GIBSON’S WANDERING ALBATROSS RESEARCH

ADAMS ISLAND 2014

Graeme Elliott and Kath Walker
Albatross Research
549 Rocks Road
Nelson

April 2014

Prepared in part fulfilment of Department of Conservation contract 4525: Gibson’s Albatross population study (Auckland Islands) 2014.
INTRODUCTION

Gibson’s wandering albatross (*Diomedea gibsoni*) are endemic to the Auckland Island archipelago, with approximately 95% of the population breeding on Adams Island, the southern-most island in the group. They forage largely in the Tasman Sea, but also along the continental shelf off southern and south eastern Australia, and off eastern New Zealand (Walker & Elliott 2006). The population has been in decline, and is regarded as a ‘Nationally Critical’ threatened species (Robertson et al. 2012).

There are small numbers annually bycaught in New Zealand commercial fisheries, particularly in surface longline fisheries (Abraham & Thompson 2012). In 2012 it was estimated that from 1998-99 to 2008-09 in the New Zealand fisheries alone, between 35 and 65 Gibson’s wandering albatrosses per year were caught (Francis et al 2012), a substantial number for such a long-lived, slow-breeding species. Of the 51 birds caught during this period which were autopsied, all but one were adults and there was an even sex ratio, although it’s not known whether the autopsied birds were representative of the bycatch (Francis et al 2012). Additionally, there are substantial unobserved long-line fleets in international waters in the mid Tasman Sea and the SW Pacific Ocean (Francis et al 2012) where the birds regularly forage (Walker & Elliott 2006).

Due to the vulnerability of this species, their survival, productivity, recruitment and population trends have been monitored during almost annual visits to Adams Island since 1991. In the 1990’s the population slowly increased following a major, presumably fisheries-induced, decline during the 1980’s (Walker & Elliott 1999). However, between 2005 and 2008 there was a sudden drop of more than 40% in the size of the breeding population, from which recovery has been very slow. The Gibson’s wandering albatross population is now only about two-thirds of its estimated size in 2004.

With ongoing fisheries bycatch of a species in marked decline, further information was sought on the adult survival and population trends of Gibson’s wandering albatrosses in 2013/14. This report summarises the most recent findings on the current status of Gibson’s wandering albatrosses, collected during the 2013/14 summer and is the second in a series of similar annual reports (Elliott & Walker 2013).

Objectives

The specific objectives of this project were:
1. To estimate the population size and trend of Gibson’s albatross at the Auckland Islands; and
2. To estimate the adult survival of Gibson’s albatross at the Auckland Islands.

METHODS

Population study

Details of the methods used, study area locations and earlier results are given in Walker & Elliott 1999, Elliott & Walker 2005, and Walker & Elliott 2006.

In brief, summer visits are made to Adams Island and all birds found within or near a 61 ha “Study Area” are checked for bands. An attempt is made to identify both birds at every nest in the Study Area, and any that have no bands are banded. All nests are labelled and mapped, the success of the previous year’s nests is assessed, and the chicks produced are banded. This data enables calculation of survivorship, productivity, recruitment and attendance on the breeding grounds.

The number of active nests in 3 areas representative of low, medium and high density nesting habitat on Adams Island are counted each year. These comprise c.10% of all the nests on Adams Island, and the annual census of these blocks provides an estimate of population trends (Elliott & Walker 2005). The total number of pairs nesting within the entire Auckland Island’s group was estimated by multiplying the
proportional change in the number of nests in the three regularly censused parts of Adams Island by the average number of nests counted in a comprehensive island-wide census in 1997 (Walker & Elliott 1999).

Survival is estimated from the banded birds in the main study area, with maximum likelihood mark-recapture statistical methods using the statistical software M-Surge (Choquet et al. 2005). For the models used in M-Surge, adult birds are categorised by sex and by breeding status: non-breeders, successful breeders, failed breeders and sabbatical birds taking a year off after a successful breeding attempt. Birds in each of these classes have very different probabilities of being seen on the island but similar survival rates, so the models estimate re-sighting probabilities separately for each class, but survival is estimated separately for only males and females. Population size is estimated by multiplying the actual counts of birds in each class by its estimated re-sighting probability. The survival estimates assume no emigration which is appropriate because wandering albatrosses have strong nest site fidelity, birds rarely move more than a few hundred metres and birds nesting at new sites within a few hundred metres of the study area are detected during the census of surrounding country (Walker & Elliott 2005).

