

# Quantitative description of mainland New Zealand's shallow subtidal reef communities

SCIENCE FOR CONSERVATION 280





Department of Conservation *Te Papa Atawbai* 

# Quantitative description of mainland New Zealand's shallow subtidal reef communities

Nick T. Shears and Russell C. Babcock

SCIENCE FOR CONSERVATION 280

Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand

Cover: New Zealand's common sea urchin *Evecbinus chloroticus* feeding on blades of the dominant kelp *Ecklonia radiata* at Leigh, northeastern New Zealand. *Photo: N.T. Shears.* 

Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer <u>www.doc.govt.nz</u> under *Publications*, then *Science & technical*.

© Copyright December 2007, New Zealand Department of Conservation

 ISSN
 1173-2946 (hardcopy)

 ISSN
 1177-9241 (web PDF)

 ISBN
 978-0-478-14352-2 (hardcopy)

 ISBN
 978-0-478-14353-9 (web PDF)

This report was prepared for publication by Science & Technical Publishing; editing and layout by Sue Hallas. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand.

In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible.

## CONTENTS

|    | _     |          |                                                      |
|----|-------|----------|------------------------------------------------------|
| 1. | Intro | oduction |                                                      |
| 2. | Metl  | nods     |                                                      |
|    | 2.1   | Study l  | ocations                                             |
|    | 2.2   | Sampli   | ng procedure                                         |
|    | 2.3   | Biologi  | cal datasets                                         |
|    |       | 2.3.1    | Macroalgal community structure                       |
|    |       | 2.3.2    | Mobile macroinvertebrate assemblages                 |
|    |       | 2.3.3    | Benthic community structure                          |
|    | 2.4   | Enviro   | nmental variables                                    |
|    | 2.5   | Statisti | cal analyses                                         |
|    |       | 2.5.1    | Principal coordinates analysis                       |
|    |       | 2.5.2    | Multiple regression                                  |
|    |       | 2.5.3    | Bioregional patterns in reef communities             |
| 3. | Resu  | ılts     |                                                      |
|    | 3.1   | Macroa   | llgal assemblages                                    |
|    |       | 3.1.1    | National variation in macroalgal community structure |
|    |       | 3.1.2    | National patterns in dominant macroalgal species     |
|    |       | 3.1.3    | Macroalgal species richness                          |
|    | 3.2   | Mobile   | macroinvertebrate assemblages                        |
|    |       | 3.2.1    | National variation in mobile macroinvertebrate       |
|    |       |          | assemblages                                          |
|    |       | 3.2.2    | National patterns in dominant mobile macroinvertebra |
|    |       |          | species                                              |
|    | 3.3   | Benthie  | c community structure                                |
|    |       | 3.3.1    | National variation in benthic community structure    |
|    |       | 3.3.2    | National patterns in dominant structural groups      |
|    | 3.4   | Bioregi  | ional patterns in benthic communities                |
|    |       | 3.4.1    | Northeastern bioregion                               |
|    |       | 3.4.2    | Portland bioregion                                   |
|    |       | 3.4.3    | Raglan bioregion                                     |
|    |       | 3.4.4    | Abel bioregion                                       |
|    |       | 3.4.5    | Cook bioregion                                       |
|    |       | 3.4.6    | Banks bioregion                                      |
|    |       | 3.4.7    | Buller bioregion                                     |
|    |       | 3.4.8    | Westland bioregion                                   |
|    |       | 3.4.9    | Chalmers bioregion                                   |
|    |       | 3.4.10   | Fiordland bioregion                                  |
|    |       | 3.4.11   | Stewart Island bioregion                             |

| 4.  | Disc  | ussion                                             | 82  |
|-----|-------|----------------------------------------------------|-----|
|     | 4.1   | Biogeographic distribution of key species          | 82  |
|     | 4.2   | National patterns in community structure           | 85  |
|     | 4.3   | Environmental correlates and structuring processes | 86  |
|     | 4.4   | The role of sea urchins                            | 87  |
|     | 4.5   | Conservation and management implications           | 89  |
| 5.  | Con   | clusions                                           | 90  |
| 6.  | Ackı  | nowledgements                                      | 91  |
| 7.  | Refe  | rences                                             | 92  |
| App | endix | 1                                                  |     |
|     | Deta  | ils of sampling locations and sites                | 96  |
| App | endix | 2                                                  |     |
|     | Мар   | s of study sites                                   | 102 |
| App | endix | 3                                                  |     |
|     | Mac   | roalgal biomass equations                          | 109 |
| App | endix | 4                                                  |     |
|     | Stru  | ctural group afdw conversion factors               | 111 |
| App | endix | 5                                                  |     |
|     | Occ   | urrence of macroalgal species                      | 112 |
| App | endix | 6                                                  |     |
|     | Size  | -frequency distributions of Evechinus chloroticus  | 123 |

## Quantitative description of mainland New Zealand's shallow subtidal reef communities

Nick T. Shears<sup>1,2</sup> and Russell C. Babcock<sup>1,3</sup>

- <sup>1</sup> Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth, New Zealand
- <sup>2</sup> Current address: Marine Science Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA. Email: <u>shears@msi.ucsb.edu</u>
- <sup>3</sup> Current address: CSIRO Marine Research Floreat, Private Bag No. 5, Wembley, 6913 WA, Australia

## ABSTRACT

Conservation and management of the marine environment requires a general understanding of how biological communities differ from place to place and the major factors that control them. Current knowledge of the ecology of New Zealand's subtidal reefs is limited, being based on studies from a small number of locations. In this study, surveys of shallow subtidal reef communities were carried out at 43 locations (247 sites) throughout mainland New Zealand. National and regional patterns in community structure are described, and their relationships with environmental variables are investigated. The shallow reefs (<12 m depth) surveyed were generally typical of temperate systems, being dominated by large leathery seaweeds. However, other algal groups, sponges, mussels, ascidians and bryozoans were also abundant at some places where large seaweeds were rare, e.g. locations subjected to extreme wave action and poor water clarity (Raglan, Karamea, Cape Foulwind, Jackson Head), or where sea urchins (Evechinus chloroticus) were abundant (Gannet Rock, Abel Tasman, Nelson, Paterson Inlet). Strong associations were found between the biological patterns and environmental conditions such as water clarity and wave exposure, but these associations differed among regions. This unprecedented New Zealand-wide survey of subtidal reefs provides a framework for marine conservation planning and further ecological study, and a valuable baseline for assessing change associated with environmental variation, human-related impacts and management actions (e.g. marine reserves).

Keywords: bioregions, community structure, kelp forests, macroalgae, macroinvertebrates, marine reserves, sea urchins, temperate reefs

<sup>©</sup> Copyright December 2007, Department of Conservation. This paper may be cited as: Shears, N.T.; Babcock, R.C. 2007: Quantitative description of mainland New Zealand's shallow subtidal reef communities. *Science for Conservation 280*. Department of Conservation, Wellington. 126 p.

## 1. Introduction

The systematic collection of biological data and description of patterns across large spatial scales is necessary for understanding important structuring processes and trophic relationships in communities (Underwood et al. 2000). Furthermore, large-scale studies aid in interpreting variability seen across smaller spatial scales (e.g. Broitman et al. 2001). From a conservation management perspective, the collection of quantitative data on species composition and community structure over a variety of spatial scales is valuable not only for developing a large-scale biogeographic framework for systematic planning (Lourie & Vincent 2004), but also for understanding local- and regional-scale variation in biodiversity. This is essential to ensure that conservation efforts achieve their goals of establishing networks of marine protected areas that are representative and comprehensive (Day et al. 2002). Systematically collected biological data also provide a valuable baseline for assessing changes associated with management actions (e.g. establishment of marine reserves), anthropogenic disturbance, introduced species and environmental change.

Shallow subtidal reef communities represent one of the most productive habitats in temperate marine ecosystems (Schiel & Foster 1986) and are of enormous commercial, recreational and cultural value to society. These habitats are typically dominated by large brown algae of the orders Laminariales and Fucales (Schiel & Foster 1986), although in many systems throughout the world grazing by sea urchins may remove large areas of kelp forest and form an 'urchin barrens' habitat (Lawrence 1975; Harrold & Pearse 1987). In addition to grazing by sea urchins and to a lesser extent fishes (Jones & Andrew 1990), the organisation of an algal community is strongly influenced by the life history characteristics of its key species (Reed 1990), as well as a variety of physical factors such as storms (Cowen et al. 1982), temperature (Leliaert et al. 2000), climatic variations (Dayton 1985), eutrophication (Eriksson et al. 2002), salinity (Schils et al. 2001), turbidity (Lumb 1989) and sedimentation (Airoldi & Virgillio 1998). Algal assemblage structure and species composition vary across environmental gradients (e.g. Harrold et al. 1988; Gorostiaga et al. 1998; Leliaert et al. 2000), and the physical factors responsible for those gradients are often strongly interrelated and covary, making it difficult to separate the effects of differing factors (Irving & Connell 2002; Schiel et al. 2006). In order to understand fundamental ecological processes, there is a need for biotic patterns to be described (Fowler-Walker & Connell 2002), and for environmental gradients to be quantified.

For mainland New Zealand, much of our understanding of subtidal reef community structure is based on descriptive studies carried out along the northeastern coast (Choat & Schiel 1982; Grace 1983; Cole 1993; Walker 1999; Shears & Babcock 2004b) and a few locations further south, e.g. Abel Tasman (Davidson & Chadderton 1994), Wellington, Kaikoura, Banks Peninsula and Fiordland (Schiel 1990; Schiel & Hickford 2001). From these studies, subtidal reef communities in New Zealand appear to be typical of most temperate areas in that they are dominated by large brown algae (Schiel 1990), and sea urchins are a conspicuous component of many reefs. The common sea urchin *Evechinus chloroticus* has been shown to have an important top-down influence on algal assemblages (Andrew

& Choat 1982: Shears & Babcock 2002) and it forms urchin barrens habitat in northern New Zealand. However, in central and southern parts of the country, urchin-dominated areas are thought to be rare (Schiel 1990; Schiel & Hickford 2001), with the exception of Abel Tasman (Davidson & Chadderton 1994) and Fiordland (Villouta et al. 2001). Descriptive studies of the northeastern part of New Zealand have shown that algal community structure and the abundance of sea urchins changes in a predictable manner over a wave-exposure gradient (Grace 1983; Cole 1993; Walker 1999; Shears & Babcock 2004b) with sea urchins being rare on sheltered reefs but becoming more prevalent, and overgrazing to greater depths, with increasing exposure. However, at the most exposed of these northeastern sites, sea urchins are rare and mixed stands of large brown algae predominate (Choat & Schiel 1982; Shears & Babcock 2004b). These findings suggest that the association between macroalgae and sea urchins varies across environmental gradients, but the applicability of findings from these studies to other regions of New Zealand is not known. In general much of the New Zealand coastline remains undescribed and our understanding of the important factors structuring algal assemblages both within and across regions in New Zealand is poor (Schiel 1990; Hurd et al. 2004).

