore installations. Part 2 clause 4(3) of those regulations lists waste or other matter that are deemed to be discretionary activities for dumping in regional coastal plans.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rule</th>
<th>Standards/Terms/Conditions</th>
<th>Classification</th>
<th>Policy Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit of a substance from the scraping and/or cleaning of a ship (whether above or below the water surface) to the foreshore and seabed</td>
<td>24</td>
<td></td>
<td>Prohibited</td>
<td>1, 2, 3, 7, 15, 26, 29, 30, 31, 32, 33, 34, 36, 37, 40</td>
</tr>
<tr>
<td>Other deposits of a substance on the foreshore and seabed, including any shipwrecked vessel, that is restricted by Section 12(1)(d) of the Act</td>
<td>25</td>
<td></td>
<td>Discretionary</td>
<td>1, 2, 3, 7, 15, 26, 29, 30, 31, 32, 33, 34, 36, 37, 40</td>
</tr>
</tbody>
</table>

Temporary rules for hull and niche area fouling

Note 1: These rules A and B apply until 1 year after this plan becomes operative, at which time these rules will expire, and rules 26 to 29 below will have effect. These rules are subject to the surface water activities rules controlling access, rules 29 to 59, and all other rules in this plan.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to the coastal marine area of the Subantarctic and/or Kermadec Islands within 1000 metres of MHWS by vessels that comply with all other rules in this plan (Refer flowcharts (Figures 2 and 3) at end of Rules section.)</td>
<td>A</td>
<td>Vessels Must Satisfy PART ONE, and then one of PARTS TWO, THREE or FOUR.</td>
<td>Permitted activity until 1 year after this plan becomes operative</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

PART ONE

Documentation demonstrating that the vessel has an anti-fouling system that has been applied in accordance with the manufacturer’s instructions, and will be within the manufacturer’s timeframe of effectiveness for the time period the vessel remains within 1000 metres of MHWS of the islands is provided to the Department of Conservation Area Manager EITHER:

- at least 1 week prior to access within 1000 metres from MHWS of the islands;

OR

- an itinerary of intended trips for a defined period of time not exceeding 12 months is provided at the beginning of the period of time specified; and

- an email or facsimile is sent to the Department of Conservation no more than 1 week prior to departure for the coastal marine area of the islands notifying the Department of intended departure OR

- in circumstances where a company has a fleet of vessels that undertake multiple trips in a calendar year, on or before 1 July each year, and details of trip dates and duration that vessels were inside 1000 metres seaward of MHWS are to be supplied to the Department of Conservation annually, when requested by the Department.

PART TWO

Provided that, since its last certification of a clean hull and niche areas:

- the vessel has not entered another nation’s Territorial Sea; OR

- if the vessel has returned directly from Antarctica, it has not stayed more than 48 hours in any location in mainland New Zealand before returning to the islands; OR

- if the vessel has visited Macquarie Island, it has anchored or steamed off the coast of Macquarie for less than 48 hours and/or 100 metres or more from permanent structures AND

- there is no visible fouling beyond a slime layer in-between inspections;

AND EITHER

- the vessel’s anti-fouling is less than 12 months old for the duration of the time that the vessel remains within 1000 metres of MHWS of the islands—provided that after 6 months from the date of application of the anti-fouling the vessel has certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation, using the form included in Appendix 3, and the completed form is provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS. If the dive inspection finds visible fouling on the hull beyond a slime layer and that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed;

OR

Continued on next page
the vessel's anti-fouling is more than 12 months old but has certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation, using the form included in Appendix 3, valid for 3 months from the date of the inspection and for the duration of the time that the vessel is within 1000 metres of MHWS of the islands, and the completed form is provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS. If the dive inspection shows visible fouling on the hull beyond a slime layer, that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed.

PART THREE

IF, since its last certification of a clean hull and niche areas:

◦ the vessel has entered another nation's Territorial Sea; OR
◦ if the vessel has returned directly from Antarctica and it has stayed more than 48 hours in any location in mainland New Zealand before returning to the islands; OR
◦ IF the vessel has visited Macquarie Island, it has anchored or steamed off the coast of Macquarie for more than 48 hours and/or closer than 100 metres from permanent structures;

THEN the vessel must have a certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation, using the form included in Appendix 3, and the completed form is provided to the Department of Conservation Area Manager before entry inside 1000 metres from MHWS. If the dive inspection shows visible fouling on the hull beyond a slime layer, that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed.

PART FOUR

The vessel completes an independent risk assessment as per the recommendations of the NIWA report ‘Development of a Template for Vessel Hull Inspections and Assessments of Biosecurity Risks to the Kermadec and Sub-Antarctic Islands Regions’30 and provides a copy of that assessment to the Department of Conservation Area Manager before entry inside 1000 metres from MHWS, if the vessel cannot satisfy parts TWO or THREE, or as an alternative to parts TWO or THREE.

Access to the coastal marine area of the Subantarctic Islands within 1000 metres of mean high water springs by vessels that do not comply with rule A or rules 26 to 28 and comply with all other rules in this plan

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>the vessel’s anti-fouling is more than 12 months old but has certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation, using the form included in Appendix 3, valid for 3 months from the date of the inspection and for the duration of the time that the vessel is within 1000 metres of MHWS of the islands, and the completed form is provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS. If the dive inspection shows visible fouling on the hull beyond a slime layer, that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed.</td>
<td>Discretionary</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Controls on hull and niche area fouling

Note 1:
The rules 26 to 29 below set out the requirements for clean hull and niche area maintenance to manage the risk of introducing harmful and/or invasive organisms, and do not have effect until 1 year after this plan becomes operative. These rules are in addition to the surface water activities rules controlling access, rules 29 to 59, and all other rules in this plan.

Activity

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to the coastal marine area of the Subantarctic and/or Kermadec Islands within 1000 metres of MHWS by vessels except yachts, and the vessels comply with all other rules in this plan</td>
<td>27</td>
<td>Vessels Must Satisfy PART ONE, and then one of PARTS TWO or THREE</td>
<td>Permitted</td>
<td>2, 3</td>
</tr>
<tr>
<td>PART ONE</td>
<td>Documentation demonstrating that the vessel has an anti-fouling system that has been applied in accordance with the manufacturer's instructions, and will be within the Manufacturer’s timeframe of effectiveness for the time period the vessel remains within 1000 metres of MHWS of the islands is provided to the Department of Conservation Area Manager. EITHER:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at least 1 week prior to access within 1000 metres from MHWS of the islands; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• an itinerary of intended trips for a defined period of time not exceeding 12 months is provided at the beginning of the period of time specified; and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• an email or facsimile is sent to the Department of Conservation no more than 1 week prior to departure for the coastal marine area of the islands notifying the Department of intended departure; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• in circumstances where a company has a fleet of vessels that undertake multiple trips in a calendar year, on or before 1 July each year, and details of trip dates and duration that vessels are inside 1000 metres seaward of MHWS are to be supplied to the Department of Conservation annually, when requested by the Department. AND EITHER:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART TWO</td>
<td>Provided that:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• the vessel has not entered another nation’s Territorial Sea since its last certification of a clean hull and niche areas; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IF the vessel has returned directly from Antarctica, it has not stayed more than 48 hours in any location in mainland New Zealand before returning to the islands; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IF the vessel has visited Macquarie Island, it has anchored or steamed off the coast of Macquarie for less than 48 hours and/or 100 metres or more from permanent structures AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• there is no visible fouling beyond a slime layer in-between inspections; AND EITHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the vessel’s anti-fouling is less than 12 months old for the duration of the time that the vessel remains within 1000 metres of MHWS of the islands—provided that after 6 months from the date of application of the anti-fouling the vessel has certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation using the form included in Appendix 4, and the completed form is provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS. If the dive inspection finds visible fouling on the hull beyond a slime layer and that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
The vessel’s anti-fouling is more than 12 months old but has certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation using the form included in Appendix 4, valid for 3 months from the date of the inspection and for the duration of the time that the vessel is within 1000 metres of MHWS of the islands, is provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS.

If the dive inspection shows visible fouling on the hull beyond a slime layer, that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed.

PART THREE

- If the vessel has entered another nation’s Territorial Sea since its last certification of a clean hull and niche areas; OR
- If the vessel has returned directly from Antarctica and it has stayed more than 48 hours in any location in mainland New Zealand before returning to the islands; OR
- If the vessel has visited Macquarie Island, it has anchored or steamed off the coast of Macquarie for more than 48 hours and/or closer than 100 metres from permanent structures;

then:

The vessel must have a certified clean hull and niche areas by diver inspection completed by a dive service provider approved by the Minister of Conservation, using the form included in Appendix 4, and the completed form is provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS; and if the dive inspection shows visible fouling on the hull beyond a slime layer, that fouling is able to be removed from the vessel in accordance with any requirements of the regional coastal plan relevant to the site of removal, the inspection can be completed.

Access to the coastal marine area of the Kermadec and/or Subantarctic Islands within 1000 metres of MHWS by yachts, and the vessels comply with all other rules in this plan

- Yacht has had a full anti-fouling system applied at least once in the previous 12 months and evidence of this is provided with the completed inspection form in Appendix 4, which is within 1000 metres of MHWS by yachts, provided to the Department of Conservation Area Manager before access inside 1000 metres and the vessels comply with all other rules in this plan

AND EITHER

- Yacht has a certified clean hull either while in dry dock or by diver inspection completed by a dive service provider approved by the Minister of Conservation, using the form included in Appendix 4, valid for 3 months from the date of inspection for the duration of time that the vessel remains within 1000 metres of MHWS of the islands and provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS,
- Vessel has been thoroughly checked for harmful organisms above the waterline and is free of harmful plants and animals (including insects)

OR

- Yacht could choose to thoroughly has had a thorough water blast clean no more than 1 week prior to departure for the islands and have has had the diver inspection form in Appendix 4 completed by an independent person approved in advance, and provided to the Department of Conservation Area Manager before access inside 1000 metres from MHWS, as an alternative to the certified clean hull and niche areas as required in rule 26.
Surface water activities in the Subantarctic Islands—controls on access to zones close into shore and activities

Note 1: Refer to the planning maps for a visual explanation and areal extent of the following surface water access rules.

Note 2: The surface water activity rules in this plan do not apply to vessels of the New Zealand Navy when involved in activities for any of the purposes listed in section 5 of the Defence Act 1990.

Note 3: The following surface water access rules are in addition to other rules in this plan, particularly rules A and B and rules 28 to 30 regarding fouling of hulls and niche areas.