Changes in the at-sea distribution of Gibson’s wandering albatrosses

Since 2009 we have been attaching and retrieving geolocator dataloggers to Gibson’s wandering albatrosses to compare the foraging locations when the population was declining, with those used a decade earlier when it was growing. So far dataloggers have been attached to and retrieved from 57 birds.

Locations of the birds were calculated from the light data using BASTRak, TransEdit and BirdTracker software supplied by British Antarctic Survey (Fox 2007). More “reasonable” flight paths were obtained when we used estimated longitude from the logger’s light data, and estimated latitude by matching the sea temperature data recorded by the logger with the nearest sea-surface temperature at the estimated longitude. We used monthly sea-surface temperature data available from http://dss.ucar.edu.

We compared tracking data collected using geolocator loggers between 2009 and 2014 with data obtained from satellite transmitters between 1994 and 2003 using kernel density plots. Kernels were estimated using the function kde2d in the MASS package (Venables & Ripley, 2002) in the statistical language R (R Development Core Team, 2011). We used bivariate normal kernels, with a normal reference bandwidth (Venables & Ripley, 2002). Longitudes were transformed by the cosine of latitude to make units of latitude and longitude approximately equal.

RESULTS

Nest counts

The three blocks in which nests have been counted since 1998 were counted again in late January or early February 2014. While still comparatively low relative to the size of the population a decade ago, the number of nests in the three blocks is clearly slowly increasing (Table 1, Figure 1).
Table 1: The number of Gibson’s wandering albatross nests in late January in three census blocks on Adams Island in the Auckland Islands group in 1998-2014.

<table>
<thead>
<tr>
<th>Year</th>
<th>Rhys’s Ridge (low density)</th>
<th>Amherst-Astrolabe (medium density)</th>
<th>Fly Square (high density)</th>
<th>Total number of nests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>60</td>
<td>483</td>
<td>248</td>
<td>781</td>
</tr>
<tr>
<td>1999</td>
<td>60</td>
<td>446</td>
<td>237</td>
<td>743</td>
</tr>
<tr>
<td>2000</td>
<td>45</td>
<td>284</td>
<td>159</td>
<td>488</td>
</tr>
<tr>
<td>2001</td>
<td>64</td>
<td>410</td>
<td>201</td>
<td>675</td>
</tr>
<tr>
<td>2002</td>
<td>60</td>
<td>408</td>
<td>246</td>
<td>675</td>
</tr>
<tr>
<td>2003</td>
<td>71</td>
<td>496</td>
<td>217</td>
<td>784</td>
</tr>
<tr>
<td>2004</td>
<td>77</td>
<td>501</td>
<td>284</td>
<td>862</td>
</tr>
<tr>
<td>2005</td>
<td>34</td>
<td>323</td>
<td>72</td>
<td>412</td>
</tr>
<tr>
<td>2006</td>
<td>15</td>
<td>185</td>
<td>79</td>
<td>279</td>
</tr>
<tr>
<td>2007</td>
<td>38</td>
<td>230</td>
<td>132</td>
<td>400</td>
</tr>
<tr>
<td>2008</td>
<td>26</td>
<td>201</td>
<td>91</td>
<td>318</td>
</tr>
<tr>
<td>2009</td>
<td>28</td>
<td>238</td>
<td>120</td>
<td>386</td>
</tr>
<tr>
<td>2010</td>
<td>32</td>
<td>237</td>
<td>114</td>
<td>383</td>
</tr>
<tr>
<td>2011</td>
<td>33</td>
<td>255</td>
<td>137</td>
<td>425</td>
</tr>
<tr>
<td>2012</td>
<td>35</td>
<td>224</td>
<td>120</td>
<td>379</td>
</tr>
<tr>
<td>2013</td>
<td>39</td>
<td>315</td>
<td>138</td>
<td>492</td>
</tr>
<tr>
<td>2014</td>
<td>29</td>
<td>267</td>
<td>134</td>
<td>430</td>
</tr>
</tbody>
</table>