A nationwide study of mainland New Zealand's subtidal benthic reef communities was carried out between 1999 and 2005. One component of this study has resulted in the division of the mainland New Zealand coast, based on macroalgae species composition, into two biogeographic provinces ('Northern' and 'Southern') and 11 biogeographic regions (hereafter 'bioregions') (Fig. 1; Shears et al. in press). This provides a hierarchical spatial framework for conservation planning but also for investigating ecological processes responsible for maintaining the observed patterns and their association with environmental variables. This report aims to provide a resource for ecologists and conservation workers by providing a national overview of New Zealand's subtidal reef communities, as well as descriptions of reef assemblages within bioregions and how these vary across environmental gradients.

## 2. Methods

## 2.1 STUDY LOCATIONS

Shallow subtidal reef communities were quantified at 247 sites within 43 locations throughout New Zealand (Fig. 1; see Appendices 1 and 2 for site positions). Locations were selected to provide a representative coverage of mainland New Zealand's subtidal reefs, but were somewhat determined by ease of access, availability of sufficient subtidal reef systems and sea conditions. Where conditions allowed, sites were stratified within locations across wave-exposure gradients (e.g. Fiordland and Stewart Island locations). An attempt was made to space sites every 0.5–1 km within locations; however, at exposed locations the position and number of sites were restricted by sea conditions during the sampling period. In most cases, sites with moderately sloping reefs were selected so that reefs could be sampled to a depth of 12 m. However, at some coastal locations the depth of available reef was insufficient to sample all

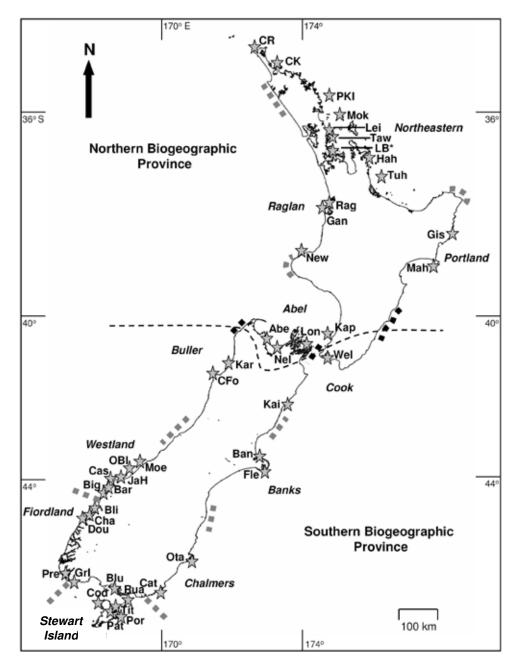



Figure 1. Sampling locations around New Zealand and the two biogeographic provinces and 11 bioregions (*italicised*) for mainland New Zealand based on macroalgal species composition (Shears et al. in press). Dashed line indicates the proposed biogeographic division between the Northern and Southern Provinces, and dashed grey bars indicate proposed transition zones between bioregions. See Appendices 1 and 2 for site positions within each location. Locations: Cape Reinga (CR), Cape Karikari (CK), Poor Knights Islands (PKI), Mokohinau Islands (Mok), Leigh (Lei), Tawharanui (Taw), Long Bay (LB) (not included in the biogeographic analyses of Shears et al. in press), Hahei (Hah), Tuhua (Tuh), Gisborne (Gis), Mahia (Mah), Raglan (Rag), Gannet Rock (Gan), New Plymouth (New), Kapiti Island (Kap), Wellington (Wel), Long Island (Lon), Nelson (Nel), Abel Tasman (Abe), Karamea (Kar), Cape Foulwind (CFo), Kaikoura (Kai), Banks Peninsula North (Ban), Flea Bay (Fle), Moeraki (Moe), Open Bay Islands (OBI), Jackson Head (JaH), Cascades (Cas), Barn (Bar), Big Bay (Big), Bligh Sound (Bli), Charles Sound (Cha), Doubtful Sound (Dou), Preservation Inlet (Pre), Green Islets (GrI), Bluff (Blu), Codfish-Ruggedy (Cod), Ruapuke Island (Rua), Titi Islands (Tit), Paterson Inlet (Pat), Port Adventure (Por), Otago Peninsula (Ota) and Catlins (Cat).

depth ranges (e.g. Raglan). For this reason, sites from Long Bay (located in the inner Hauraki Gulf) were not included in the biogeographic analyses of Shears et al. (in press) as only one or two depth strata could be sampled due to the limited extent of subtidal reef. The majority of the sampling was carried out over the summer of 1999/2000 and 2000/2001, although additional sampling was carried out at Gisborne and Mahia in January 2002, Moeraki, Big Bay and Barn in December 2003, and Preservation Inlet, Green Islets, Bluff, Ruapuke Island, Codfish-Ruggedy and Port Adventure in February 2005. To assess any effects of temporal variation on comparisons between sites sampled in 2000 and 2005 in the Stewart Island region two sites in Paterson Inlet (Ulva East and Tamihou Island; originally sampled 1 February 2000) were re-sampled on 19 March 2005. No differences were found in macroalgal community structure or macroinvertebrate assemblages between these two sampling dates suggesting the communities remained stable over this period.

## 2.2 SAMPLING PROCEDURE

At each site a lead-weighted transect line was run perpendicular to the reef from the mean low water mark out to a maximum depth of 12 m or the reef edge (whichever came first sand). Mean low water was approximated by the lower limit of intertidal species and upper limit of the subtidal macroalgal assemblage. Five  $1-m^2$  quadrats, placed as randomly as possible in each of four depth ranges (< 2m, 4-6m, 7-9m and 10-12m), were sampled to provide information on the abundance and size structure of macroalgae and macroinvertebrates. Depths were corrected to the mean low water mark to ensure accurate positioning of quadrats within the desired depth range. When the maximum depth of the reef was less than 10m, the deepest strata were omitted. Within each quadrat all large brown macroalgae and conspicuous mobile macroinvertebrates (>1 cm maximum length) were counted and measured, using a 1-m-long measuring tape marked at 5-cm intervals for macroalgae and a 200-mm ruler marked at 5-mm intervals for macroinvertebrates. Individual thalli were counted for macroalgae, as it is often difficult to determine individual plants for many species. The total lengths of macroalgae were measured, with an additional measure of stipe length made for *Ecklonia radiata* and *Durvillaea* spp. The stipe diameter for Durvillaea spp. was also recorded. For Lessonia variegata the stipe length and total length of the whole plant was measured and the number of thalli counted. For *Carpophyllum* spp. it was not always possible to measure all thalli, so those greater than 25 cm total length were grouped into 25-cm length categories (25-50 cm, 50-75 cm, etc.) and counted. The primary (substratum) percentage cover of foliose algae (c. 5-25 cm height), turfing algae (< 5 cm height), encrusting algal species, encrusting invertebrates, bare rock and sediment were visually assessed for each quadrat and recorded. Quadrats were divided into quarters to assist in estimating percentage cover of dominant forms, whereas the cover of minor forms was estimated on the basis that a  $10 \times 10$ -cm area equates to 1%cover. This technique was considered to be the most suitable as it is efficient and ensures that percentage covers are recorded for all forms, unlike point-intercept methods (Benedetti-Cecchi et al. 1996). Furthermore, the same two experienced divers carried out 73% of the quadrat sampling, reducing the potential influence of inter-observer variability. Macroalgal species were identified using Adams

(1994) and with the assistance of Dr Wendy Nelson (Museum of New Zealand Te Papa Tongarewa). The test diameter (TD) of all sea urchins greater than 5 mm was measured, and their behaviour recorded (cryptic or exposed). The largest shell dimension (width or length) was measured for gastropods, the actual measurement depending on species shell morphology (i.e. shell height for *Cantharidus purpureus*; shell width for *Turbo smaragdus*, *Trochus viridis* and *Cookia sulcata*). All macroalgae thalli were carefully searched for gastropods. The total length of *Haliotis* spp., limpets (*Cellana stellifera*) and chitons was also measured.

## 2.3 BIOLOGICAL DATASETS

### 2.3.1 Macroalgal community structure

Patterns in macroalgal community structure were investigated among sites and locations using a structural group-type approach to reduce the influence of species composition and emphasise structural patterns among algal communities. Genera of large habitat-forming brown algae (orders Laminariales, Durvillaeales and Fucales) formed their own groups, whereas less conspicuous brown, red and green algal species were grouped (Table 1). In total, all macroalgae species were divided into 23 species groups. Algal measurements were converted to biomass in order to allow comparisons between all algal groups irrespective of sampling units (e.g. percentage cover as compared to counts), and also to adjust counts for different sizes of algae. The dry weight of large algal species was calculated using length-weight relationships whereas percentage cover-weight relationships were used for turfing and encrusting algal species groups. Biomass equations were calculated for all of the dominant species and where possible at several locations (Appendix 3). To establish length-weight relationships, plants covering a range of sizes were collected, length was measured to the nearest centimetre, and they were dried at 80°C for a minimum of 3 days and weighed to the nearest 0.1 g. The weights of the stipe and lamina were calculated for Ecklonia radiata using two separate equations (Shears & Babcock 2003). To convert percentage cover estimates of foliose, turfing and encrusting algae to dry weight, several 10  $\times$  10-cm samples were collected (equivalent to 1% of a 1-m<sup>2</sup> quadrat), dried and weighed. It was not possible to calculate biomass equations for all species, so for some of the rarer species, which were typically only small contributors to total biomass, an equation from a species with similar morphology was used. Dry-weight estimates were converted to ash-free dry weight (AFWD) for all macroalgae, excluding corallines, by multiplying the dry weight by 0.91. This constant was based on the assumption that the proportion of CaCO<sub>2</sub> and other inorganic material is relatively constant among a variety of New Zealand seaweeds (9% of the dry weight; R.B. Taylor, unpubl. data). For coralline algae, however, CaCO<sub>3</sub> made up c. 45% of the dry weight (N.T. Shears, unpubl. data).