Note 4: Speed is restricted to 5 knots within 200 metres of mean high water springs (MHWS) and within 200 metres of any marine mammal in accordance with maritime rules under the Maritime Transport Act 1994 and regulations under the Marine Mammals Protection Act 1978.

Note 5: The Master of any vessel entering any of the harbours of the Subantarctic Islands needs to take particular account of the affect of strong winds.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to the coastal marine area of the Kermadec and/or Subantarctic Islands within 1000 metres of MHWS by any vessel that either fails certification of a clean hull and niche areas by diver inspection or dry-dock cleaning, or chooses to have a risk assessment instead of that diver inspection and complies with all other rules in this plan</td>
<td>28, 29</td>
<td>Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)</td>
<td>Discretionary</td>
<td>1, 2, 3, 5, 29, 30, 31, 32, 33, 34</td>
</tr>
<tr>
<td>Access to and anchoring in the coastal marine area of the Subantarctic Islands by vessels involved in management operations, activities and research for the Department Conservation, including vessels of the New Zealand Navy</td>
<td>29, 30</td>
<td>Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)</td>
<td>Permitted</td>
<td>2, 3, 6, 7, 8, 11, 36</td>
</tr>
</tbody>
</table>

31 Refer to the section on ‘Information to be submitted with a coastal permit application’ regarding the risk assessment that should be completed to assess effects on the environment.
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Access to and anchoring in the coastal marine area of the Subantarctic Islands by vessels involved in research | 31 | • Research is consistent with the New Zealand Subantarctic Islands Research Strategy 2003, and any required permits under the Reserves Act have been obtained other permits that may be required under the Reserves Act 1977.
• Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects).
• Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
• Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2. | Permitted | 2, 3, 6, 7, 11, 36 |
| Access to and anchoring in the coastal marine area of the Subantarctic Islands by vessels up to 75 metres in length, other than as provided for in rules 26 to 30, to the zone shown on Map 3 around Port Ross and Enderby Island between 1 April and 31 October each year (when southern right whales are breeding and nursing) | 32 | • Access is for the purpose of shelter and transport between sheltering vessels
• Access is not for the purpose of commercial marine mammal watching
• Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects).
• A bow watch for whales will be kept on vessels entering or departing Port Ross between 1 April and 31 October (when southern right whales are breeding and nursing)
• Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
• Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2. | Permitted | 2, 3, 7, 8, 36 |
<p>| Access to and anchoring in the coastal marine area of the Subantarctic Islands by vessels 75 metres or more in length, other than as provided for in rules 29 to 30 and 31, to the zone shown on Map 3 around Port Ross and Enderby Island between 1 April and 31 October each year (when southern right whales are breeding and nursing) | 33 | | Discretionary | 1, 2, 3, 7, 8 |
| Access to, but not anchoring in, the zone in the coastal marine area shown on Map 3 of the Snares Islands by vessels of any length 1000 metres or more from MHWS for the purpose of allowing passengers to watch tuna leaving or returning to Snares Island. (Refer rule 48 for an exemption for vessels carrying or using heavy fuel oil if they have consent under this rule.) | 34 | | Discretionary | 1, 2, 3, 7, 15, 16, 17, 18, 31, 32, 33, 34 |</p>
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Access to the coastal marine area of the Subantarctic Islands by **ancillary craft** | 35 | • Except in the zone shown on Map 3 around Port Ross and Enderby Island between 1 April and 31 October each year (when southern right whales are breeding and nursing), unless in accordance with rule 33
 • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
 • There is no critical research underway at the time, as confirmed with the Area Manager Southern Islands
 • Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2 | Permitted | 2, 3, 7, 12, 36 |
| Access to the coastal marine area of the Subantarctic Islands by vessels up to **75 metres** in length in the zone **MHWS out to 300 metres** from MHWS for the purpose of launching and subsequently collecting ancillary craft and passengers | 36 | • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
 • The vessel does not anchor
 • Unloading is restricted to the following locations are:
 • Bradley Cove, Bounty islands
 • Anchorage Bay, Antipodes Island
 • Ring Dove Bay, Antipodes Island
 • Ho Ho Bay, North East Island, Snares Island
 • Enclosed Bay to the South of North East Island, Snares Island
 • North East Island, Snares Islands/tin Heke
 • Northeast of Macauley Island (Kermadec Islands)
 • Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
 • Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
 • No more than one cruise ship in a bay or harbour at any one time | Permitted | 2, 3, 7, 8, 10, 12, 36 |
| Access to the coastal marine area of the Subantarctic Islands by vessels up to **25 metres** in length in the zone **MHWS out to 300 metres** from MHWS | 37 | • Except in the zone shown on Map 3 around Port Ross and Enderby Island between 1 April and 31 October each year (when southern right whales are breeding and nursing), unless in accordance with rule 33
 • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
 • Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
 • Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
 • No more than one cruise ship in a bay or harbour at any one time | Discretionary | 1, 2, 3, 7, 8, 10, 12, 16, 17, 18, 31, 32, 33, 34, 36 |
| Access to the coastal marine area of the Subantarctic Islands by vessels up to **75 metres** in length in the zone **MHWS to the outer limits of the territorial sea** | 38 | • Except in the zone shown on Map 3 around Port Ross and Enderby Island between 1 April and 31 October each year (when southern right whales are breeding and nursing), unless in accordance with rule 33
 • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
 • Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
 • Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
 • No more than one cruise ship in a bay or harbour at any one time | Permitted | 2, 3, 7, 8, 10, 12, 36 |

Continued on next page
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERTMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to the coastal marine area of the Subantarctic Islands by vessels greater than 25 metres in length in the zone MHWS out to 300 metres from MHWS, except vessels up to 75 metres when anchoring at the locations as provided for in rules 36 and 44</td>
<td>39</td>
<td>Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects). Sufficient personnel to move the vessel if needed are to remain on board the vessel at all times. Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2. No more than one cruise ship in a bay at any one time.</td>
<td>Prohibited</td>
<td>7</td>
</tr>
<tr>
<td>Access to the coastal marine area of the Subantarctic Islands by vessels from 75 metres up to 125 metres in length in the zone 300 to 600 metres from MHWS</td>
<td>40</td>
<td>Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects). Sufficient personnel to move the vessel if needed are to remain on board the vessel at all times. Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2. No more than one cruise ship in a bay at any one time.</td>
<td>Discretionary</td>
<td>2, 7, 8, 10, 33</td>
</tr>
<tr>
<td>Access to the coastal marine area of the Subantarctic Islands by vessels from 75 metres up to 125 metres in length in the zone 600 metres from MHWS to the outer limits of the territorial sea</td>
<td>41</td>
<td>Except in the zone shown on Map 3 around Port Ross and Enderby Island between 1 April and 31 October each year (when southern right whales are breeding and nursing). Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects). Sufficient personnel to move the vessel if needed are to remain on board the vessel at all times. Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2. No more than one cruise ship in a bay at any one time.</td>
<td>Permitted</td>
<td>2, 7, 8, 10, 33</td>
</tr>
<tr>
<td>Access to the coastal marine area of the Subantarctic Islands by vessels greater than 125 metres in length in the zone MHWS out to 600 metres from MHWS</td>
<td>42</td>
<td>Prohibited</td>
<td>Prohibited</td>
<td>7</td>
</tr>
<tr>
<td>Access to the coastal marine area of the Subantarctic Islands by vessels greater than 125 metres in length in the zone 600 to 1000 metres from MHWS</td>
<td>43</td>
<td>Discretionary</td>
<td>1, 2, 3, 7, 8, 10, 12, 16, 17, 18, 31, 32, 33, 34, 36</td>
<td></td>
</tr>
<tr>
<td>Access to the coastal marine area of the Subantarctic Islands by vessels greater than 125 metres in length in the zone 1000 metres from MHWS to the outer limits of the territorial sea</td>
<td>44</td>
<td>Permit</td>
<td>2, 3, 7, 8, 10, 12, 16, 17, 18, 31, 32, 33, 34</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Surface water activities in the Subantarctic Islands—continued

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Anchoring in the coastal marine area of the Subantarctic Islands inside the zone from MHWS out to 300 metres by vessels up to 25 metres in length | 46.43 | • Anchoring only at the following locations:
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus Cove (in Port Ross), Auckland Island
 - Terror Cove (in Port Ross), Auckland Island
 - Waterfall Inlet (east coast), Auckland Island
 - Musgrave Inlet (east coast), Auckland Island
 - Camp Cove (in Carnley Harbour), Auckland Island
 - Erebus C... | Permitted | 2, 3, 7, 8, 9, 10, 12, 36 |
| Anchoring in the coastal marine area of the Subantarctic Islands inside the zone from MHWS out to 300 metres by vessels up to 75 metres in length | 46.44 | • Anchoring only at the following locations:
 - Tagua Bay (in Carnley Harbour), Auckland Island
 - Shoe Island (southwest of Shoe Island), Auckland Island
 - Perseverance Harbour, Campbell Island/Motu Tipuku
 - Ranui Cove (east coast) Auckland Island
 - Musgrave Inlet (east coast) Auckland Island
 - Raynav Point (Carnley Harbour)
 - Coleridge Bay, North of Mask Island (Carnley Harbour) Auckland Island
 - Western Arm (Carnley Harbour) Auckland Island provided wind speed is < 35 knots
 - Perseverance Harbour Campbell Island
 - Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
 - Sufficient personnel to move the vessel if needed are to remain on board the vessel at all times
 - Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
 - No more than one cruise ship in a bay or harbour at any one time | Permitted | 2, 3, 7, 8, 9, 10, 12, 36 |
| Access to the coastal marine area of the Subantarctic Islands by vessels for the purpose of ship-to-ship fuel transfers of Marine Gas Oil (MGO) or Marine Diesel Oil (MDO) in the coastal marine area of the Subantarctic Islands | 47.45 | • Emergency fuel transfers in the event a vessel's fuel becomes contaminated; OR
 - From one fishing vessel to another if the former is returning to port early and wishes to transfer excess fuel to another vessel remaining at the islands32
 - The transfer of fuel takes place on the leeward open coastline
 - The location and timing of the fuel transfer is chosen so that local winds and currents will not carry any fuel spillage onto the shoreline; or onto offshore rocks used by wildlife; or into areas of the coastal marine area likely to be used by large numbers of birds or marine mammals for congregation or feeding (see also Other Methods for complementary best practice guidance) | Prohibited | 43-18 21 |

For the avoidance of doubt, this does not include a tanker or other fishing vessel used for the purpose of carrying fuel to the fishing fleet.
Surface water activities in the Subantarctic Islands—continued