Figure 1. The number of Gibson's wandering albatross nests in late January in three census blocks on Adams Island 1998-2014.
Total number of nests on the island

From the ratio between the number of nests in our census blocks and the total number of nests counted in all blocks on the Auckland Islands in 1997 (Walker & Elliott, 1999) we can estimate the total number of pairs each year which bred on the Auckland Islands. There were approximately 4,340 pairs nesting in 2014, nearly as many as in 1991, but only 50% of the peak population recorded in 2004 (Table 2).

Table 2: Estimated number of pairs of Gibson’s wandering albatross nesting on the Auckland Islands. Estimates are derived from the numbers of nests counted in 3 representative census blocks and the proportion of the total number of nests that were counted in these blocks in 1997.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairs</td>
<td>4964</td>
<td>5270</td>
<td>4826</td>
<td>6678</td>
<td>7417</td>
<td>7883</td>
<td>7499</td>
<td>4926</td>
<td>6813</td>
<td>6813</td>
<td>7913</td>
<td>8701</td>
<td>4158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairs</td>
<td>2816</td>
<td>4037</td>
<td>3210</td>
<td>3896</td>
<td>3866</td>
<td>4290</td>
<td>3825</td>
<td>4966</td>
<td>4340</td>
</tr>
</tbody>
</table>

Population size estimate from mark/recapture

The number of breeding birds in the study area estimated by mark-recapture was increasing up until 2004, but between 2004 and 2006 the number of breeding females decreased by about 45% with a smaller decrease amongst males. Since 2006, a major disparity in the number of adult males and females alive has gradually narrowed, as the size of the female breeding population remained low but approximately stable, while the size of the male breeding population slowly declined (Figure 2).

Figure 2. The number of breeding birds in the study area on Adams Island estimated by mark-recapture.
Using the modelling techniques of Francis et al. (2012) it is possible to estimate the size of the total population including pre-breeding birds (as opposed to the total number of breeders) but this is beyond the scope of this report.

Survivorship

Data gathered over the 2013/14 summer allowed survival during 2013 to be estimated (Figure 3), but survival estimates in the last year of a series for biennially breeding birds invariably have large confidence intervals (see Figure 3), and the confidence intervals for females for the last two years are large. We should therefore regard the most recent survival estimates for both sexes as suspect, and the survival estimate for females in 2012 also as suspect. In our last report (Elliott & Walker 2013) we reported that survivorship in 2012 was low, particularly for males, but the most recent estimates suggest that survivorship during 2012 was high for both sexes though the confidence intervals, particularly for the females, are very large.

![Graph showing annual survival rates of male and female birds from 1993 to 2013.](image)

Figure 3. The annual survival of birds in the study area on Adams Island estimated by mark-recapture, with 95% confidence intervals only shown on the females for graph clarity.

Recruitment

The number of birds breeding for the first time in the Study Area (Figure 4) has been very variable, but dropped significantly in 2005 and 2006, slowly increased until 2013, then declined again in 2014.
Nesting success and productivity

Nesting success in 2013 was 50%, with 76 chicks fledging. This represents a continued improvement over the 24%-25% nesting success rates of 2006-2009. While nesting success is approaching levels last seen before 2005, the number of chicks produced remains lower than it used to be because of the smaller numbers of pairs attempting to breed.
Changes in the at-sea distribution of Gibson’s wandering albatrosses

We retrieved geolocator dataloggers (GLS) and data from 9 birds during the summer of 2013-14; eight GLS had been on birds for 1 year, and one had been on for two years. So far we have successfully tracked 57 birds using geolocator dataloggers and we have 69 bird-years of tracking data from birds at all stages of their breeding cycle (Table 3).