#### 2.3.2 Mobile macroinvertebrate assemblages

This dataset included count data, averaged for each site across all quadrats, for 47 of the mobile macroinvertebrate species recorded.

| TABLE 1. MACROALGAL SPECIES GROUPS USED IN ANALYSES OF MACROALGAL  |   |
|--------------------------------------------------------------------|---|
| COMMUNITY STRUCTURE. CODE INDICATES THE ABBREVIATION USED FOR EACH | ł |
| SPECIES GROUP IN FIG. 2.                                           |   |

| GROUP/SPECIES             | CODE  | NO. OF<br>TAXA | DESCRIPTION/SPECIES                                                                                                               |
|---------------------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Phaeophyta                |       |                |                                                                                                                                   |
| Ecklonia radiata          | Eckl  | 1              |                                                                                                                                   |
| Carpopbyllum flexuosum*   | Flex  | 1              |                                                                                                                                   |
| Other Carpophyllum        | Carp  | 3              | Carpopbyllum angustifolium,<br>C. maschalocarpum, C. plumosum                                                                     |
| Lessonia variegata        | Less  | 1              |                                                                                                                                   |
| Landsburgia quercifolia   | Land  | 1              |                                                                                                                                   |
| Sargassum spp.            | Sarg  | 2              | Sargassum sinclairii, S. verruculosum                                                                                             |
| Xiphophora spp.           | Xiph  | 2              | Xiphophora chondrophylla, X. gladiata                                                                                             |
| Macrocystis pyrifera      | Macr  | 1              |                                                                                                                                   |
| <i>Marginariella</i> spp. | Marg  | 2              | Marginariella urvilliana, M. boryana                                                                                              |
| Durvillaea willana        | Durv  | 1              |                                                                                                                                   |
| Cystophora spp.           | Cysto | 4              | e.g. Cystopbora retroflexa, C. platylobium                                                                                        |
| Small browns              | SmBr  | 9              | Small terete brown algal species; e.g.<br><i>Carpomitra costata, Halopteris</i> spp.,<br><i>Zonaria</i> spp.                      |
| Ephemeral browns          | EpBr  | 8              | Small foliose brown algal species; e.g.<br>Dictyota spp., Desmarestia ligulata,<br>Glossophora kunthii, Spatoglossum<br>chapmanii |
| Brown encrusting          | BrEn  | 2              | Encrusting fleshy brown algae, e.g. <i>Ralfisa</i> sp.                                                                            |
| Rhodophyta                |       |                |                                                                                                                                   |
| Red foliose               | ReFo  | 89             | 5-30 cm in height; e.g. <i>Osmundaria</i> colensoi, Euptilota formosissima                                                        |
| Red encrusting            | ReEn  | 2              | Encrusting fleshy red algae,<br>e.g. <i>Hildenbrandia</i> spp.                                                                    |
| Red turf                  | ReTu  | 8              | Fleshy red algae less than 5 cm in height                                                                                         |
| Coralline turf            | CoTu  | 1              | Geniculate coralline algae                                                                                                        |
| Crustose corallines       | CCA   | 1              | Non-geniculate coralline algae                                                                                                    |
| Chlorophyta               |       |                |                                                                                                                                   |
| <i>Caulerpa</i> spp.      | Caul  | 5              | e.g. Caulerpa flexilis, C. brownii                                                                                                |
| Codium spp. (encrusting)  | Codi  | 2              | Codium convolutum, C. cranwelliae                                                                                                 |
| Ulva spp.                 | Ulva  | 1              |                                                                                                                                   |
| Other greens              | Gree  | 9              | e.g. Codium fragile, Chaetomorpha spp.,<br>Cladophora spp.                                                                        |

\* *Carpophyllum flexuosum* was treated as a separate group because of its differing morphology and habitat (generally deeper water) compared with other *Carpophyllum* species.

## 2.3.3 Benthic community structure

All sessile organisms were divided into 29 structural groups (Table 2), using a functional group-type approach (cf. Steneck & Dethier 1994). Macroalgae were divided into functional groups based on Steneck & Dethier (1994), whereas sessile

invertebrates were divided subjectively into broad structural classes for each phylum (Table 2). This approach was used to allow comparisons of the relative contributions of phylogenetically distinct taxonomic groups, e.g. macroalgae v. sessile invertebrates, in the same analysis of overall benthic community structure. The biomass (AFDW) of macroalgal groups was calculated using the same procedure as above, whereas for sessile invertebrate groups biomass was calculated using percentage cover-biomass relationships (Appendix 4). To convert percentage cover estimates to AFDW, conversion values were calculated for several species within each structural group. Three  $10 \times 10$ -cm samples were collected for each species, shell-free dry weight was measured by drying samples to a constant weight at 80°C, and AFDW was then determined by incineration at 500°C in a muffle furnace. Most invertebrate structural group samples were collected from Leigh and the Mokohinau Islands. It was therefore assumed that

TABLE 2. BENTHIC STRUCTURAL GROUPS USED IN ANALYSES OF BENTHIC COMMUNITY STRUCTURE. NR = NOT RECORDED TO THE SPECIES LEVEL. CODE INDICATES THE ABBREVIATION USED FOR EACH GROUP IN FIG. 9.

| PHYLA       | GROUP                  | CODE     | NO. OF TAXA | EXAMPLE                                           |
|-------------|------------------------|----------|-------------|---------------------------------------------------|
| Algae*      | Crustose               | Al_crust | 3           | Ralfsia spp., crustose corallines                 |
|             | Articulated            | Al_artic | 1           | Corallina officinalis                             |
|             | Filamentous            | Al-fil   | 16          | Cladophora feredayi, Chaetomorpha coliformis      |
|             | Foliose                | Al_fol   | 1           | Ulva sp.                                          |
|             | Corticated foliose     | Al_CFA   | 61          | Dictyota spp., Kallymenia spp.                    |
|             | Corticated terete      | Al_CTA   | 53          | Pterocladia lucida, Caulerpa spp., Halopteris spp |
|             | Leathery macrophytes   | Al_leath | 21          | Carpophyllum spp., Marginariella spp.             |
| Annellida   | Serpulid tubeworms     | Tube     | NR          | Galeolaria sp.                                    |
| Chordata    | Compound ascidian      | As_comp  | NR          | Didemnum spp.                                     |
|             | Sea tulip              | As_tulip | 1           | Pyura pachydermatina                              |
|             | Solitary ascidian      | As_sol   | NR          | Asterocarpa spp.                                  |
|             | Stalked ascidian       | As_stalk | NR          | Pseudodistoma spp.                                |
| Crustacea   | Barnacles              | Barn     | NR          | Balanus spp.                                      |
| Mollusca    | Oyster                 | Oyster   | NR          | Anomia walteri                                    |
|             | Large mussels          | Mus_lge  | NR          | Perna canaliculus, Mytilus spp.                   |
|             | Small mussels          | Mus_sm   | NR          | Xenostrobus pulex                                 |
| Brachiopoda | Brachiopod             | Brachi   | NR          |                                                   |
| Bryozoa     | Branched bryozoan      | Br_br    | NR          | Bugula dentata                                    |
|             | Encrusting bryozoan    | Br_enc   | NR          | Membranipora sp.                                  |
| Cnidaria    | Colonial anemone       | An_col   | NR          | Anthothoe albocincta, Corynactis australis        |
|             | Large solitary anemone | An_sol   | NR          | Oulactis sp., Phlyctenactis sp.                   |
|             | Black coral            | Co_black | 1           | Antipathes fiordensis                             |
|             | Cup coral              | Co_cup   | 2           | Culicia rubeola, Monomyces rubrum                 |
|             | Soft coral             | Co_soft  | NR          | Alcyonium sp.                                     |
| Hydrozoa    | Hydroid turf           | Hy_turf  | NR          | Amphisbetia bispinosa                             |
|             | Hydroid tree           | Hy_tree  | NR          | Solanderia ericopsis                              |
| Porifera    | Encrusting sponge      | Sp_enc   | NR          | Cliona celata                                     |
|             | Finger sponge          | Sp_fing  | NR          | Raspailia topsenti                                |
|             | Massive sponge         | Sp_mas   | NR          | Ancorina alata                                    |

\* Algal groups include Chlorophyta, Phaeophyta and Rhodophyta and are based on the definitions of Steneck & Dethier (1994).

the biomass of structural groups would be broadly consistent among regions. Because percentage cover estimates did not take into account differences in the vertical height or size of encrusting forms (e.g. sponges, mussels), an attempt was made to collect specimens covering a range of sizes for biomass estimates. These potential artefacts were considered to have little effect on interpretation of overall patterns as analyses were based on fourth-root transformed data.

## 2.4 ENVIRONMENTAL VARIABLES

The environmental variables that were assessed for each site included wind fetch (as an estimate of wave exposure), turbidity, sedimentation, reef slope and maximum depth. Wind fetch (km) was calculated for each site by summing the potential fetch for each 10-degree sector of the compass rose. For open sectors of water the radial distance was arbitrarily set to be 300 km. Turbidity was measured using a standard 25-cm-diameter black and white Secchi disc (Larson & Buktenica 1998). The reading taken was the average depth (m) of descending disappearance and ascending reappearance. The percentage cover of sediment on the reef (measured during quadrat sampling) was used as an estimator of sedimentation. Reef slope at each site was expressed as a percentage calculated by dividing the maximum depth sampled by the length of the transect line run from the low water mark to a depth of 12 m or the edge of the reef. The density of exposed Evechinus chloroticus (averaged across all depths at each site) was also used as an explanatory variable in multivariate analyses given its strong controlling influence on macroalgal community structure (Andrew 1988). The management status of each site (i.e. Reserve or Non-reserve) was also treated as an explanatory variable as increased predator abundance in marine reserves can have indirect effects on urchins and macroalgal assemblages (Shears & Babcock 2002, 2004a).

## 2.5 STATISTICAL ANALYSES

All analyses were carried out at the level of individual sites, based on biological data averaged for all quadrats across all depths. However, given that the vertical structure of reef communities is highly variable and likely to be related to environmental conditions, it was necessary to assess the extent to which depth-averaged biomass was representative of a species' biomass at individual depth strata. Calculation of Spearman's rank correlations between biomass at each depth stratum and the depth-averaged biomass, for a subset of species, revealed that there was generally high correspondence across individual depths (65-72%). This can be interpreted as the depth-averaged biomass being able to explain approximately 70% of the variation at any individual depth stratum. Variation in benthic communities with depth is described separately for each bioregion in section 3.4.

#### 2.5.1 Principal coordinates analysis

To visualise the variation in community patterns among locations and sites, and how the patterns relate to explanatory variables, principal coordinates analysis was carried out based on Bray-Curtis similarities using the PCOORD program (Anderson 2000). All datasets were fourth-root transformed. The environmental and species group variables were correlated with principal coordinates (PC) axes 1 and 2 and the correlation coefficients plotted as bi-plots, in which the position of the symbol indicates the correlation between the explanatory variable and the PC axes.

## 2.5.2 Multiple regression

The relationships between the multivariate datasets and explanatory variables were investigated using non-parametric multivariate multiple regression (McArdle & Anderson 2001). This technique investigates the relationships between community data and sets of explanatory variables (e.g. Anderson et al. 2004), using the computer program DISTLM (Anderson 2002). The spatial variables Northing and Easting (New Zealand Map Grid) for each site were included as a set of explanatory variables, along with the set of environmental variables measured at each site. For each set of explanatory variables, individual variables were analysed for their relationship with the biological dataset, then subjected to a forward selection procedure whereby each variable was added to the model in the order of greatest contribution to total variation. All analyses were based on Bray-Curtis similarities, calculated on fourth-root transformed site-level data for each biological dataset. Marginal tests (examining a single variable or set of variables) were carried out with 4999 permutations of the raw data, whereas conditional tests (used for the forward selection procedure) were based on 4999 permutations of residuals under the reduced model. Analyses were carried out on each biological dataset at all spatial scales. However, bioregional analysis was carried out only for Northeastern, Abel, and Stewart Island sites, as the number of sites sampled in other bioregions was too low for analysis.

To investigate potential associations between the abundance of *Evechinus chloroticus* and both the environmental and spatial variables a forward-backward stepwise multiple regression was run in the statistical program S+. Analyses were carried out at two spatial scales (national and bioregional) to generate hypotheses about the important environmental factors controlling urchin abundance at different spatial scales.