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Ship to ship fuel transfers in the coastal marine area of the Subantarctic Islands other than as provided for in rule 45 | 48 46 | • A record is kept by each fishing company of all fuel transfers involving its vessels and, if any fuel transfers take place in a calendar month, an email or facsimile is sent to the Department of Conservation Area Office during the following month which details the types of vessels involved, the fuel type transferred, and the approximate quantity of fuel.
• Any spillage is reported to the Department of Conservation Area Office immediately. | Prohibited | 20 |
| Access to the following areas of the coastal marine area of Auckland and Campbell Islands by fishing vessels fuelled with heavy fuel oil: in the lee of Auckland Island no closer than 2 nautical miles from MHWS; and in the lee of Campbell Island no closer than 1.5 nautical miles from MHWS | 49 47 | • This rule applies for 5 years from the date on which this plan becomes operative, at which point it ceases to have effect.
• The purpose of access is to seek shelter during storms or for the care of the vessel or crew.
• Sufficient personnel to move the vessel if needed are to remain on board at all times. | Permitted | -18 19 |
| Access to the coastal marine area of the Subantarctic Islands by vessels fuelled by or carrying heavy fuel oil, using heavy fuel oil as a fuel or carrying heavy fuel oil as a cargo, except those vessels with a coastal permit under rule 34 to travel directly to and from the zone off North East Island of the Snares Islands/Tini Heke to view tītī; and those vessels complying with rule 47 | 50 48 | | Prohibited | -13 18 |
Surface water activities in the Kermadec Islands—controls on access to zones close into shore and activities

Note 1: Refer to the planning maps for a visual explanation and areal extent of the following surface water access rules.

Note 2: The surface water activity rules in this plan do not apply to vessels of the New Zealand Navy when involved in activities for any of the purposes listed in section 5 of the Defence Act 1990.

Note 3: The following surface water access rules are subject to other rules in this plan, particularly rules A and B and sections 27 to 29 regarding fouling of hulls and niche areas.

Note 4: Speed is restricted to 5 knots within 200 metres of MHWS and within 200 metres of any marine mammal in accordance with maritime rules under the Maritime Transport Act 1994 and regulations under the Marine Mammals Protection Act 1978.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Access to and anchoring in the coastal marine area of the Kermadec Islands by vessels involved in management operations activities and research for the Department of Conservation, including vessels of the New Zealand Navy | 49 | - Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
- Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times | Permitted | 2, 3, 6, 7, 8, 11, 36 |
| Access to and anchoring in the coastal marine area of the Kermadec Islands by vessels delivering fuel supplies in sealed fuel containment systems to the Kermadec Islands | 50 | - Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
- Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
- Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2 | Permitted | 2, 11, 33 |
| Access to the coastal marine area of the Kermadec Islands by vessels for the purpose of ship-to-ship fuel transfers | 54 | - The vessel does not anchor
- Unloading location Northeast of Macauley Island
- Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
- Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
- No more than one cruise ship in a bay or harbour at any one time | Permitted permitted | 2, 3, 7, 10, 36 |
| Access to and anchoring in the coastal marine area of the Kermadec Islands by vessels involved in approved research | 51 | - Any necessary approvals that may be required under the Reserves Act 1977 have been obtained from the Department of Conservation
- Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
- Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
- Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2 | Permitted | 2, 3, 6, 7, 11, 36 |

Continued on next page
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
</table>
| Access to the coastal marine area of the Kermadec Islands by ancillary craft | 53 52 | • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
• Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2 | Permitted | 2, 3, 7, 12, 36 |
| Access to the coastal marine area of Raoul Island by vessels larger than ancillary craft in the zone MHWS out to 300 metres from MHWS, except as provided for in rules 51 and 58 | 64 53 | | Discretionary | 1, 2, 3, 7, 10, 12, 16, 17, 18, 29, 30, 36 |
| Access to the coastal marine area of Raoul Island by vessels other than ancillary craft in the zone 300 metres from MHWS to the outer limits of the territorial sea | 55 54 | • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
• Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
• Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
• No more than one cruise ship in a bay or harbour at any one time | Permitted | 2, 3, 7, 10, 36 |
| Access to the coastal marine area of the islets around Raoul Island and the other Kermadec Islands by vessels other than ancillary craft in the zone MHWS out to 600 metres from MHWS | 56 55 | | Discretionary | 1, 2, 3, 7, 10, 16, 17, 18, 29, 30, 36 |
| Access to the coastal marine area of the islets around Raoul Island and the other Kermadec Islands by vessels other than ancillary craft in the zone 600 metres from MHWS to the outer limits of the territorial sea | 57 56 | • Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
• Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times
• Activities will not result in any adverse effects on a site of cultural or historic heritage listed in Appendix 2
• No more than one cruise ship in a bay or harbour at any one time | Permitted | 2, 3, 7, 10, 36 |
| Anchoring in the coastal marine area of Raoul Island inside the zone from MHWS out to 300 metres | 56 57 | • Anchoring only at the following locations:
• Denham Bay
• Eastern Western side of Meyer Island
• Fishing Rock
• Boat Cove
• Vessel has been thoroughly checked for harmful organisms above the waterline, and is free of harmful plants and animals (including insects)
• Sufficient qualified personnel to move the vessel if needed are to remain on board the vessel at all times | Permitted | 2, 3, 7, 9, 10, 36 |
Surface water activities for the Kermadec Islands—continued

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>RULE</th>
<th>STANDARDS/TERMS/CONDITIONS</th>
<th>CLASSIFICATION</th>
<th>POLICY REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship to ship fuel transfers of Marine Gas Oil (MGO) or Marine Diesel Oil (MDO) in the coastal marine area of the Kermadec Islands**</td>
<td>58</td>
<td>• For emergency fuel transfers in the event a vessel’s fuel becomes contaminated, AND • The transfer of fuel takes place on the leeward open coastline • The location and timing of the fuel transfer is chosen so that local winds and currents will not carry any fuel spillage onto the shoreline; or onto offshore rocks used by wildlife; or into areas of the coastal marine area likely to be used by large numbers of birds or marine mammals for congregation or feeding (see also Other Methods for complementary best practice guidance) • A record is kept by each fishing company of all fuel transfers involving its vessels and, if any fuel transfers take place in a calendar month, an email or facsimile is sent to the Department of Conservation Area Office during the following month which details the types of vessels involved, the fuel type transferred, and the approximate quantity of fuel • Any spillage is reported to the Department of Conservation Area Office immediately</td>
<td>Permitted</td>
<td>21</td>
</tr>
<tr>
<td>Access to the coastal marine area of the Kermadec Islands by vessels fuelled by or carrying heavy fuel oil</td>
<td>60</td>
<td>Prohibited</td>
<td>Prohibited</td>
<td>18</td>
</tr>
</tbody>
</table>
Flowchart 1: summary of hull and niche area fouling rules for vessels intending to go inside of 1000 metres of MHWS provided the vessel has not:

- been in the territorial sea of a country other than NZ since last anti-foul or certified inspection; or
- returned directly from Antarctica and stayed more than 48 hours in any mainland NZ location; or
- visited Macquarie Island and anchored or steamed less than 100 metres from any permanent structures and/or stayed for more than 48 hours.

Notes:
1 If the date of the inspection is less than 12 months from the date this plan becomes operative the form in Appendix 3 is to be used, if greater than 12 months, the form in Appendix 4 is to be used.
3 If complying with Temporary rule A, for the first 12 months once the plan becomes operative, a coastal permit is not required.

Figure 2. Hull and niche area fouling rules flowchart 1.
Flowchart 2: Summary of hull and niche area fouling rules for vessels intending to go inside of 1000 metres of MHWS and vessel has:

- been in the territorial sea of a country other than NZ since last anti-foul or certified inspection; or
- returned directly from Antarctica and has stayed more than 48 hours in any mainland NZ location; or
- visited Macquarie Island and has anchored or steamed less than 100 metres from any permanent structures and/or stayed for more than 48 hours

Evidence of current anti-foul system provided to DOC

Yes

Hull and niche area inspection required by approved independent service provider using the relevant inspection form

No fouling

Inspection report sent to DOC at least 1 week before access inside 1000 metres of MHWS of the islands confirming no visual evidence of organisms present beyond a ‘slime layer’

Cleaning
Either dry dock clean and anti-foul maintenance or in-water contained removal and cleaning, in compliance with the relevant regional coastal plan, to a standard that enables the inspection form to be completed and passed. Inspection form is sent to DOC at least 1 week before access inside 1000 metres of MHWS of the islands

No fouling

Entry Permitted (no coastal permit required)

Fouling found

Independent Risk Assessment and coastal permit
Approved contractor to carry out a risk assessment using the Hull Risk Assessment Template. Risk assessment report to be supplied to DOC with coastal permit application.

Coastal permit granted or declined (based on risk assessment)

Notes:

1. If the date of the inspection is less than 12 months from the date this plan becomes operative the form in Appendix 3 is to be used, if greater than 12 months, the form in Appendix 4 is to be used.

3. If complying with Temporary rule A, for the first 12 months once the plan becomes operative, a coastal permit is not required.

Figure 3. Hull and niche area fouling rules flowchart 2.
Other matters

Administrative charges

To be established via regulations under section 360 of the Act—using the tests in section 36, such as the criteria in (4), and the range of charges as per (1) to set out how the fee will be determined. Administrative charges will be charged under the Conservation Act 1987.

Coastal occupation charges

Section 64A of the Act requires the Minister of Conservation to consider whether or not a coastal occupation charging regime applying to persons who occupy any part of the coastal common marine and coastal area is to be included in a regional coastal plan. Having considered the criteria in section 64A(1), the Minister has decided not to include a coastal occupation charging regime in this plan.

Financial contributions

Where the Minister of Conservation grants a coastal permit, the Minister may impose a condition requiring that a financial contribution be made for the purposes specified in the coastal plan.

The term ‘financial contribution’ is defined in section 108(9) of the Act to mean:

... a contribution of:

(a) Money; or

(b) Land, including an esplanade reserve or esplanade strip (other than in relation to a subdivision consent), but excluding Māori land within the meaning of the Māori Land Act 1993 unless that Act provides otherwise; or

(c) A combination of money and land.

The coastal plan must specify the purposes of financial contributions, including the purpose of ensuring positive effects on the environment to offset any adverse effect, and must set out how the level of contribution would be determined. The Minister can only include a condition in a resource consent requiring a financial contribution if it is consistent with the purposes set out in the plan and determined in the manner described (s.108(10)).

All monies collected under the financial contributions regime of the plan are collected by the Minister of Conservation for use in such a manner as the Minister deems fit in order to avoid, remedy or mitigate the adverse effects of the activity on the coastal environment.