Table 3: Numbers of Gibson’s wandering albatrosses at different life history stages tracked using geolocator dataloggers deployed on Adams Island since 2009. The data is in bird-years as some birds were tracked for two years.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Failed breeders</th>
<th>Non-breeders</th>
<th>Breeders</th>
<th>Sabbatical</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>12</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>Males</td>
<td>5</td>
<td>22</td>
<td>3</td>
<td>2</td>
<td>32</td>
</tr>
</tbody>
</table>

We have undertaken a preliminary analysis of the logger tracking data between 2009 and 2014 and compared it with the satellite tracking data we obtained from 46 birds tracked between 1994 and 2003 (Walker & Elliott 2006). The additional nine geolocators retrieved and downloaded this summer did not change the conclusions we came to a year ago, but we have included the new data collected in Figures 6 and 7.

Although the pattern of distribution of tracked birds between decades was similar, both males (Figure 6) and females (Figure 7) went further north, and males further south in 2009-13 than they did in 1994-2003. There was also a conspicuous increase in use of the oceans in the western Great Australian Bight particularly by female non-breeders (Figure 7), and males and females made more use of oceans to the east of New Zealand in 2009-2014 than they did in 1994-2003 (Figures 6 & 7).

Figure 6: Kernel density plots of male Gibson’s wandering albatrosses tracked while breeding and not breeding in 1994-2003 and 2009-2014. Black indicates that 50% contour, dark grey the 75% contour, and light grey the 95% contour.
CONCLUSIONS

Nearly all the population parameters with which one might assess the conservation status of Gibson’s wandering albatross have been below average since 2004, and although there has been an improvement in recruitment, nesting success and survival from their low points in 2006, these parameters are still below their pre-2004 levels. Since we last reported on Gibson’s wandering albatrosses (Elliott & Walker 2013) there has been continued improvement in productivity, and the most recent survival figures are high though the confidence intervals about female survivorship estimates are large.

Additional tracking data has not changed the conclusions we reached a year ago. That is, birds are travelling greater distances and foraging more widely than they did in 1994-2003. Breeding females, in particular have a much bigger foraging range.

The combination of increased foraging range and poor breeding success suggests that these albatrosses are foraging more widely for a smaller amount of food, which in turn suggests a reduction in the abundance of the squid and fish populations they prey on, or at least a change in their distribution. In our last report (Elliott & Walker 2013) we speculated on likely explanations for the continuing poor performance of Gibson’s wandering albatross. Another year’s data has not changed these possible explanations, nor the likelihood of them being correct.

The gradual improvement in the numbers of birds breeding each year, and in breeding success, gives some hope that the decline in the size of the breeding population is slowing. However, it remains of concern that the increase in numbers of breeding birds is of necessity at the expense of a decline in the size of the pre-breeding population. Since 2006 this pool of pre-breeders has been receiving about 70% fewer juveniles each year than in the years before the crash, because of the dual effects of fewer nesting attempts and lowered success rate. Although an important component of the total population, the pool of pre-breeders is much less visible and impossible to count, though their numbers can be modelled. This was last done for Gibson’s wandering albatrosses in 2011 (Francis et al 2012).

Monitoring the population of Gibson’s wandering albatrosses on Adams Island remains an important conservation priority.
Acknowledgements

Collection of the 2013/14 season data was supported by funding from the Department of Conservation’s Conservation Services Programme (www.doc.govt.nz/csp) project POP2013-03, partially through a levy on the quota holders of relevant commercial fish stocks, and we thank the New Zealand long-line fishing industry for their contribution to this CSP funding.

Our thanks to Sandy King who banded the chicks on Adams Island in November 2013, and to Kalinka Rexer-Huber and Graham Parker who carried out the extensive field programme there between December 2013 and February 2014. We also thank Jo Hiscock, Sharon Trainor and Kathryn Pemberton of Southern Islands Area Office of the Department of Conservation for their logistic support for the project, Henk Haazen of Tiama for safely transporting the field team to Adams Island, and the officers and crew of HMNZS Wellington who brought them back.

References