## 2.5.3 Bioregional patterns in reef communities

To investigate variation in algal community structure among sites within each bioregion, principal coordinates analysis was carried out on site-level data (based on the macroalgal community structure dataset that had been fourth-root transformed), using the same procedure as for the national level analysis (see above). There were too many sites within each location to present data for each site and pooling data across all sites potentially masks important variation among sites within each location. Therefore, sites within each bioregion were grouped using hierarchical cluster analysis (PRIMER, Clarke & Warwick 1994), based on the macroalgal group data that had been fourth-root transformed. Depth-related patterns in algal communities, urchin abundance, mobile invertebrates and dominant substratum cover were then described for the groupings of sites identified for each location. In each case, data for the ten most abundant taxa or species groups for a particular bioregion are presented.

## 3. Results

Sections 3.1-3.3 describe national and bioregional patterns in macroalgal community structure (3.1), mobile macroinvertebrate species assemblages (3.2) and benthic community structure (3.3) among locations, and their association with key environmental variables.

Section 3.4 describes variation in reef communities among sites within each bioregion and the association between biological patterns and environmental gradients. Depth-related patterns in abundance, biomass or cover are also described for dominant species or groups.

## 3.1 MACROALGAL ASSEMBLAGES

### 3.1.1 National variation in macroalgal community structure

Over 150 macroalgal taxa were recorded at the shallow reef sites sampled in this study (Appendix 5). Large brown algal species made up 79% of the total biomass, with Ecklonia radiata and Carpophyllum maschalocarpum, the two most common large brown macroalgal species, accounting for 48% of the total macroalgal biomass (25% and 23%, respectively, Table 3). There was large variation in macroalgal community structure, based on the biomass of the 23 macroalgal species groups, among sites both within and among locations (Fig. 2A). Locations with the greatest variation among sites were where sites were sampled across a large environmental gradient, e.g. Paterson Inlet, Flea Bay and Long Island, or where only a small number of sites were sampled, e.g. Gannet Rock and Charles Sound. The spread of locations along the axis of greatest variation PC1 reflected a weak latitudinal gradient from north to south (Fig. 2B), with sites of the Northern Province generally being located on the left of the ordination and Southern sites on the right, and PC1 strongly correlated with the spatial variables (Northing and Easting) (Fig. 2B). Notable exceptions were the Banks locations, which were grouped with Northern locations. There was some division between east and west coast locations along PC2 with the majority of west coast locations grouped on the lower poriton of the ordination. All of the environmental variables were significantly related to macroalgal community structure and explained 31% of the variation (Table 4). Individually, these variables explained only a low proportion of the variation at the national scale and were not strongly correlated with PC1 or PC2. Several species groups were strongly correlated with PC1: Carpophyllum spp. were negatively correlated, whereas coralline turf, red turfing and foliose algae, and some large brown algal species (Lessonia variegata, Landsburgia quercifolia, Xiphophora spp. and Marginariella spp.) were positively correlated (Fig. 2C). Ecklonia radiata and Carpophyllum flexuosum were strongly correlated with PC2 and were absent at most locations clustered in the lower portion of the ordination, e.g. Raglan, Karamea, Cape Foulwind, Jackson Head and Cascades on the west coast, and Otago Peninsula and Catlins on the east coast (Appendix 5).

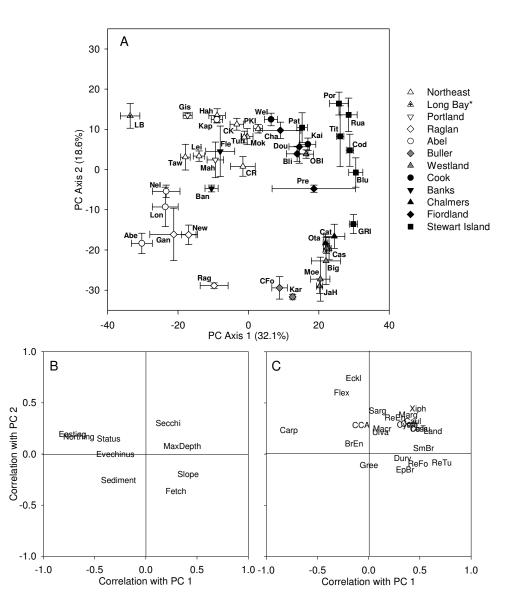

At the provincial level the importance of the variables varied between the two provinces (Table 4). For the Northern Province, Secchi explained the greatest

TABLE 3. DOMINANT MACROALGAL SPECIES OR SPECIES COMPLEXES ACCORDING TO THEIR CONTRIBUTION TO TOTAL BIOMASS (AFDW) AND THE PERCENTAGE OF ALL SITES AT WHICH EACH SPECIES OCCURRED (% OCC.).

| NO. | SPECIES                     | GROUP       | %<br>OCC. | MEAN<br>AFWD<br>(g/m <sup>2</sup> ) | %<br>AFWD | GENERAL<br>Distribution |
|-----|-----------------------------|-------------|-----------|-------------------------------------|-----------|-------------------------|
| 1   | Ecklonia radiata            | Phaeophyta  | 63.2      | 102.14                              | 25.47     | New Zealand             |
| 2   | Carpophyllum                |             |           |                                     |           |                         |
|     | maschalocarpum              | Phaeophyta  | 60.3      | 92.30                               | 23.01     | Northern                |
| 3   | Lessonia variegata          | Phaeophyta  | 29.6      | 30.61                               | 7.63      | New Zealand             |
| 4   | C. flexuosum                | Phaeophyta  | 56.7      | 19.56                               | 4.88      | New Zealand             |
| 5   | Crustose corallines*        | Rhodophyta  | 100.0     | 15.46                               | 3.86      | New Zealand             |
| 6   | C. angustifolium            | Phaeophyta  | 16.6      | 14.39                               | 3.59      | Northeastern            |
| 7   | Articulated coralline turf* | Rhodophyta  | 90.7      | 13.29                               | 3.31      | New Zealand             |
| 8   | Landsburgia quercifolia     | Phaeophyta  | 37.2      | 11.69                               | 2.92      | New Zealand             |
| 9   | Durvillaea willana          | Phaeophyta  | 9.7       | 10.93                               | 2.73      | Southern                |
| 10  | Xiphophora gladiata         | Phaeophyta  | 21.9      | 8.11                                | 2.02      | Southern                |
| 11  | Red turfing algae*          | Rhodophyta  | 79.8      | 7.79                                | 1.94      | New Zealand             |
| 12  | Marginariella boryana       | Phaeophyta  | 12.6      | 7.20                                | 1.80      | Southern                |
| 13  | M. urvilliana               | Phaeophyta  | 12.6      | 5.84                                | 1.46      | Southern                |
| 14  | Macrocystis pyrifera        | Phaeophyta  | 12.1      | 5.43                                | 1.36      | Southern                |
| 15  | Caulerpa brownii            | Chlorophyta | 21.1      | 4.93                                | 1.23      | Southern                |
| 16  | Cystophora platylobium      | Phaeophyta  | 9.3       | 3.84                                | 0.96      | Southern                |
| 17  | Halopteris spp.             | Phaeophyta  | 55.5      | 3.82                                | 0.95      | New Zealand             |
| 18  | Pterocladia lucida          | Rhodophyta  | 42.9      | 3.59                                | 0.90      | Northern                |
| 19  | Osmundaria colensoi         | Rhodophyta  | 21.9      | 2.96                                | 0.74      | Northern                |
| 20  | Plocamium spp.*             | Rhodophyta  | 57.1      | 2.72                                | 0.68      | New Zealand             |
| 21  | Asparagopsis armata         | Rhodophyta  | 29.1      | 2.66                                | 0.66      | New Zealand             |
| 22  | Ballia callitrichia         | Rhodophyta  | 20.6      | 2.15                                | 0.54      | Southern                |
| 23  | Codium convolutum           | Chlorophyta | 50.6      | 1.89                                | 0.47      | New Zealand             |
| 24  | C. plumosum                 | Phaeophyta  | 21.1      | 1.89                                | 0.47      | Northeastern            |
| 25  | Zonaria spp.                | Phaeophyta  | 56.7      | 1.72                                | 0.43      | New Zealand             |
| 26  | Hymenena durvillaei         | Rhodophyta  | 17.8      | 1.59                                | 0.40      | Southern                |
| 27  | Hymenena palmata            | Rhodophyta  | 20.6      | 1.58                                | 0.39      | Southern                |
| 28  | Lophurella hookeriana       | Rhodophyta  | 24.3      | 1.19                                | 0.30      | Southern                |
| 29  | Cystophora retroflexa       | Phaeophyta  | 18.2      | 1.17                                | 0.29      | New Zealand             |
| 30  | Sargassum sinclairii        | Phaeophyta  | 55.1      | 1.13                                | 0.28      | New Zealand             |
| 31  | Ulva spp.*                  | Chlorophyta | 37.2      | 1.01                                | 0.25      | New Zealand             |
| 32  | Euptilota formosissima      | Rhodophyta  | 36.0      | 1.00                                | 0.25      | New Zealand             |
| 33  | Rhodymenia spp.*            | Rhodophyta  | 10.5      | 0.93                                | 0.23      | New Zealand             |
| 34  | Xiphophora chondrophylla    | Phaeophyta  | 21.1      | 0.91                                | 0.23      | Northern                |
| 35  | Microzonia velutina         | Phaeophyta  | 29.6      | 0.91                                | 0.23      | Southern                |
| 36  | Anotrichium crinitum        | Rhodophyta  | 29.1      | 0.90                                | 0.22      | Southern                |
| 37  | Craspedocarpus erosus       | Rhodophyta  | 18.6      | 0.70                                | 0.17      | Southern                |
| 38  | Rhodophyllis gunnii         | Rhodophyta  | 28.7      | 0.69                                | 0.17      | Southern                |
| 39  | Caulerpa flexilis           | Chlorophyta | 7.7       | 0.67                                | 0.17      | Northern                |
| í0  | Glossophora kunthii         | Phaeophyta  | 54.7      | 0.58                                | 0.14      | New Zealand             |

\* Groups of species that were not identified to the species level. The distribution patterns in biomass of some of these species groups are given in Fig. 4.

Figure 2. Macroalgal community structure (fourthroot transformed biomass of 23 groups) from principal coordinates analysis on all 247 sites (A) (see Fig. 1 for location codes and Table 1 for species group codes). Centroids are plotted for each location; standard error bars indicate the variation among sites at each location. Shaded symbols indicate bioregions in the Southern Province and open symbols indicate bioregions in the Northern Province. Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C). \* Long Bay is distinguished from other Northeastern locations as it was not included in biogeographic analyses (Shears et al. in press).



variation (13%), whereas for the Southern Province, Fetch explained 14% of the variation. Evechinus accounted for only a small proportion of the variation in algal community structure at the national (4%) and provincial scale (< 5%), but between 9% (Northeastern) and 17% (Stewart Island) at the bioregional level. Overall, the amount of variation explained by site-level environmental variables tended to increase with decreasing spatial scale: national < biogeographic province < bioregion. These patterns in algal community structure and their relationship with environmental variables are described in detail for each bioregion in section 3.4.