The provisions that follow reflect the requirements of the Act and set out:

• The circumstances when such contributions may be imposed.
• The purposes for which such contributions may be required and used.
• The manner in which the amount of the contribution will be determined.
• Matters that the Minister will have regard to when deciding whether to impose a financial contribution, the type or types of contribution, and the amount of any contribution.
(a) Protection, maintenance or restoration of sites of historic or cultural heritage

Circumstances: Where the activity for which consent is granted will adversely affect a site of cultural or historic significance.

Purposes: To mitigate or offset such effects by requiring a contribution to protect, maintain or restore an alternative historic or cultural site within the coastal environment.

Determination of amount: To be determined as noted in the method below.

(b) Protection, restoration or enhancement of seabed and foreshore

Circumstances: Where the activity for which consent is granted is likely to cause or contribute to adverse effects on the seabed or foreshore.

Purposes: To mitigate or offset the adverse effects of the activity by protecting, restoring or enhancing the seabed or foreshore, including maintenance and planting of vegetation.

Determination of amount: To be determined as noted in the method below.

(c) Environmental compensation

Circumstances: Where the activity for which consent is granted will have adverse effects that will not be adequately avoided, remedied or mitigated and those effects can be offset by practicably positive effects elsewhere in the coastal marine area.

Purposes: To provide positive effects by way of environmental compensation by protecting, restoring and/or enhancing natural and physical resources.

Determination of amount: To be determined as noted in the method below.

Method to determine amount of contribution

The amount of contribution must be an amount determined on a case-by-case basis by the Minister of Conservation to be fair and reasonable. The amount must not exceed the reasonable cost of funding positive environmental effects required to offset the net adverse effects caused directly by the activity. ‘Net adverse effects’ means a reasonable assessment of the level of adverse effects after taking into account:

(a) The extent to which significant adverse effects will be avoided, remedied or mitigated by other consent conditions;

(b) The extent to which there will be positive environmental effects of the activity that may offset any or all adverse effects; and

(c) The extent to which other environmental compensation is offered as part of the activity that may offset any or all adverse effects.
Integrated management

Integrated management is required with the following management responsibilities:

- DOC’s role under the Reserves Act 1977 and the Conservation Management Strategy
- DOC’s role under the Marine Reserves Act 1971 and the Marine Protected Area Forum for the Southern Ocean
- Te Tangi a Tauira—The Cry of the People: iwi management plan of Ngāi Tahu ki Murihiku and Ngāi Tahu Statutory Acknowledgements
- Biosecurity requirements
- The Environmental Protection Authority, in its role of managing the marine environment beyond 12 nautical miles

Conservation management strategies

All of the Kermadec and Subantarctic Islands are nature reserves under the Reserves Act, and the Subantarctic Islands are also national reserves under the Reserves Act. Both groups of islands are managed by conservation management strategies (CMS) for the Kermadec Islands and the Subantarctic Islands. There is an overlap in the jurisdiction of this regional coastal plan, for which the inland boundary is mean high water springs (MHWS), and the CMS, for which the seaward boundary is mean low water springs (MLWS).

CMSs are reviewed every 10 years. The CMS for the Subantarctic Islands was due to be reviewed in 2008; however, the timeframe has been extended out to 2012. The Kermadec Islands are a part of the Auckland CMS, which is due to be reviewed in 2011.

The Conservation Act and the RMA establish distinct decision making processes to achieve different purposes. The purpose of the Conservation Act is about the preservation, conservation and protection of natural and historic resources; while the RMA is about the sustainable management of natural and physical resources. Where there is an overlap e.g. in relation to the foreshore associated with the Subantarctic Islands, which is administered under the Reserves Act, then authority under both the regional coastal plan and the conservation legislation (which would be guided by the CMS) will be required.

Integrating the management of this regional coastal plan and the CMSs for the two groups of islands will allow a consistent approach to be taken across the land and sea. It will allow the close interdependence of ecosystems on the land and in the sea in the regions of both groups of islands to be managed in a way that takes account of this interdependence. It will also allow integrated management of sites of cultural and historic heritage that span the line of mean high water springs. Refer Method 4 of ‘Other methods’ under ‘Issue 3: Cultural and historic heritage’.

The review process of the CMSs for both the Kermadec and Subantarctic Islands will be a means of achieving the sustainable integrated management of the adjoining coastal marine area.

Marine reserves and the Marine Protected Area Forum for the Southern Ocean

The Marine Protected Areas Policy Statement and Implementation Plan 2005 commit the New Zealand government to protecting representative samples of the full range of marine habitats and ecosystems as part of a wider strategy to conserve New Zealand’s biodiversity. The MPA Policy Statement sets out a series of high-level principles that will guide planning and prioritising the MPA network at the national level and the selection of possible MPA sites and management tools. There is a range of management tools that could potentially contribute to the MPA network, including marine reserves, Fisheries Act tools, Resource Management Act measures and other tools.
On 29 January 2011, Minister of Conservation Kate Wilkinson and Fisheries Minister Phil Heatley announced three large marine reserves totalling 435,163 ha are to be established in the Subantarctic Islands. The Ministers’ decisions will see a marine reserve cover the entire territorial sea—out to 12 nautical miles—surrounding Antipodes Island, with two further marine reserves around the Bounty Islands and Campbell Island, covering 58% and 39% of those islands’ territorial seas respectively. New prohibitions on Danish seining will be introduced in the remaining territorial sea around the island groups, ensuring the entire area—688,548 ha—achieves Marine Protected Area status.

The new marine reserves are to be established by special legislation. The intended boundaries of the reserves allows for the continuation of long-lining for ling in some areas around the Bounty Islands, as this method is targeted and has a limited by-catch. And there will also be a 5-year window to allow for a potential deep-water crab fishery to be explored in the territorial sea beyond the marine reserve around Campbell Island. At the end of that period, it will be decided whether a crab fishery can be established or whether the entire territorial sea should become a marine reserve.

All of the Kermadec Islands and the Auckland Islands are already full marine reserves to the outer limits of their territorial seas.

Te Tangi a Tauira—The Cry of the People: Ngāi Tahu ki Murihiku’s iwi management plan

Te Tangi a Tauira—The Cry of the People was taken into account when drafting this plan, and Kaitiaki Rōpū were consulted during its preparation. The policies of this plan, and particularly the policies of Issue 2, will ensure ongoing involvement of tangata whenua of both island groups in the planning, consenting and monitoring of the islands on an ongoing basis.

Biosecurity

MAF Biosecurity New Zealand is a division of the Ministry for Primary Industries charged with leadership of the New Zealand biosecurity system, under the Biosecurity Act 1993. It encompasses facilitating international trade, protecting the health of New Zealanders and ensuring the welfare of our environment, flora and fauna, marine life and Māori resources. At the time of writing this plan, MAF Biosecurity New Zealand was involved in the following two biosecurity initiatives:

- The development of the Import Health Standard (IHS) for Vessel Biofouling
- The ANZECC Code of Practice for anti-fouling and in-water cleaning

The Import Health Standard (IHS) for Vessel Biofouling is a new border requirement that vessels arrive in New Zealand with minimal biofouling. It is intended to be released in April 2012, but enforcement measures will not be introduced until 2016, giving vessels time to become familiar with the requirements and take any actions required. The requirements of the IHS are aligned with guidelines on biofouling management developed by the International Maritime Organisation (IMO) and adopted by the IMO’s Marine Environment Protection Committee in July 2011.

The ANZECC Code of Practice for anti-fouling and in-water cleaning provides guidance on the best-practice approaches for the application, maintenance, removal and disposal of anti-fouling coatings and the management of biofouling and invasive aquatic species on vessels and movable structures in Australian and New Zealand waters. This Code notes that it may be used as the basis of regulation by authorities with responsibility for biosecurity and/or contaminant management. It should be used in accordance with other relevant local
or national environmental regulations. In the event of conflict with regulations, plans, or policy established or administered by local authorities, those regulations, plans or policies prevail.

The policies and rules of this plan are consistent with both these initiatives.

Environmental Protection Authority

The Environmental Protection Authority (EPA) is a statutory office housed within the Ministry for the Environment under the Secretary for the Environment. One of its key functions is to streamline the decision-making process for nationally significant proposals. Any proposals of national significance that overlap or are adjacent to the boundary of the coastal marine areas of the islands will present opportunities for integrated management.

Monitoring efficiency and effectiveness

Section 35 of the Act Resource Management Act 1991 (RMA) requires the Minister of Conservation to monitor the efficiency and effectiveness of the policies, rules or other methods in this plan.

Ongoing monitoring will be required to assess the impacts of surface water activities on visitor experiences and the physical characteristics of the environment itself. The physical characteristics of the coastal marine areas of the Kermadec and Subantarctic Islands include significant natural character, landscape and amenity values, flora and fauna values, remoteness, and the intrinsic values of ecosystems.

The information collected during hull inspections will be used to monitor the efficiency and effectiveness of policies and rules of the plan, particularly the policies of Issue 1 and the rules controlling hull and niche area fouling.

Information to be submitted with a coastal permit application

Applicants are referred to section 88 and Schedule 4 of the Act Resource Management Act 1991. Section 88 requires the application to be ‘in the prescribed form and manner’ and to include, in accordance with Schedule 4 of the Act RMA, an assessment of environmental effects in such detail as corresponds with the scale and significance of the effects that the activity may have on the environment.

An application form can be obtained from:

Dept of Conservation, Southern Islands Area Office
7th Floor, CUE on Don,
33 Don Street
Invercargill
Ph: +64 (03) 211 2400
Email: Invercargill@doc.govt.nz

Dept of Conservation, Warkworth Great Barrier Island Area Office
28 Baxter Street
Warkworth
Ph: +64 (09) 425 7812
Email: warkworth@doc.govt.nz

The form is also available from the Department’s website: www.doc.govt.nz/offshoreislandscp
Access to the coastal marine area inside 1000 metres from mean high water springs for vessels with hull and niche area fouling

An application for a coastal permit to access the waters inside 1000 metres from mean high water springs must include a risk assessment, undertaken in accordance with the protocol developed by NIWA for vessel hull inspections and assessment of biosecurity risks to the Kermadec and Subantarctic Islands\(^3\). The risk assessment will provide the assessment of actual and potential effects on the environment for the purposes of Schedule 4. The protocol for this risk assessment can be requested in hardcopy from the two offices noted above, or on the DOC website.

Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancillary craft</td>
<td>Tenders, dinghies, zodiacs and canoes, and RHIBS (rigid hull inflatable boat) and LCM (landing craft medium).</td>
</tr>
<tr>
<td>Anti-fouling coating</td>
<td>Any paint or other coating specifically designed to prevent or deter the attachment and growth of aquatic organisms on a surface. Includes biocidal coatings and biocide-free coatings, such as foul release coatings. (IMO definition).</td>
</tr>
<tr>
<td>Anti-fouling coating system</td>
<td>The combination of all component coatings, surface treatments (including primer, sealer, binder, anti-corrosive and anti-fouling coatings) or other surface treatments used on a ship to control or prevent attachment of harmful aquatic organisms. (IMO definition).</td>
</tr>
<tr>
<td>Anti-fouling system</td>
<td>A coating, paint, surface treatment, surface, or device that is used on a ship to control or prevent attachment of harmful organisms. (IMO definition)</td>
</tr>
<tr>
<td>Approved research</td>
<td>Approved by the Department of Conservation as being consistent with the research goals for the particular islands group. For the Subantarctic Islands, research needs to be consistent with the Department of Conservation’s Research Strategy for the Subantarctic Islands, September 2003.</td>
</tr>
<tr>
<td>Archaeological site (HPA 1993)</td>
<td>Any place in New Zealand that (a) either (i) was associated with human activity that occurred before 1900; or (ii) is the site of the wreck of any vessel where that wreck occurred before 1900; and (b) is or may be able through investigation by archaeological methods to provide evidence relating to the history of New Zealand.</td>
</tr>
<tr>
<td>Ballast water</td>
<td>Water, including its associated constituents (biological or otherwise), placed in a ship to increase the draft, change the trim or regulate stability. It includes associated sediments, whether within the water column or settled out in tanks, sea-chests, anchor lockers, plumbing, etc. (Source: Import Health Standard for ships ballast water.) For the purposes of this plan, it includes ballast water loaded in New Zealand waters.</td>
</tr>
<tr>
<td>Benthic</td>
<td>Of or living on the seabed.</td>
</tr>
<tr>
<td>Biofouling</td>
<td>The undesirable accumulation of aquatic organisms such as micro-organisms, plants, and animals on surfaces and structures immersed in or exposed to the aquatic environment. (IMO definition).</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>An abbreviation of ‘biological diversity’, which means the number and variety of all biological life—plants, animals, fungi and microorganisms—the genes they contain and the ecosystems on land or in water where they live. In other words, biodiversity is the variety of life on Earth.</td>
</tr>
</tbody>
</table>
Clean ship
A ship on which there are no visible aquatic organisms, either on the main hull or in niche areas, except as a slime layer. (IMO definition).

Cruise ship
Vessel involved in providing a tour experience for passengers for commercial gain.

Endemism
The ecological state of being unique to a defined geographic location, such as an island, nation or other defined zone, or habitat type, and found only there.

Exotic plant
Any plant that is not native to New Zealand, i.e. not indigenous.

Fishing
Fishing has the same meaning as in section 2(1) of the Fisheries Act 1996.

Fishing vessel
Any vessel engaged in the legal activity of fishing.

Fuel oil
Any oil delivered to an engine and intended for combustion purposes for propulsion. It is a fraction obtained from petroleum distillation, either as a distillate or a residue.

Hapū
Sub-tribe; usually a number of whānau with a common ancestor.

Harmful organism
Any organism not indigenous to the islands, including any terrestrial or marine animal, insect or plant, excluding self-introduced species34.

Heavy fuel oil
1. Crude oils with a density greater than 900 kg/cubic metre at 15 degrees celsius; 2. Oils, other than crude oils, with a density greater than 900 kg/cubic metre at 15 degrees celsius or a kinematic viscosity higher than 180 square mm/second at 50 degrees celsius; or 3. bitumen, tar and their emulsions. (Source: MARPOL ANNEX 1 Chapter 9—Special requirements for the use or carriage of oils in the Antarctic Area.) Also referred to as HFO.

HFO
Refer heavy fuel oil.

Historic heritage
(a) Those natural and physical resources that contribute to an understanding and appreciation of New Zealand's history and cultures, deriving from any of the following qualities:
(i) Archaeological
(ii) Architectural
(iii) Cultural
(iv) Historic
(v) Scientific
(vi) Technological
(b) Includes:
(i) Historic sites, structures, places and areas
(ii) Archaeological sites
(iii) Sites of significance to Māori, including wāhi tapu
(iv) Surroundings associated with the natural and physical resources

34 The definition of ‘Harmful organism’ is not intended to include meat and plants carried as normal ships provisions. However, ship operators need to be aware that some items carried as normal ships provisions can be high risk to the marine environment—for example, chicken or smoked chicken could carry listeria.
Hoito
Yellow-eyed penguin.

Ihupuku
Southern elephant seal.

Internal waters
Harbours, estuaries and other areas of the sea that are on the landward side of the baseline of the territorial sea of a coastal state; and rivers and other inland waters that are navigable by ships.

Invasive aquatic species
A species that may pose threats to human, animal and plant life, economic and cultural activities, and the marine environment. (IMO definition).

In-water cleaning
The physical removal of biofouling from a ship while in the water. (IMO definition).

Iwi
Māori tribe; usually a number of hapū with a common ancestor.

Kaitiaki
The tangata whenua guardian who exercises the ancestral responsibilities of Kaitiakitanga.

Kekeno
New Zealand fur seal.

Macro biofouling
The accumulation of large, multicellular organisms. (IMO definition).

Marine diesel
Distillate marine fuel with possible residual fuel traces. It is a blend of distillate product, heavier than marine gas oil. Also referred to as MDO or marine diesel oil.

Marine gas oil
Distillate marine fuel similar to the diesel used by cars and trucks.

Marine Growth Prevention System (MGPS)
The prevention of biofouling accumulation in internal seawater systems and sea chests. Can include the use of anodes, injection systems and electrolysis. (IMO definition).

Marine Pollution Regulations

MARPOL
International Convention for the Prevention of Pollution from Ships 1973, as modified by the Protocol of 1978 (known as ‘MARPOL 73/78’ or ‘MARPOL’).

MDO
Distillate marine fuel with possible residual fuel traces.

MGO
Distillate marine fuel—see ‘marine gas oil’.

Mean high water spring (MHWS)
The highest level to which spring tides reach on average over a period of time (often 19 years). This level is generally close to the ‘high water mark’ where debris accumulates on the shore annually.

Micro biofouling
A layer of microscopic organisms such as bacteria and diatoms and the slimy substances (usually extracellular polysaccharides) that they produce. (IMO definition) Also known as the slime layer.

Miromiro
Snares Island tomtit.

MPA
Marine Protected Area.

Mooring
Any weight, pile or article placed in or on the foreshore or seabed for the purpose of securing a vessel, raft, aircraft or floating structure. Includes any float, wire, rope or other device attached or connected to such weight, pile or article, but does not include an anchor that is normally removed with a vessel, raft, aircraft
or floating structure when it leaves a site or anchorage, or the non-permanent laying and relaying of buoys. For the purpose of this plan, a mooring is not defined as a structure.

New Zealand waters

(a) The territorial sea of New Zealand; and
(b) The internal waters of New Zealand; and
(c) All rivers and other inland waters of New Zealand.

Niche areas

Mean areas on a ship that are more susceptible to biofouling due to different hydrodynamic forces, susceptibility to coating system wear or damage, or being inadequately, or not, painted, e.g. sea chests, bow thrusters, propeller shafts, inlet gratings, dry-dock support strips. (IMO definition).

Paikea

Humpback whale.

Parāoa

Sperm whale.

Pinniped

A group of semi-aquatic marine mammals—the seals and their relatives. There are three pinniped families: walruses, eared seals (including sea lions and fur seals) and true seals.

Pokotiwha

Snares crested penguin.

Reclamation

Any permanent filling of an area previously inundated by coastal water either at or above mean high water spring mark, whether or not it is contiguous with the land, so that the filled surface is raised above the natural level of MHWS, and thus creates dry land, removed from the ebb and flow of the tide. For the purposes of this plan, reclamations do not include piles, pylons, ramps, rubble mound breakwaters or filling behind seawalls (unless the purpose of the seawall and filling is primarily for the purpose of creating land).

Research

Refer ‘Approved research’ above.

River mouth boundary

For definition of the landward boundary of the coastal marine area of both the Kermadec Islands and the subantarctic islands, the river mouth boundaries are taken as a continuation of the line of MHWS straight across the mouth of all rivers.

ROV

Remotely operated vehicle—in the context of this plan, for underwater use.

Sealed fuel containment systems

Used to re-supply fuel to the fuel depots on the islands. Typically 44 gallon drums but could include other systems such as bladders.

Season

Typically 1 October to 31 March for the summer season and 1 April to 30 September for the winter season. However, these dates are not absolute and may slide earlier or later for any given user.

Ship

A vessel of any type whatsoever operating in the marine environment. Includes hydrofoil boats, air-cushion vehicles, submersibles, floating craft, fixed or floating platforms, floating storage units (FSUs), and floating production storage and off-loading units (FPSOs). (IMO definition) Refer definition of yacht for recreational vessels under 24 metres in length.