#### 3.1.2 National patterns in dominant macroalgal species

Clear differences were apparent in total algal biomass among bioregions, despite considerable variability among sites and locations within each (Fig. 3). Macroalgal biomass was lowest at west coast bioregions, particularly in the Southern Province. *Ecklonia radiata* and *Carpophyllum* spp., predominantly *C. maschalocarpum*, dominated in Northern bioregions, whereas the Southern bioregions were dominated by a mixture of large brown algae including *E. radiata*, *Lessonia variegata*, *Landsburgia quercifolia*, *Durvillaea willana*, *Macrocystis pyrifera*,

TABLE 4. RESULTS OF NON-PARAMETRIC MULTIVARIATE REGRESSION OF MACROALGAL COMMUNITY STRUCTURE DATA (FOURTH-ROOT TRANSFORMED BIOMASS OF 23 ALGAL GROUPS), AND ENVIRONMENTAL AND SPATIAL VARIABLES AT DIFFERING BIOGEO-GRAPHIC SCALES. THE PERCENTAGE VARIANCE EXPLAINED BY EACH VARIABLE IS GIVEN (ns = NOT SIGNIFICANT), ALONG WITH THE CUMULATIVE FREQUENCY EXPLAINED FOLLOWING FORWARD SELECTION OF FACTORS (THE SIGNIFICANT FACTORS FROM THIS PROCEDURE ARE LISTED IN DESCENDING AMOUNT OF VARIATION EXPLAINED).

|              |           | BIOGEC     | OGRAPHIC | BIOREGIONS |                     |            |  |  |
|--------------|-----------|------------|----------|------------|---------------------|------------|--|--|
|              |           |            | /INCES   | NORTHEASTE | RN ABEL             | STEWARTI   |  |  |
|              | NZ        | NORTHERN   | SOUTHERN |            |                     |            |  |  |
| n            | 247       | 135        | 112      | 81         | 37                  | 42         |  |  |
| Local variab | les       |            |          |            |                     |            |  |  |
| Fetch        | 7.3       | 3.9        | 13.6     | 8.3        | 6.5                 | 19.9       |  |  |
| Status       | 5.1       | ns         | 4.0      | ns         | ns                  | ns         |  |  |
| Slope        | 6.7       | 4.2        | ns       | 15.4       | ns                  | ns         |  |  |
| MaxDepth     | 5.1       | 8.1        | 3.6      | 25.2       | ns                  | ns         |  |  |
| Secchi       | 5.5       | 13.1       | 7.4      | 23.5       | 21.0                | 18.1       |  |  |
| Evechinus    | 4.1       | 2.1        | 4.7      | 8.7        | 11.2                | 16.7       |  |  |
| Sediment     | 4.5       | 8.0        | 5.4      | 6.0        | 18.8                | 19.9       |  |  |
| Cumulative   | % 30.9    | 29.5       | 36.6     | 37.5       | 41.1                | 32.3       |  |  |
| Significant  | All       | All, excl. | All      | MaxDepth,  | Secchi,             | Fetch.     |  |  |
| factors      |           | Status     |          | Secchi,    | Sediment,           | Evechinus, |  |  |
|              |           |            |          | Fetch      | Evechinus,<br>Fetch | Sediment   |  |  |
| Spatial-Nor  | thing and | Easting    |          |            |                     |            |  |  |
|              | 22.4      | 24.3       | 26.4     | 30.7       | 23.1                | 22.5       |  |  |

*Marginariella* spp. and several other large brown algal species such as *Xiphophora gladiata* (Fig. 3A). *Ecklonia radiata* occurred throughout the country (Fig. 4A), although it was not recorded in some bioregions (Buller, Westland (excluding Open Bay Islands) and Chalmers) and some locations (Nelson, Abel Tasman, Raglan, Preservation Inlet, Bluff and Green Islets), and was rare at others, e.g. Banks Peninsula North, Flea Bay and New Plymouth (Appendix 5). *Ecklonia radiata* was typically most abundant at Northeastern locations, although dense forests were also present at Gisborne, Mahia and Kapiti Island.

The four *Carpophyllum* species made up 32% of the total macroalgal biomass recorded (Table 3). *Carpophyllum maschalocarpum* was the most abundant and had a northern distribution, but was also abundant in the Cook and Banks bioregions (Fig. 4A). Both *C. angustifolium* and *C. plumosum* were recorded only at locations in the Northeastern bioregion (Appendix 5). *Carpophyllum flexuosum* was an important contributor to total algal biomass at bioregions throughout the country (Figs 3A and 4A), but was not recorded at several bioregions including Raglan, Buller, Westland (excluding Open Bay Islands) and Chalmers, as well as some specific locations (Cape Reinga, Kaikoura and Green Islets; Appendix 5). *Lessonia variegata* was the third largest contributor to total algal biomass (8%) and was most abundant in Southern bioregions (e.g. Cook, Chalmers and Stewart Island) but also occurred at exposed locations in the Northeastern bioregion (Fig. 4A). *Lessonia variegata* was not recorded at Portland, Raglan, Abel, Buller

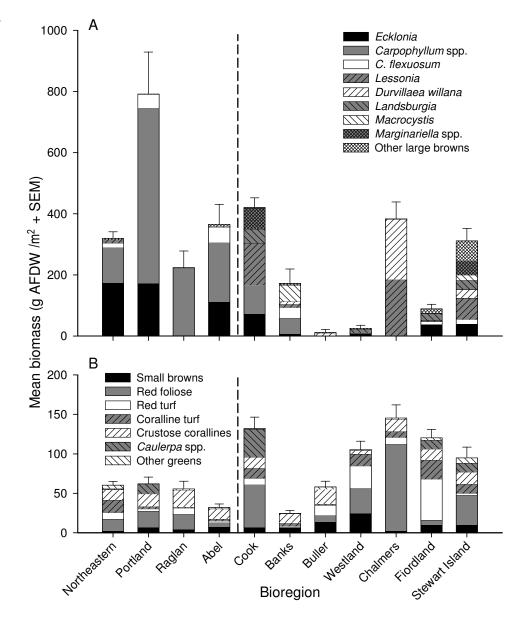



Figure 3. Mean biomass of dominant large brown algae (A) and other macroalgal groups (B) for all bioregions. Dashed line indicates division between the Northern and Southern Provinces.

or Westland (excluding Open Bay Islands). *Landsburgia quercifolia* exhibited a similar southern distribution but was also abundant in the Westland and Fiordland bioregions. Several other large brown algal species were regionally abundant, but made up only a small proportion of total algal biomass. For example, *Durvillaea willana* was the dominant large brown algae at Chalmers locations, and some Stewart Island sites, but rare in other regions (Figs 3A and 4B). *Macrocystis pyrifera* also had a southern distribution and was most abundant at Stewart Island and Banks Peninsula (Fig. 3A), but also occurred at some Wellington, Long Island and Fiordland sites. A number of other species were typically most abundant at locations in the Stewart Island bioregion, e.g. *Xiphophora gladiata*, *Marginariella* species and *Cystophora platylobium* (Fig. 4B).

The crustose coralline and articulated coralline turf species complexes were dominant contributors to total algal biomass on a national scale (3.9% and 3.3%, respectively), and were recorded at most sites (Table 3) and all bioregions (Fig. 3B). The red turf species complex made up c. 2% of the total algal biomass and on average was most abundant in Buller, Westland and Fiordland (Fig. 3B).

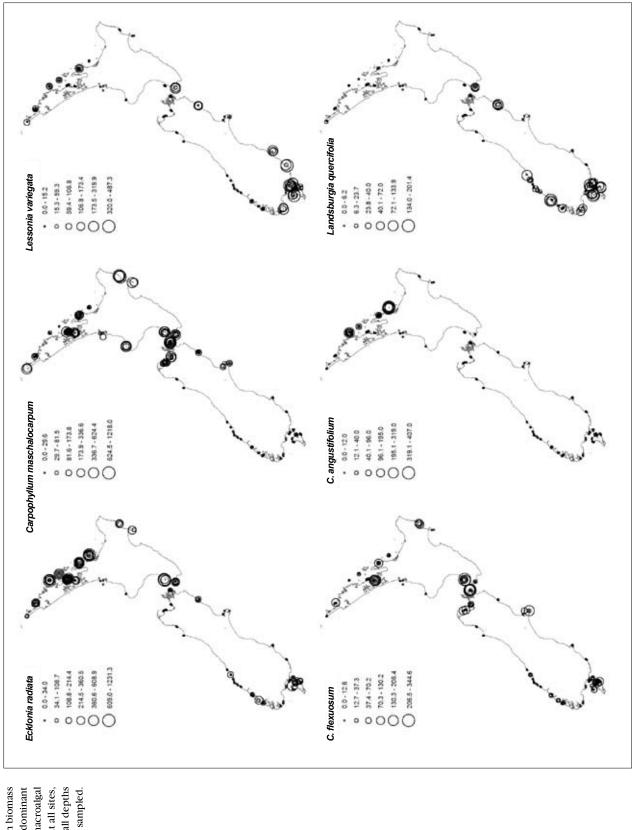



Figure 4A. Mean biomass (g AFDW/m<sup>2</sup>) of dominant large brown macroalgal species at all sites, averaged across all depths sampled.

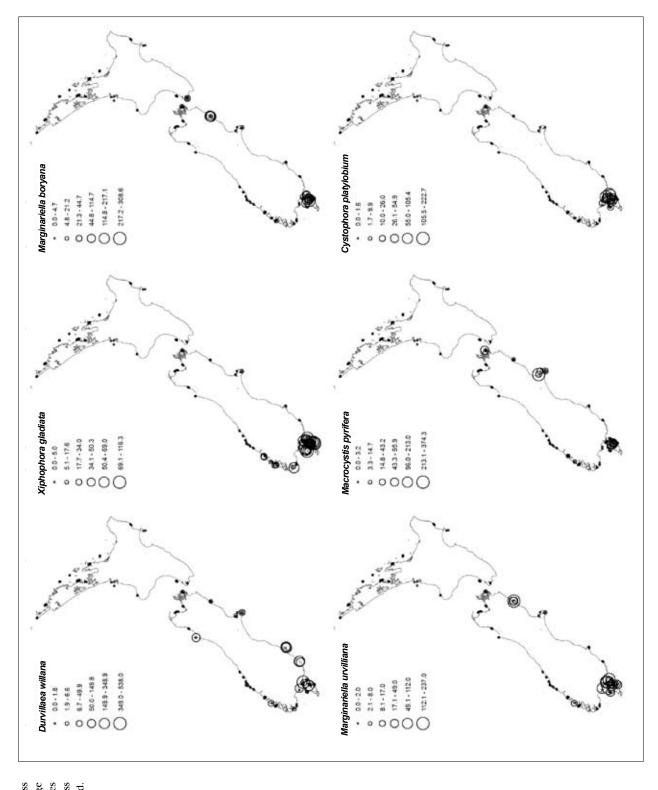



Figure 4B. Mean biomass (g AFDW/m<sup>2</sup>) of other large brown macroalgal species at all sites, averaged across all depths sampled.