Slime layer

Refer ‘micro biofouling’.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormwater</td>
<td>Notwithstanding the definition of ‘stormwater’ in the Auckland Regional Policy Statement, for the purposes of this plan ‘stormwater’ means surface water runoff (and any contaminants contained therein) from land or the external surface of any structure which is discharged to a water body or land as a result of rainfall.</td>
</tr>
<tr>
<td>Structure</td>
<td>Any building, equipment, device or other facility made by people that is fixed to land (including land covered by water and the air space above land). Includes any raft.</td>
</tr>
<tr>
<td>Taonga</td>
<td>Treasured possession, material or abstract (e.g. language). Māori interest in these is protected by the Treaty of Waitangi and New Zealand statute and common law/lore.</td>
</tr>
<tr>
<td>Territorial Sea</td>
<td>Territorial sea means the territorial sea of New Zealand as defined by section 3 of the Territorial Sea and Exclusive Economic Zone Act 1977.</td>
</tr>
<tr>
<td>Tītī</td>
<td>Sooty shearwater. Also known as ‘mutton birds’.</td>
</tr>
<tr>
<td>Tohorā</td>
<td>Southern right whale.</td>
</tr>
<tr>
<td>Toroa</td>
<td>Albatrosses and mollymawks.</td>
</tr>
<tr>
<td>Tutukiwi</td>
<td>Snares island snipe.</td>
</tr>
<tr>
<td>Vessel</td>
<td>Refer to ‘Ship’.</td>
</tr>
<tr>
<td>Wāhi tapu</td>
<td>Sacred places.</td>
</tr>
<tr>
<td>Whānau</td>
<td>Family (extended). Several whānau may constitute a hapū, and several hapū constitute an iwi (tribe); further, several iwi of related descent may comprise a waka (canoe) grouping. Such groupings based on whakapapa (descent) and waka (migratory) relationships are significant in modern New Zealand Māori life and politics, evolving over time.</td>
</tr>
<tr>
<td>Yacht</td>
<td>Small, recreational sailing craft < 24 metres in length.</td>
</tr>
<tr>
<td>Zodiac</td>
<td>Refer ancillary craft.</td>
</tr>
</tbody>
</table>
Appendix 1

Maps

Subantarctic Islands:
Map 1 Vessel access restrictions, Auckland Islands
Map 2 Vessel access restrictions, Port Ross, Auckland Island
Map 3 Vessel access restrictions, Port Ross, Auckland Island, 1 April to 31 October
Map 4 Vessel access restrictions, Carnley Harbour, Auckland Island
Map 5 Vessel access restrictions, Antipodes Islands
Map 6 Vessel access restrictions, Campbell Island/Motu Ihupuku
Map 7 Vessel access restrictions, Snares Islands/Tini Heke
Map 8 Vessel access restrictions, Bounty Islands

Kermadec Islands:
Map 9 Vessel access restrictions, Raoul Island and outlying islands
Map 10 Vessel access restrictions, Macauley Island, Cheeseman and Curtis Islands, and
 L’Esperance Rock
Map 1. Vessel access restrictions, Auckland Islands.
Proposed Regional Coastal Plan: Kermadec and Subantarctic Islands

Map 2. Vessel access restrictions, Port Ross, Auckland Island.

<table>
<thead>
<tr>
<th>Distance to MHWS (metres & nautical miles)</th>
<th>Ancillary Craft</th>
<th>Up to 25 m</th>
<th>Between 25 - 125 m</th>
<th>Large (>125 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 300 m (0.162 nm)</td>
<td>Permitted</td>
<td>Discretionary</td>
<td>Prohibited</td>
<td>Prohibited</td>
</tr>
<tr>
<td>300 m to 600 m (0.162 nm - 0.324 nm)</td>
<td>Permitted</td>
<td>Permitted</td>
<td>Permitted</td>
<td>Prohibited</td>
</tr>
<tr>
<td>600 m to 1000 m (0.324 nm - 0.540 nm)</td>
<td>Permitted</td>
<td>Permitted</td>
<td>Permitted</td>
<td>Discretionary</td>
</tr>
<tr>
<td>Excess of 1000 m (0.540 nm)</td>
<td>Permitted</td>
<td>Permitted</td>
<td>Permitted</td>
<td>Permitted</td>
</tr>
</tbody>
</table>

The master of any vessel entering any of the Subantarctic Islands needs to take particular account of the effect of strong winds.

Anchorages

Vessels may anchor within 300 m from the MHWS in the designated anchorage locations (Anchor at own discretion)
- For Vessels up to 25 metres
- For Vessels up to 75 metres
Map 3. Vessel access restrictions, Port Ross, Auckland Island, 1 April to 31 October.
Figure 4. Vessel access restrictions, Carnley Harbour, Auckland Island.

The master of any vessel entering any of the Subantarctic Islands needs to take particular account of the effect of strong winds.

Anchorages

Vessels may anchor within 300 meters from the MHWS in the designated anchorage locations (Anchor at own discretion)

- For Vessels up to 25 metres
- For Vessels between 25 - 125 metres
- For Large (>125 m) vessels

- Ancillary Craft Up to 25 m: Permitted
- Between 25 - 125 m: Discretionary
- Large (>125 m): Prohibited

The table above outlines the permitted anchoring distances based on vessel class.

MHWS: Mean High Water Springs

NOT TO BE USED FOR NAVIGATIONAL PURPOSES

Map 4 Vessel access restrictions, Carnley Harbour, Auckland Island.
The master of any vessel entering any of the Subantarctic Islands needs to take particular account of the effect of strong winds.
Map 6. Vessel access restrictions, Campbell Island/Motu Ihupuku.

The master of any vessel entering any of the Subantarctic Islands needs to take particular account of the effect of strong winds.

Anchorages
Vessels may anchor within 300 meters from the MHWS in the designated anchorage locations (Anchor at own discretion)

For vessels up to 75 metres

NOT TO BE USED FOR NAVIGATIONAL PURPOSES
Map 7. Vessel access restrictions, Snares Islands/Tini Heke.

The master of any vessel entering any of the subantarctic islands needs to take particular account of the effect of strong winds.
The master of any vessel entering any of the Subantarctic Islands needs to take particular account of the effect of strong winds.

Map 8. Vessel access restrictions, Bounty Islands.
Map 9. Vessel access restrictions, Raoul Island and outlying islands.
Map 10. Vessel access restrictions, Macauley, Cheeseman, and Curtis Islands, and L’Esperance Rock.
Appendix 2

Sites of cultural and historic heritage

<table>
<thead>
<tr>
<th>SITE NUMBER ON MAPS</th>
<th>ISLAND GROUP</th>
<th>NZAA SITE NUMBER</th>
<th>SITE NAME/TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Auckland Islands</td>
<td>AU/6</td>
<td>Derry Castle shipwreck, Enderby Island.</td>
</tr>
<tr>
<td>2</td>
<td>Auckland Islands</td>
<td>AU/11</td>
<td>Sally shipwreck, Rose Island.</td>
</tr>
<tr>
<td>3</td>
<td>Auckland Islands</td>
<td>AU/14</td>
<td>Marie Alice or the Stoneleigh shipwreck, top of Auckland Island.</td>
</tr>
<tr>
<td>4</td>
<td>Auckland Islands</td>
<td>AU/15</td>
<td>Compadre shipwreck, North Harbour.</td>
</tr>
<tr>
<td>5</td>
<td>Auckland Islands</td>
<td>AU/16</td>
<td>Invercauld shipwreck, north coast.</td>
</tr>
<tr>
<td>6</td>
<td>Auckland Islands</td>
<td>AU/17</td>
<td>General Grant shipwreck, mid west coast of Auckland Island.</td>
</tr>
<tr>
<td>7</td>
<td>Auckland Islands</td>
<td>AU/18</td>
<td>Anjou shipwreck, southern end, west coast of Auckland Island.</td>
</tr>
<tr>
<td>8</td>
<td>Auckland Islands</td>
<td>AU/29</td>
<td>Davis Bay and Erebus Cove Boat haulouts, Port Ross.</td>
</tr>
<tr>
<td>9</td>
<td>Auckland Islands</td>
<td>AU/42</td>
<td>Grafton shipwreck*, North Arm, Carnley Harbour.</td>
</tr>
<tr>
<td>10</td>
<td>Auckland Islands</td>
<td>AU/44</td>
<td>Camp Cove Castaway boated site, Camp Cove, Carnley Harbour, Auckland Island.</td>
</tr>
<tr>
<td>11</td>
<td>Auckland Islands</td>
<td>AU/51</td>
<td>Dundonald shipwreck, Disappointment Island.</td>
</tr>
<tr>
<td>12</td>
<td>Auckland Islands</td>
<td>AU/107</td>
<td>Haskell Bay ship remains, Welbling Bay.</td>
</tr>
<tr>
<td>13</td>
<td>Auckland Islands</td>
<td>AU/117</td>
<td>Camp Cove coastal features, Camp Cove, Carnley Harbour, Auckland Island.</td>
</tr>
<tr>
<td>14</td>
<td>Auckland Islands</td>
<td>AU/123</td>
<td>Survey Bay boat run.</td>
</tr>
<tr>
<td>15</td>
<td>Auckland Islands</td>
<td>AU/124</td>
<td>Tagua track and landing, Tagua Bay, Carnley Harbour, Auckland Island.</td>
</tr>
<tr>
<td>16</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/42</td>
<td>Jetty at Beemar Meteorological base from 1957, Perseverance Harbour.</td>
</tr>
<tr>
<td>17</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/21</td>
<td>Brick tryworks platform—part covered at high tide, Perseverance Harbour.</td>
</tr>
<tr>
<td>18</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/23</td>
<td>Historic hut next to above beach—19th century glass on beach dates the remains, Perseverance Harbour.</td>
</tr>
<tr>
<td>19</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/10</td>
<td>Causeway across intertidal area to jetty making use of natural dyke—dates from end of World War 2 (coast watchers) or immediately after (first Met. Station), Perseverance Harbour.</td>
</tr>
<tr>
<td>20</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/17</td>
<td>Farming era (1895–1931) boulder arrangements on beach, including a ‘tidal fence’ from land to low water to stop stock from getting around the seaward end, Perseverance Harbour.</td>
</tr>
<tr>
<td>21</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/19</td>
<td>Farming era peat cutting in bank at rear of beach, Perseverance Harbour.</td>
</tr>
<tr>
<td>22</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/20</td>
<td>Farming era peat cutting in bank at rear of beach, Perseverance Harbour.</td>
</tr>
<tr>
<td>23</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/9</td>
<td>Farming era Tucker Cove homestead complex—includes boat run across the beach and boulders across rear of beach at bottom of brick ramp up to the house, Perseverance Harbour.</td>
</tr>
<tr>
<td>24</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/25</td>
<td>Farming era jetty and adjacent woolshed and yards.</td>
</tr>
<tr>
<td>25</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/16</td>
<td>Stone jetty—likely made by French Transit of Venus expedition, 1873—74, Perseverance Harbour.</td>
</tr>
<tr>
<td>26</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/8</td>
<td>Castaway Depot—late 19th century, includes boat run across beach to boat shed, store shed nearby, Perseverance Harbour.</td>
</tr>
<tr>
<td>27</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/18</td>
<td>Tidal fence—farming era, Perseverance Harbour.</td>
</tr>
<tr>
<td>28</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/40</td>
<td>Hut site next to beach; an old iron boiler on beach; iron bolt in rock dyke below high water and some shifting of boulders on beach for boat landing(s), Perseverance Harbour.</td>
</tr>
<tr>
<td>29</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/4</td>
<td>Venus Cove 1874 French Transit of Venus camp. Remains of stone jetty in centre of bay; hut sites; paths and instrument bases eroding to beach, Perseverance Harbour.</td>
</tr>
</tbody>
</table>

* These sites are also included in policy 34 for active conservation.
Site Details