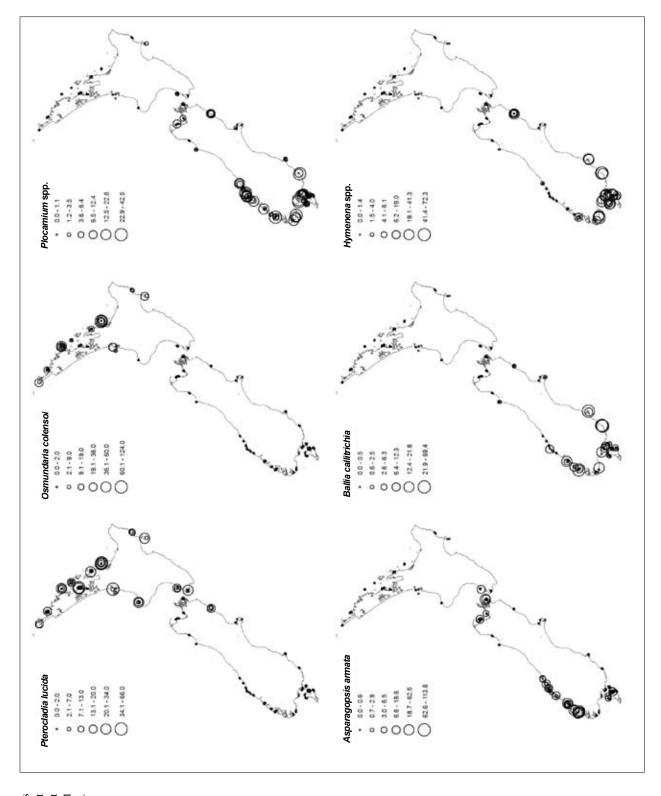
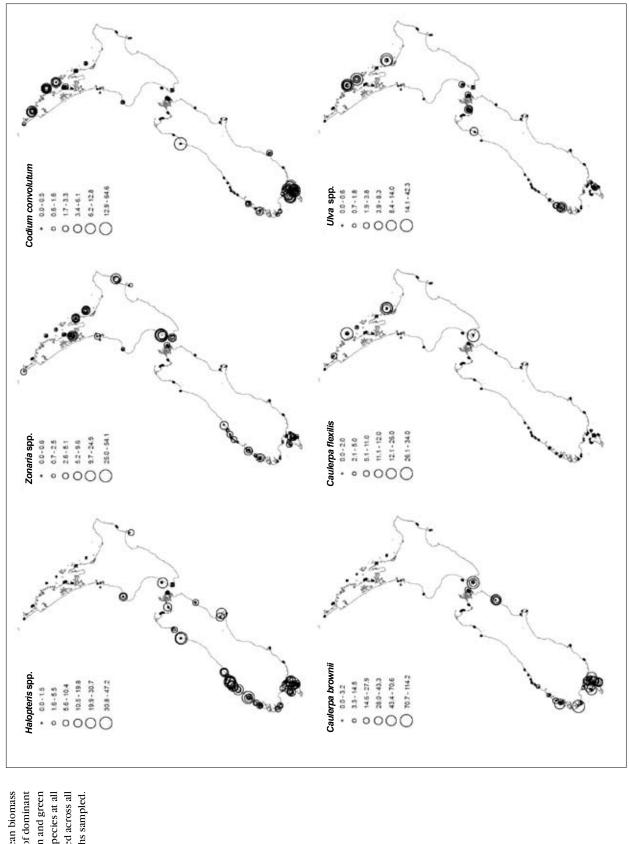
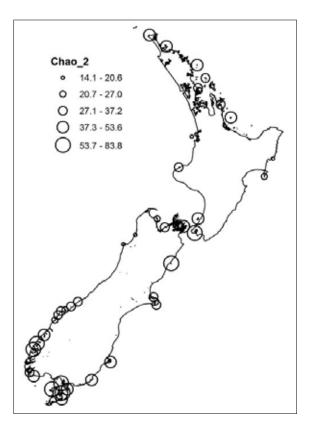
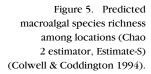



Figure 4C. Mean biomass (g AFDW/m<sup>2</sup>) of dominant red macroalgal species at all sites, averaged across all depths sampled.



Figure 4D. Mean biomass (g AFDW/m<sup>2</sup>) of dominant small brown and green macroalgal species at all sites, averaged across all depths sampled. Red foliose algae were most abundant in the Cook, Chalmers and Stewart Island bioregions (Fig. 3B). Among the red foliose algae two Northern species were the greatest contributors to total algal biomass (*Pterocladia lucida* and *Osmundaria colensoi*) whereas a variety of red foliose algal species were important contributors at Southern locations, e.g. *Plocamium* spp., *Asparagopsis armata*, *Ballia callitrichia* and *Hymenena* spp (Table 3, Fig. 4C).

A variety of smaller brown algal species were found at low biomasses across all bioregions (Fig. 3B). Of these *Halopteris* spp. was the most abundant, particularly at Southern locations (Fig. 4D). *Zonaria* spp. were also common across many bioregions, but notably absent from Buller, Banks and Chalmers. Among the green algal species, *Caulerpa brownii* was the greatest contributor to overall biomass (1.2%), and was most common in Southern locations, particularly Wellington and Kaikoura. In contrast, *C. flexilis* was only found at North Island locations (Fig. 4D). Other green algal species such as *Ulva* spp. and *Codium convolutum* were common and found throughout New Zealand but were only small contributors to total algal biomass (Table 3).

## 3.1.3 Macroalgal species richness

There was a general trend of increasing macroalgal species richness (Chao 2 estimator, Estimate-S, Colwell & Coddington 1994) with latitude, with the highest algal diversity occurring at Southern locations (Fig. 5). There were, however, some Northern locations that had relatively high algal diversity, e.g. Cape Karikari and Northeastern offshore islands, and overall algal species richness was weakly correlated with northing (r = -0.46). Algal species richness was weakly positively correlated with water clarity (Secchi 0.37) and most of the locations with low species diversity were relatively turbid, e.g. Long Bay, Gisborne, Raglan, Cape Foulwind and Karamea.





## 3.2 MOBILE MACROINVERTEBRATE ASSEMBLAGES

### 3.2.1 National variation in mobile macroinvertebrate assemblages

The number of mobile macroinvertebrate species (Table 5) was considerably lower than the number of macroalgal species recorded in this study. Despite notable variation in macroinvertebrate assemblages among locations within bioregions (e.g. Northeastern and Stewart Island), and among sites within locations (e.g. Open Bay Islands, Raglan and Mahia), there was a general north-south gradient in macroinvertebrate assemblages along PC1 (Fig. 6A). This was reflected by the strong correlation between PC1 and the spatial variables (Fig. 6B). As for macroalgal community structure, Banks Peninsula locations were most closely clustered with Northern locations, whereas Raglan and Kapiti were more similar to Southern locations. There was a particularly high level of variation among the two Preservation Inlet sites.

Several species were negatively correlated with PC1 and are generally more abundant at Northern locations, e.g. *Evechinus chloroticus*, *Trochus viridis*, *Cookia sulcata*, *Cantharidus purpureus* and *Dicathais orbita*, whereas the

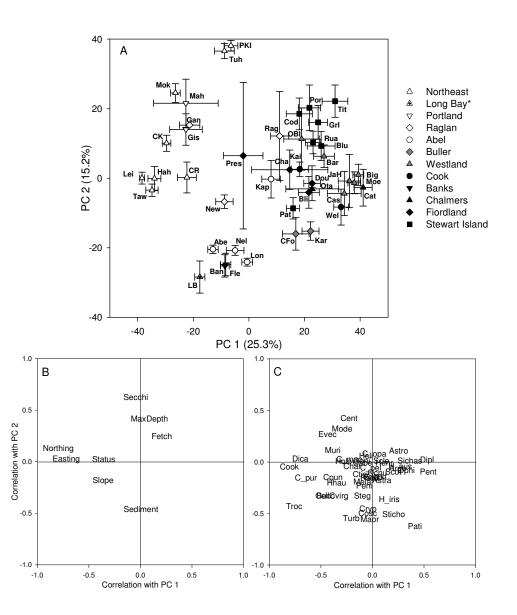
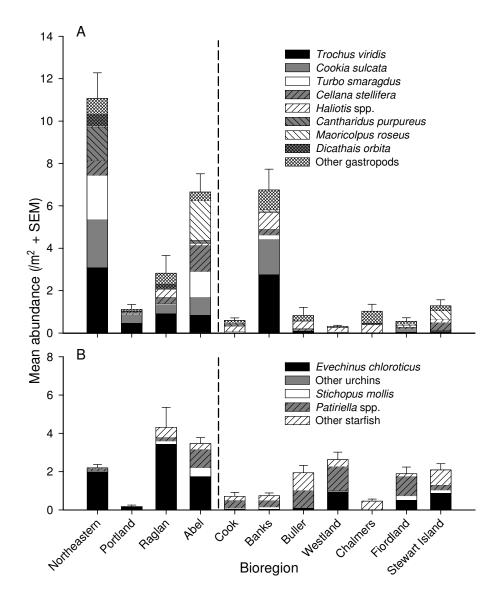



Figure 6. Mobile macroinvertebrate assemblages among sites from principal coordinates analysis based on fourth-root transformed count data of 47 species (A) (see Fig. 1 for location codes and Table 5 for species codes). Centroids are plotted for each location; standard error bars indicate the variation among sites at each location. Shaded symbols indicate bioregions in the Southern Province and open symbols indicate bioregions in the Northern Province. Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original species (C). \* Long Bay is distinguished from other Northeastern locations as it was not included in biogeographic analyses (Shears et al. in press).

| TABLE 5. MEAN ABUNDANCE OF MOBILE MACROINVERTEBRATE SPECIES RECORDED. |
|-----------------------------------------------------------------------|
| THE DISTRIBUTIONAL PATTERNS IN ABUNDANCE OF THE DOMINANT SPECIES ARE  |
| GIVEN IN FIG. 8. CODE INDICATES SPECIES ABBREVIATIONS USED IN FIG. 6. |

\_\_\_\_


\_\_\_\_

| NO                   | SPECIES                   | CODE         | CLASS          | % OCC.         | MEAN           | %MEAN |
|----------------------|---------------------------|--------------|----------------|----------------|----------------|-------|
| 1                    | Evechinus chloroticus     | Evec         | Echinoidea     | 85.02          | 1.341          | 17.59 |
| 2                    | Trochus viridis           | Troc         | Gastropoda     | 56.68          | 1.307          | 17.14 |
| 3                    | Cookia sulcata            | Cook         | Gastropoda     | 59.51          | 0.967          | 12.68 |
| 4                    | Turbo smaragdus           | Turb         | Gastropoda     | 21.05          | 0.881          | 11.55 |
| 5                    | Cantharidus purpureus     | C_pur        | Gastropoda     | 32.79          | 0.548          | 7.18  |
| 6                    | Cellana stellifera        | Cell         | Gastropoda     | 54.25          | 0.514          | 6.74  |
| 7                    | Patiriella spp.*          | Pati         | Asteroidea     | 54.25          | 0.464          | 6.09  |
| 8                    | Maoricolpus roseus        | Maor         | Gastropoda     | 23.48          | 0.370          | 4.85  |
| 9                    | Dicathais orbita          | Dica         | Gastropoda     | 34.41          | 0.211          | 2.76  |
| 10                   | Stichopus mollis          | Sticho       | Holothuroidea  | 38.06          | 0.124          | 1.63  |
| 11                   | Ophiopsammus maculata     | Ophi         | Ophiuroidea    | 29.15          | 0.118          | 1.55  |
| 12                   | Haliotis australis        | H_aus        | Gastropoda     | 46.96          | 0.082          | 1.08  |
| 13                   | Cominella virgata         | _<br>Cvirg   | Gastropoda     | 12.55          | 0.077          | 1.01  |
| 14                   | Modelia granosa           | Mode         | Gastropoda     | 29.15          | 0.077          | 1.01  |
| 15                   | Stichaster australis      | Sichas       | Asteroidea     | 19.84          | 0.063          | 0.82  |
| 16                   | Haliotis iris             | H_iris       | Gastropoda     | 19.84          | 0.060          | 0.78  |
| 17                   | Buccinulum lineum         | Bucc         | Gastropoda     | 27.53          | 0.054          | 0.71  |
| 18                   | Pentagonaster pulchellus  | Pent         | Asteroidea     | 37.25          | 0.052          | 0.68  |
| 19                   | Calliostoma punctulatum   | Cpun         | Gastropoda     | 24.29          | 0.047          | 0.61  |
| 20                   | Eudoxochiton nobilis      | Eudo         | Polyplacophora | 36.44          | 0.040          | 0.52  |
| 20                   | Cryptoconchus porosus     | Cryp         | Polyplacophora | 22.67          | 0.032          | 0.92  |
| 21                   | Coscinasterias muricata   | Cosc         | Asteroidea     | 21.86          | 0.032          | 0.38  |
| 23                   | Diplodontias spp.         | Dipl         | Asteroidea     | 20.24          | 0.025          | 0.33  |
| 23<br>24             | Haustrum haustorium       | Hhau         | Gastropoda     | 20.24<br>14.17 | 0.023          | 0.33  |
| 2 <del>1</del><br>25 | Astraea beliotropium      | Astra        | Gastropoda     | 8.10           | 0.022          | 0.29  |
| 29<br>26             | Centrostephanus rodgersii | Cent         | Echinoidea     | 8.10           | 0.013          | 0.13  |
| 20<br>27             | Stegnaster inflatus       | Steg         | Asteroidea     | 8.50           | 0.013          | 0.17  |
| 27                   | 0 0                       | -            |                |                |                | 0.16  |
|                      | Cantharidus opalas        | C_opa        | Gastropoda     | 13.77          | 0.011<br>0.009 |       |
| 29                   | Melagraphia aethiops      | Mela<br>Ctic | Gastropoda     | 3.64           | 0.009          | 0.11  |
| 30<br>21             | Calliostoma tigris        | Ctig         | Gastropoda     | 7.69           |                | 0.11  |
| 31                   | Ocnus brevidentis         | O_brev       | Holothuroidea  | 1.62           | 0.008          | 0.10  |
| 32                   | Scutus breviculus         | Scut         | Gastropoda     | 6.88           | 0.006          | 0.08  |
| 33<br>2 (            | <i>Muricopsis</i> sp.     | Muri         | Gastropoda     | 8.10           | 0.006          | 0.08  |
| 34<br>25             | Pseudochinus sp.          | Pseu         | Echinoidea     | 1.21           | 0.006          | 0.08  |
| 35                   | Penion sp.                | Peni         | Gastropoda     | 4.86           | 0.006          | 0.07  |
| 36                   | Astrostole scabra         | Astro        | Asteroidea     | 6.48           | 0.004          | 0.06  |
| 37                   | Ocnus sp. (white)         | Ocnu         | Holothuroidea  | 1.62           | 0.004          | 0.05  |
| 38                   | Holopneustes sp.          | Holo         | Echinoidea     | 4.45           | 0.004          | 0.05  |
| 39                   | Cabestana spengleri       | Cabe         | Gastropoda     | 5.67           | 0.004          | 0.05  |
| 40                   | Argobuccinulum pustulosum | Argo         | Gastropoda     | 4.86           | 0.003          | 0.05  |
| 41                   | Charonia lampas           | Char         | Gastropoda     | 2.83           | 0.002          | 0.02  |
| 42                   | Cominella maculosa        | C_mac        | Gastropoda     | 2.43           | 0.001          | 0.02  |
| 43                   | Goniocidaris tubaria      | Goni         | Echinoidea     | 0.40           | 0.001          | 0.01  |
| 44                   | Henricia sp.              | Henr         | Echinoidea     | 1.21           | 0.001          | 0.01  |
| 45                   | Sclerasterias mollis      | Scle         | Echinoidea     | 0.40           | 0.001          | 0.01  |
| 46                   | Calliostoma pellucida     | C_pel        | Gastropoda     | 0.81           | 0.001          | 0.01  |
| 47                   | Heliocidaris tuberculata  | Heli         | Echinoidea     | 0.40           | 0.001          | 0.01  |

\* Recorded as *Patiriella regularis* and was not distinguished from the new species of *Patiriella* described by O'Loughlin et al. (2002).

starfishes *Diplodontias* spp., *Pentagonaster pulchellus* and *Patiriella* spp. were positively correlated with PC1 and more typical of Southern bioregions (Figs 6C and 7). Secchi and Sediment were both correlated with PC2 (Fig. 6B), and this axis appeared to reflect an environmental gradient from more oceanic locations (e.g. Titi Islands and Northeastern offshore islands) to more sheltered and/or turbid coastal locations, such as the locations Long Bay, Abel Tasman, Nelson, Long Island and Banks Peninsula. Several species were correlated to PC2 and reflected this gradient; the sea urchin *Centrostephanus rodgersii* was positively correlated and only found at Northeastern offshore locations and Cape Karikari, whereas the sea cucumber *Stichopus mollis*, starfish *Patiriella* spp., and the gastropods *Turbo smaragdus*, *Trochus viridis* and *Maoricolpus roseus* were negatively correlated and more common at the more turbid coastal locations (Figs 6C and 8).

Environmental variables explained 24% of the variation in macroinvertebrate species composition at the national level (Table 6), with Secchi being the most strongly associated (7%). The relationship between explanatory variables and species composition varied with spatial scale and among bioregions (Table 6).



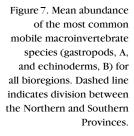



TABLE 6. RESULTS OF NON-PARAMETRIC MULTIVARIATE REGRESSION OF MOBILE MACROINVERTEBRATE ASSEMBLAGES (FOURTH-ROOT TRANSFORMED COUNT DATA), AND ENVIRONMENTAL AND SPATIAL VARIABLES AT DIFFERING BIOGEOGRAPHIC SCALES. THE PERCENTAGE VARIANCE EXPLAINED FOR EACH VARIABLE IS GIVEN (ns = NOT SIGNIFICANT), ALONG WITH THE CUMULATIVE FREQUENCY EXPLAINED FOLLOWING FORWARD SELECTION OF FACTORS (THE SIGNIFICANT FACTORS FROM THIS PROCEDURE ARE LISTED IN DESCENDING AMOUNT OF VARIATION EXPLAINED).

|                        |           | BIOGEOGRAPHIC<br>Provinces |          | BIOREGIONS          |                            |                                 |  |  |
|------------------------|-----------|----------------------------|----------|---------------------|----------------------------|---------------------------------|--|--|
|                        |           |                            |          | NORTHEASTERN        | N ABEL                     | STEWARTI                        |  |  |
|                        | NZ        | NORTHERN                   | SOUTHERN |                     |                            |                                 |  |  |
| n                      | 247       | 135                        | 112      | 81                  | 37                         | 42                              |  |  |
| Local variab           | les       |                            |          |                     |                            |                                 |  |  |
| Fetch                  | 5.9       | 5.9                        | 11.8     | 6.6                 | 9.3                        | 20.0                            |  |  |
| Status                 | 3.6       | ns                         | 3.3      | 3.5                 | ns                         | -                               |  |  |
| Slope                  | 4.9       | 4.5                        | 1.8      | 12.1                | 5.8                        | ns                              |  |  |
| MaxDepth               | 4.5       | 8.5                        | 3.7      | 21.6                | ns                         | 5.7                             |  |  |
| Secchi                 | 7.3       | 16.4                       | 6.3      | 31.3                | 23.4                       | 6.0                             |  |  |
| Sediment               | 4.0       | 8.0                        | 4.6      | 4.8                 | 12.1                       | 19.7                            |  |  |
| Cumulative             | % 24.0    | 30.6                       | 28.7     | 48.2                | 36.7                       | 31.1                            |  |  |
| Significant<br>factors | All       | All                        | A11      | All, excl.<br>Slope | Secchi,<br>Fetch,<br>Slope | Fetch.<br>Sediment,<br>MaxDepth |  |  |
| Spatial-Nor            | thing and | Easting                    |          |                     |                            |                                 |  |  |
|                        | 19.3      | 20.8                       | 18.7     | 30.7                | 31.3                       | 16.8                            |  |  |

Secchi explained the greatest variation for the Northeastern and Abel bioregions, while Fetch and Sediment were most important in the Stewart Island bioregion. The proportion of variation explained by environmental variables tended to increase with decreasing spatial scale.

#### 3.2.2 National patterns in dominant mobile macroinvertebrate species

There was large variation in the total number of mobile invertebrates among bioregions (Fig. 7) and also among sites and locations within each bioregion (section 3.4). Total numbers were low ( $< 2/m^2$ ) at Portland, Cook and Chalmers, whereas at Northeastern, Abel and Banks, herbivorous gastropods such as *Trochus viridis*, *Cookia sulcata* and *Turbo smaragdus* were common and total numbers exceeded 8/m<sup>2</sup> (Figs 7A and 8A).

*Evechinus chloroticus* was the most commonly recorded mobile macroinvertebrate (Table 5), and was recorded at all locations except Karamea, Flea Bay and Catlins (Figs 7B and 8B). It was also particularly rare at several locations, e.g. Mahia, Kaikoura and Otago Peninsula. The abundance of *E. chloroticus* was generally highest in Northern bioregions (Fig. 7B) and, overall, was positively correlated with the Northing variable (r=0.36). At the national level, Secchi explained the greatest variation (15%) in the abundance of *E. chloroticus* (Table 7) and was positively correlated across all sites (r=0.39). Secchi also explained the greatest variation among sites in the Northeastern bioregion (28.5%), where *E. chloroticus* are rare at sheltered and turbid coastal sites (see section 3.4.1). In contrast, within the Abel bioregion, MaxDepth (23%) was found to be the

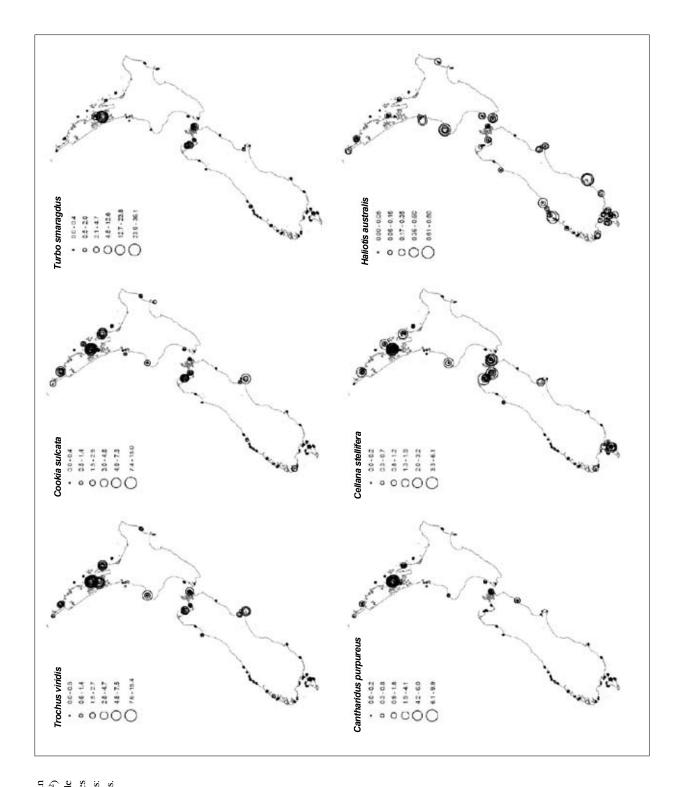



Figure 8A. Mean abundance (per m<sup>2</sup>) of dominant mobile macroinvertebrates at all sampling sites: herbivorous gastropods.