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Island Group</th>
<th>NZAA Site Number</th>
<th>Site Name/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>30*</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/3</td>
<td>Whaling station: 1911–1914 jetty remains, ringbolts etc., intertidal sea wall around most of point, Northeast Harbour.</td>
</tr>
<tr>
<td>31</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/32</td>
<td>Two inch (c. 50 mm) internal diameter water pipe crosses beach from source on hill above to harbour and, presumably, across to whaling station, Northeast Harbour.</td>
</tr>
<tr>
<td>32</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/2</td>
<td>Whaling Station 1909–1917. Boat shed on the Sandy Bay shore; accommodation.</td>
</tr>
<tr>
<td>33</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/2</td>
<td>Whaling capstan, Capstan Cove, dragged parts of whale to the beach for processing, Northwest Bay.</td>
</tr>
<tr>
<td>34</td>
<td>Campbell Island/Motu Ihupuku</td>
<td>CA/28</td>
<td>A shipwreck fragment. West side of stream between Six Foot Lake and Monument Harbour.</td>
</tr>
<tr>
<td>35</td>
<td>Raoul Island</td>
<td>K036/05</td>
<td>Rosa Y Carmen burials.</td>
</tr>
<tr>
<td>36</td>
<td>Raoul Island</td>
<td>K036/23</td>
<td>Picton Shipwreck.</td>
</tr>
<tr>
<td>37</td>
<td>Raoul Island</td>
<td>K036/24</td>
<td>Shiner Shipwreck.</td>
</tr>
<tr>
<td>38</td>
<td>Raoul Island</td>
<td>K036/27</td>
<td>Kinei Maru No. 10 Shipwreck.</td>
</tr>
<tr>
<td>39</td>
<td>Raoul Island</td>
<td>K036/28</td>
<td>Salano Shipwreck.</td>
</tr>
<tr>
<td>40</td>
<td>Raoul Island</td>
<td></td>
<td>Wairuna Shipwreck.</td>
</tr>
</tbody>
</table>

* These sites are also included in policy 34 for active conservation.
Auckland Islands
Sites of cultural and historic heritage
Refer to Appendix 2 for a list of the NZAA site number and description of each site

NOT TO BE USED FOR NAVIGATIONAL PURPOSES
Campbell Island / Motu Ihupuku

Sites of cultural and historic heritage

Refer to Appendix 2 for a list of the NZAA site number and description of each site.
40. Wairuna Shipwreck (exact location unknown)

Refer to Appendix 2 for a list of the NZAA site number and description of each site.

Raoul Island
Kermadec Islands
Sites of cultural and historic heritage
Appendix 3

Vessel hull and niche area inspection form for voluntary approach until 1 year after the plan becomes operative

Vessel Hull and Niche Area Inspection Certificate

For completion by applicant: The applicant is responsible for all activities associated in meeting the specifications required by this form.

VESSEL NAME ………………………………………………………………………………………
DEPARTURE PORT …………………………………………………………………………………
OWNER/OPERATOR NAME ………………………………………………………………………
DATE LAST ANTI-FOULED ………………………………………………………………………
ANTI-FOUL TYPE …………………………………………………………………………………
LOCATION ………………………………………………………………………………………
LOCATIONS TREATED ……………………………………………………………………………
………………………………………………………………………………………………………..
………………………………………………………………………………………………………..

Ports or anchorages visited since either last antifouling paint renewal or over the past 3 months (whichever was more recent) and time resided at each location (no. days)

COPY OF ANTI-FOUL CERTIFICATE SENT TO THE DEPARTMENT OF CONSERVATION? YES/NO DATE …………………

SIGNED …………………………………………………….… DATE ……………..………..

Applicant (or person under authority from applicant)

For completion by approved inspector

INSPECTOR NAME …………………………… DATE INSPECTED …………………..
COMPANY NAME …………………………… COMPANY PHONE …………………..
VEssel Inspection Checklist

Mark box with a cross ☑ to indicate a pass or fail. A fail must be marked for any growth that does not meet the specification *2. An ‘N/A’ only applies if specified area does not exist for described vessel. If an organism is found and removed, a Pass can be recorded but the details must be recorded in the Comments section.

<table>
<thead>
<tr>
<th>Area</th>
<th>Pass</th>
<th>Fail</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull Surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine/ Ballast Intakes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propeller Shaft and Casing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propeller Blades and Boss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rudder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rudder Shaft Recess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Chests (Number Inspected: …….)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreplate and Casing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bow Thrusters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: (please include details of any organisms removed from vessel including quantity, location found and organism type, if known, and digital images. Also include any remedial work, such as cleaning, that has taken place and whether samples were collected).

I have conducted a thorough, impartial inspection of the vessel detailed above and the report is an accurate description of the fouling state of the vessel’s hull.

Signed…………………………………………………..………..Date………………….…

For the Inspector

All parts of the form must be clearly filled out and all areas of the vessel marked as Pass, Fail or N/A.

Ensure that a copy of the form is sent to both the Department and the Operator as soon as practicable. Refer below for contact details for Department’s Warkworth Great Barrier Area Office if intending to go to the Kermadec Islands and Southern Islands Area Office if going to the Subantarctic Islands.
For the Applicant
A pass in all areas checked indicates that the vessel hull has met the requirements to be classified as a 'Low Risk'. It is the responsibility of the Operator to ensure that the Inspector has forwarded a copy of the form to the Department. In the instance of a 'Pass' in all areas checked, no further action is required apart from the requirement to ensure that the Department has received the report and has confirmed it meets the required standard.

A Fail in any of the areas indicates that the vessel has failed to meet the requirement of ‘Low Risk’ and remedial action will be required.

General note: The Department of Conservation or other contracted party reserves the right to conduct spot checks on any permitted vessels before their departure to the Subantarctic Islands for the purpose of auditing the vessel inspection system.

Notes for completion of inspection form

*1 A list of DOC approved inspectors is available from either the Southern Islands Area Office or the Warkworth Great Barrier Island Area Office, contact details below, or from the DOC website: [weblink to approved dive service providers]
In the event an approved inspector is not available/appropriate for a particular inspection, the applicant may submit details of an alternative inspector. Alternative inspectors must be legally and physically capable of carrying out an appropriate inspection for the purpose, have no vested interest in the vessel and be approved by DOC before carrying out an inspection.

*2 For the purposes of this assessment a vessel is considered ‘Low Risk’ when it is free of absolutely all visible organisms (weed or animals), other than the ‘brown fuzz’ which grows rapidly on hulls and is deemed to pose minimal risk. A ‘Fail’ must be recorded regardless of whether they are considered by the inspector or vessel owner to be native NZ species or otherwise. This is due to: the risk of misidentification of species; because many native mainland NZ species are not found in the Subantarctic or Kermadec Islands; and any fouling increases the likelihood of additional species being present.

*3 Given the difficulty of checking sea chests underwater, they should be checked using a torch.

Contact details:

Dept of Conservation, Southern Islands Area Office
7th Floor, CUE on Don,
33 Don Street
Invercargill

Ph: +64 3 211 2400
Fax: +64 3 214 4486

Email: Invercargill@doc.govt.nz

Dept of Conservation, Warkworth Great Barrier Area Office
28 Baxter Street
Warkworth

Ph: +64 9 425 7812
Fax: +64 9 425 7813

Email: warkworth@doc.govt.nz
Appendix 4

Vessel hull and niche area inspection protocols and forms for rules 26, 27 and 28

The sections below describe hull sampling protocols that target both general hull locations and niche areas. The overall objective of the inspection described is to detect the majority of biofouling species occurring on a vessel’s hull. The inspection cannot guarantee an absence of biofouling as it has not been designed using a statistical framework that will provide a level of confidence of ‘freedom of infestation’. The inspection is not intended to estimate the abundance of individual species on the vessel (e.g. biomass, or numbers of individuals). However, it does provide an indication of the presence of fouling and a quantitative estimate of the extent of biofouling. The protocols described here use a Level of Fouling (LOF) index to quantify biofouling.

There is a form to be completed by the dive service provider. This form and the full explanation of the in-water hull inspection protocol is available on the DOC website, including the Level of Fouling (LOF) index to quantify biofouling.

The following paragraphs describe how the inspection is to be undertaken.

Information on vessel travel and maintenance history

As part of the biofouling inspection, the following information is to be collected from the vessel’s captain (or nominated crew):

- Date and location of last antifouling paint renewal.
- Ports or anchorages visited since either the last antifouling paint renewal or over the past 3 months (whichever was more recent), and time resided at each location (no. days).

In-water inspection

During a vessel inspection, divers will examine general hull areas and niche areas occurring around the vessel as described below, and as shown on Figures A4.1 and A4.2. Ideally, a plan of the ship should be consulted prior to the inspection to identify areas on the hull that need to be targeted and their exact location. Digital images will be taken and a Level of Fouling (LOF) rank will be provided.

Digital images

A digital underwater camera for taking close-up images of biofouling assemblages is required. The camera should be equipped with an adequate strobe positioned in a way that minimises over- or underexposure of the image and back-scatter.

Images can also be used to verify LOF ranks following an inspection. A digital image should be taken of biofouling organisms in situ. A slate should be visible in each image to identify the location (e.g. rudder, keel, hull) of the image. The image should be taken at a distance of approximately 30 cm from the hull surface to ensure organisms are visible in sufficient detail. A distance rod can be attached to the camera to ensure a constant distance. Lower distances may need to be used in sampling locations with poor visibility.

35 The inspection, sampling and reporting protocols included in this appendix are based on recommendations from Floerl, O.; Wilkens, S.; Inglis, G. 2010: Development of a template for vessel hull inspections and assessment of biosecurity risks to the Kermadec and sub-Antarctic Islands regions. NIWA.
Vertical stern transects

Two vertical transects are inspected at the stern: one on the port and one on the starboard side. Each transect receives a LOF rank, and has representative images taken of any organisms encountered. The vertical transects are best situated approximately 5 metres from the stern, where the hull curves inwards (Figure A4.1). When surveying the transects, the divers slowly descend from the waterline to the deepest part of the hull (keel bottom) and look for biofouling. The width of observation should be approximately 1 metre. In low-visibility environments, two divers may need to swim side-by-side and cover a width of 0.5 metres each. A LOF rank should be allocated to each transect on the basis of the amount and diversity of biofouling encountered (see below for how to allocate LOF ranks).
Representative digital images should be taken of biofouling organisms present in each transect to provide a permanent record. Images should be taken at a constant distance of approximately 30 cm from the hull surface. Each image should contain a slate or label identifying the location it was taken in (e.g. stern transect, on port side).

Horizontal transects

During the horizontal waterline transect, the divers inspect the hull from the waterline to approximately 1 metre below the waterline along the entire length of the vessel on both port and starboard sides. Biofouling is particularly likely to occur in areas where the antifouling paint is damaged as a result of abrasion during docking operations or where the vessel has struck floating debris. The waterline transect is divided into three parts:

1. Waterline (stern)
2. Waterline (amidships)
3. Waterline (bow)

Each of these segments is allocated a separate LOF. Digital images should be taken.

Niche areas

Most biofouling on most vessels is located within niche areas. The most common niche areas on vessel hulls are listed below. The codes in brackets represent abbreviations that can be used for identification slates for the digital images. Niche areas marked by an asterisk (*) are likely to be present on both port and starboard sides of a vessel, in which case both need to be inspected.

- Rudder and rudder shaft/recess [RS]
- Propeller and propeller shaft* [PS]
- Anodes* (often several along hull) [AN]
- Dry-docking support strips (areas along keel bottom on which the vessel rests while in dry-dock; thus lack antifouling paint) [DS]
- Sea chest gratings* [GR]
- Openings of intake or outflow pipes* [OP]
- Bilge keel* [BK]
- Bow thrusters* [BT]
- Areas of damaged paint surface* [DP]

An illustration of a vessel’s niche areas is given in Figure A4.2. Not all of these niche areas will be present on each inspected vessel, but each of those present needs to be targeted during the inspection. Each niche area should be inspected in its entirety and be allocated with a LOF rank on the basis of the amount and diversity of biofouling present in the entire niche area. One or several digital images should be taken of each niche area, and in each image a slate should be visible identifying the location it was taken in (e.g. BT, DS).

If the divers encounter biofouling outside the hull transects and niche areas listed above, images should be taken and the location described.
A. Vessel details and inspection summary

Contact details

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vessel name:</td>
</tr>
<tr>
<td>2.</td>
<td>Date and location of inspection:</td>
</tr>
<tr>
<td>3.</td>
<td>Inspecting company, representative and contact details:</td>
</tr>
<tr>
<td>4.</td>
<td>Vessel captain or crew representative and contact details:</td>
</tr>
</tbody>
</table>

Maintenance and travel history

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Date of last antifouling paint renewal:</td>
</tr>
<tr>
<td>6.</td>
<td>Date and location of last in-water inspection, brief description of results and treatment undertaken:</td>
</tr>
<tr>
<td>7.</td>
<td>Ports and countries visited in past 3 months or since past antifouling paint renewal (whichever was more recent):</td>
</tr>
</tbody>
</table>

Main inspection results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Were biofouling organisms encountered on the vessel?</td>
</tr>
</tbody>
</table>

B. Overview of biofouling distribution

Hull areas

<table>
<thead>
<tr>
<th>SIDE OF VESSEL</th>
<th>DONE? (Y/N)</th>
<th>LOF RANK (0–5)</th>
<th>BIOFOULING DETECTED?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vertical stern transect</td>
<td>Port</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Waterline transect</td>
<td>Port</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Opportunistic collections</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed Regional Coastal Plan: Kermadec and Subantarctic Islands

Using the Level of Fouling (LOF) rank index to quantify biofouling on vessel hulls

The LOF scale was developed by NIWA as a quick and effective method of quantifying biofouling on vessel hulls\(^\text{36}\).

LOF ranks range from 0 to 5 and the various ranks along with example images for hull biofouling assemblages are provided in the following tables. One particularly important fact about the LOF scale is that so-called macrofouling organisms (e.g. barnacles, tubeworms, bivalves) are **absent** from areas defined as LOF rank 0 (entirely free of biofouling) and 1 (slime fouling only). That means that the lowest LOF rank that can be allocated to an area where there is a single barnacle, bivalve or other macrofouling organism, is a LOF rank of 2.

The use of the LOF scale is simple and quick and **based on both (i) the areal extent, and (ii) the diversity of biofouling in a target area**.

During a vessel inspection, an LOF rank is allocated to the entire area under inspection, i.e. a niche area or a hull transect. Using a vessel’s propeller as an example, the entire propeller (blades, boss, shaft) is examined and a single LOF rank is allocated based on the entire structure. Similarly, a single LOF rank is allocated to the vertical stern transect, and to each of the stern, amidships or bow segments of the waterline transect.

<table>
<thead>
<tr>
<th>LOF rank</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No visible biofouling. Hull entirely clean, no slime fouling (biofilm) on any visible submerged parts of the hull.</td>
</tr>
<tr>
<td>1</td>
<td>Hull partially or completely covered in slime fouling (biofilm). Absence of any macrofouling.</td>
</tr>
<tr>
<td>2</td>
<td>Light biofouling, 1–5% of visible surface covered by very patchy macrofouling. Remaining area often covered in slime. Examples below show presence vs. absence of fouling in two adjacent areas of a vessel hull.</td>
</tr>
</tbody>
</table>

Figure A4.3. Definition of the LOF ranks (ranging from 0 to 5) and example images of vessel hull surfaces of each of the different ranks (continued on next page).
<table>
<thead>
<tr>
<th>LOF rank</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Moderate biofouling. Macrofouling clearly visible (usually > 1 species) but still patchy. 6–15% of visible hull surface covered by macrofouling. Remaining area often covered in slime.</td>
</tr>
<tr>
<td>4</td>
<td>Extensive fouling. 16–40% of visible hull surface covered by macrofouling, generally with several distinct types of organisms. Remaining area often covered in slime.</td>
</tr>
<tr>
<td>5</td>
<td>Very heavy fouling. 41–100% of visible hull surface covered by macrofouling, often with many distinct types of organisms. Remaining area often covered in slime.</td>
</tr>
</tbody>
</table>

Figure A.4.3—continued.
Appendix 5

Statutory Restrictions in Parts 2 and 3 of the RMA

Legislative framework—the Resource Management Act 1991

The cornerstone of the Act is Part II, the Purpose and Principles. All the section references below refer to sections in the RMA.

5 Purpose

(1) The purpose of this Act is to promote the sustainable management of natural and physical resources.

(2) In this Act, sustainable management means managing the use, development, and protection of natural and physical resources in a way, or at a rate, which enables people and communities to provide for their social, economic, and cultural wellbeing and for their health and safety while—

(a) Sustaining the potential of natural and physical resources (excluding minerals) to meet the reasonably foreseeable needs of future generations; and

(b) Safeguarding the life-supporting capacity of air, water, soil, and ecosystems; and

(c) Avoiding, remediating, or mitigating any adverse effects of activities on the environment.

6 Matters of national importance

In achieving the purpose of this Act, all persons exercising functions and powers under it, in relation to managing the use, development, and protection of natural and physical resources, shall recognise and provide for the following matters of national importance:

(a) The preservation of the natural character of the coastal environment (including the coastal marine area), wetlands, and lakes and rivers and their margins, and the protection of them from inappropriate subdivision, use, and development:

(b) The protection of outstanding natural features and landscapes from inappropriate subdivision, use, and development:

(c) The protection of areas of significant indigenous vegetation and significant habitats of indigenous fauna:

(d) The maintenance and enhancement of public access to and along the coastal marine area, lakes, and rivers:

(e) The relationship of Māori and their culture and traditions with their ancestral lands, water, sites, wāhi tapu, and other taonga.

(f) The protection of historic heritage from inappropriate subdivision, use, and development.

(g) The protection of recognised customary activities.
7 Other matters

In achieving the purpose of this Act, all persons exercising functions and powers under it, in relation to managing the use, development, and protection of natural and physical resources, shall have particular regard to—

(a) Kaitiakitanga:

(aa) The ethic of stewardship:

(b) The efficient use and development of natural and physical resources:

(ba) The efficiency of the end use of energy:

(c) The maintenance and enhancement of amenity values:

(d) Intrinsic values of ecosystems:

(e) Repealed.

(f) Maintenance and enhancement of the quality of the environment:

(g) Any finite characteristics of natural and physical resources:

(h) The protection of the habitat of trout and salmon:

(i) The effects of climate change:

(j) The benefits to be derived from the use and development of renewable energy.

8 Treaty of Waitangi

In achieving the purpose of this Act, all persons exercising functions and powers under it, in relation to managing the use, development, and protection of natural and physical resources, shall take into account the principles of the Treaty of Waitangi (Te Tiriti o Waitangi).

Restrictions on use of the coastal marine area

Part 3 of the Resource Management Act 1991 (RMA) contains duties and restrictions. Sections 12, 14 and 15 of the RMA restrict certain activities in the coastal marine area unless expressly allowed by a rule in a regional coastal plan (i.e. as a permitted activity) or a coastal permit. This Plan contains objectives, policies and methods including rules, which establish the framework within which certain uses are permitted, or prohibited, or for which applications for coastal permits will be accepted and assessed.
Appendix 6

Other agencies with key roles in CMA

<table>
<thead>
<tr>
<th>AGENCY</th>
<th>RESPONSIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minister of Conservation under RMA</td>
<td>• Responsible for sustainable coastal management in conjunction with councils

• Preparation, monitoring and review of New Zealand Coastal Policy Statements

• Approval of Regional Coastal Plans</td>
</tr>
<tr>
<td>Department of Conservation under other legislation</td>
<td>• Servicing the Minister of Conservation

• Advocating for sustainable coastal management

• Implementation of the New Zealand Coastal Policy Statement

• Marine reserves

• Marine Mammal and Wildlife Protection</td>
</tr>
<tr>
<td>Ministry of Fisheries</td>
<td>• Fisheries and habitat management

• Fisheries permits for marine farms</td>
</tr>
<tr>
<td>MAF Biosecurity NZ</td>
<td>• A division of MAF charged with leadership of the New Zealand biosecurity system; it encompasses facilitating international trade, protecting the health of New Zealanders and ensuring the welfare of our environment, flora and fauna, marine life and Māori resources</td>
</tr>
<tr>
<td>Maritime New Zealand</td>
<td>• Marine oil pollution response

• Navigation safety—ship standards, navigation aids, shipping routes, manning requirements, maritime safety inspections, aids to navigation

• Search and Rescue

• Maritime incident response (including places of refuge)</td>
</tr>
<tr>
<td>MED (Crown Minerals)</td>
<td>• Allocation of mineral resources</td>
</tr>
<tr>
<td>New Zealand Historic Places Trust (NZHPT)</td>
<td>• New Zealand’s national historic heritage agency and guardian of

• New Zealand’s national heritage; maintains the Historic Places Register and ArchSite</td>
</tr>
<tr>
<td>United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Committee</td>
<td>• Establishes the sites to be listed as UNESCO World Heritage Sites and is responsible for the implementation of the World Heritage Convention</td>
</tr>
</tbody>
</table>