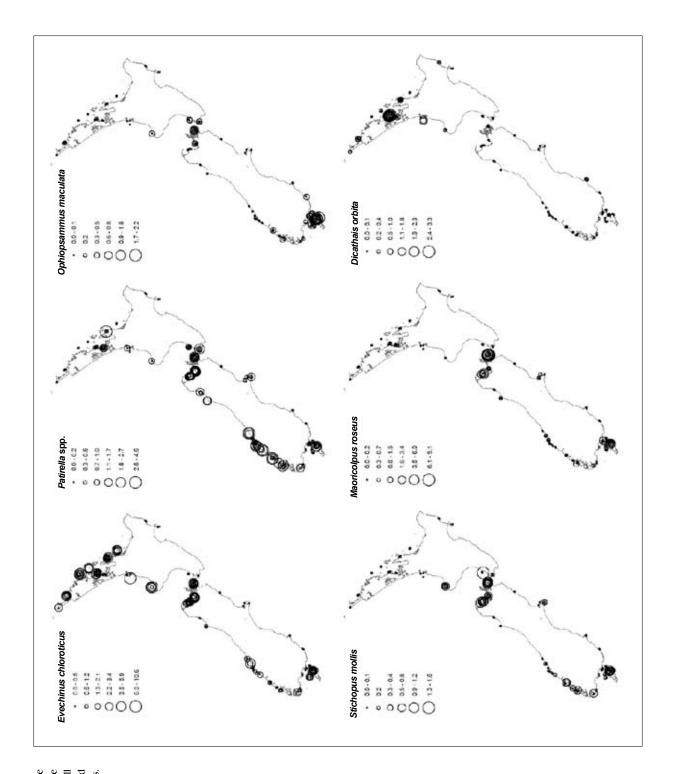



Figure 8B. Mean abundance (per m<sup>2</sup>) of dominant mobile macroinvertebrates at all sampling sites: echinoderms and other gastropods. most important variable (Table 7). This was due to a few sites with shallow reefs (<9 m depth) having high urchin densities. Fetch explained the greatest variation in the abundance of *E. chloroticus* among sites in the Stewart Island bioregion as the highest densities were recorded at sheltered sites in Paterson Inlet. For both Abel and Stewart Island there was no clear gradient in water clarity among sites or locations.

The size distributions of populations of *E. chloroticus* among the locations sampled exhibited some clear biogeographic patterns (Appendix 6). In most Northern bioregions, there were relatively high numbers of juveniles, most urchins were less than 100 mm TD, and the maximum size was c. 125 mm TD. One exception was Portland, where urchins occurred at low numbers and the population structure resembled Southern bioregions, with urchins generally larger than 100 mm TD and juveniles rare. At Open Bay Islands, Preservation Inlet and Paterson Inlet, where *E. chloroticus* was abundant, few individuals with a TD of less than 70 mm were recorded. Overall, *E. chloroticus* reached much greater sizes in Southern locations, with the maximum size recorded being 190 mm TD at Edwards Island (Titi Islands).

*Trochus viridis* and *C. sulcata* were the most common and abundant herbivorous gastropods nationwide (Table 5). Both species had similar distributions, being most abundant at locations in Northeastern, Abel and Banks bioregions (Fig. 8A). *Turbo smaragdus* was also one of the most abundant gastropods, but this was largely due to high densities at a number of sheltered locations, e.g. Nelson, Long Island and Long Bay. The limpet *Cellana stellifera* was generally most abundant in locations with high urchin abundances such as Northeastern and Abel locations, as well as New Plymouth and Paterson Inlet. The abalone *Haliotis australis* was also relatively common, but found at relatively low numbers throughout the country. A number of echinoderm species such as *Patiriella* spp., *Ophiopsammus maculata* and *Stichopus mollis* were found throughout the country, but tended to be more abundant on shallow reefs in southern regions (Figs 7B and 8B).

| TABLE 7. RESULTS OF STEP-WISE MULTIVARIATE REGRESSION OF THE ABUNDANCE OF Evecbinus chloroticus,                        |
|-------------------------------------------------------------------------------------------------------------------------|
| AND ENVIRONMENTAL AND SPATIAL VARIABLES, AT DIFFERING BIOGEOGRAPHIC SCALES. THE F-VALUE AND                             |
| PERCENTAGE VARIANCE EXPLAINED FOR EACH VARIABLE SELECTED FOR THE MODEL IS GIVEN. STATISTICALLY                          |
| SIGNIFICANT VARIABLES ARE INDICATED BY: * = $P < 0.05$ , ** = $P < 0.01$ AND *** = $P < 0.001$ ). The <i>R</i> -SQUARED |
| VALUE FOR EACH TEST IS ALSO GIVEN.                                                                                      |

| NZ             |            | NORTH      | EASTER         | N       | ABEL |                | STEWART I |        |                |         |      |
|----------------|------------|------------|----------------|---------|------|----------------|-----------|--------|----------------|---------|------|
| VARIABL        | E F        | %          | VARIABLE       | F       | %    | VARIABLE       | F         | %      | VARIABLE       | F       | %    |
| Local          |            |            |                |         |      |                |           |        |                |         |      |
| $(R^2 = 0.17)$ | )          |            | $(R^2 = 0.33)$ |         |      | $(R^2 = 0.33)$ |           |        | $(R^2 = 0.40)$ |         |      |
| Secchi         | 43.1***    | *15.0      | Secchi         | 33.0*** | 28.5 | MaxDepth       | 11.6**    | 23.0   | Fetch          | 27.0*** | 40.3 |
| Fetch          | 10.7**     | 4.2        | Fetch          | 4.2*    | 5.0  | Secchi         | 4.9*      | 9.7    |                |         |      |
| Spatial—       | Northing a | and Eastin | ng             |         |      |                |           |        |                |         |      |
|                | 19.4***    | *13.7      |                | 14.9*** | 27.7 |                | 12.0**    | * 41.4 |                | 6.3**   | 24.3 |

## 3.3 BENTHIC COMMUNITY STRUCTURE

#### 3.3.1 National variation in benthic community structure

There was a general gradient in the structure of benthic communities (biomass of algae and sessile invertebrates combined; Table 8) between Northern and Southern locations along PC1 (Fig. 9A). However, this axis of greatest variation (PC1) also appeared to more strongly reflect a gradient from sheltered Northern locations (Long Bay) to highly exposed West Coast locations at Buller and Westland. This was reflected by the correlation between PC1 and Fetch (Fig. 9B). Benthic community structure changed along this axis from being dominated by crustose and leathery algae to domination by corticated terete and corticated foliose algae, as indicated by the correlations between these groups and PC1 (Fig. 9C). PC2 was correlated with Secchi and Sediment. Therefore, it appears that PC2 reflects a gradient in community structure from turbid sites (bottom portion of ordination, Fig. 9A), where invertebrates (e.g. encrusting bryozoans, solitary ascidians, serpulid tube worms, mussels, oysters and cup corals) were

TABLE 8. CONTRIBUTION OF 29 STRUCTURAL GROUPS TO TOTAL BIOMASS (AFDW) OF BENTHIC COMMUNITIES AND THE PERCENTAGE OF ALL SITES AT WHICH EACH GROUP OCCURRED (% OCC.)

| PHYLA        | STRUCTURAL GROUP         | MEAN<br>(g/m²) | % TOTAL | % OCC.<br>(SITES) |  |
|--------------|--------------------------|----------------|---------|-------------------|--|
| Algae        | Leathery macrophytes     | 286.45         | 66.91   | 95.55             |  |
| Algae        | Corticated terete algae  | 27.86          | 6.51    | 93.52             |  |
| Algae        | Corticated foliose algae | 19.75          | 4.61    | 98.79             |  |
| Porifera     | Massive sponge           | 18.04          | 4.21    | 74.90             |  |
| Porifera     | Encrusting sponge        | 16.52          | 3.86    | 94.33             |  |
| Algae        | Crustose algae           | 14.64          | 3.42    | 100.00            |  |
| Mollusca     | Large mussels            | 12.33          | 2.88    | 23.89             |  |
| Algae        | Articulated algae        | 12.10          | 2.83    | 90.69             |  |
| Ascidian     | Solitary ascidian        | 5.67           | 1.32    | 88.66             |  |
| Bryozoan     | Branched bryozoan        | 2.30           | 0.54    | 54.66             |  |
| Ascidian     | Compound ascidian        | 1.94           | 0.45    | 83.81             |  |
| Algae        | Filamentous              | 1.68           | 0.39    | 88.66             |  |
| Porifera     | Finger sponge            | 1.59           | 0.37    | 22.67             |  |
| Mollusca     | Small mussels            | 1.17           | 0.27    | 2.02              |  |
| Annellida    | Serpulid tubeworms       | 1.12           | 0.26    | 21.86             |  |
| Ascidian     | Sea tulip                | 1.08           | 0.25    | 21.86             |  |
| Algae        | Foliose algae            | 0.92           | 0.21    | 38.06             |  |
| Coelenterate | Colonial anemone         | 0.85           | 0.20    | 53.44             |  |
| Hydrozoa     | Hydroid turf             | 0.51           | 0.12    | 46.56             |  |
| Crustacea    | Barnacles                | 0.40           | 0.09    | 17.81             |  |
| Ascidian     | Stalked ascidian         | 0.35           | 0.08    | 40.08             |  |
| Coelenterate | Cup coral                | 0.27           | 0.06    | 19.84             |  |
| Mollusca     | Oyster                   | 0.20           | 0.05    | 16.60             |  |
| Coelenterate | Large solitary anemone   | 0.18           | 0.04    | 32.79             |  |
| Bryozoan     | Encrusting bryozoan      | 0.17           | 0.04    | 41.30             |  |
| Coelenterate | Black coral              | 0.01           | 0.00    | 2.02              |  |
| Coelenterate | Soft coral               | 0.01           | 0.00    | 3.24              |  |
| Hydrozoa     | Hydroid tree             | 0.01           | 0.00    | 3.24              |  |
| Brachiopod   | Brachiopod               | 0.01           | 0.00    | 4.05              |  |

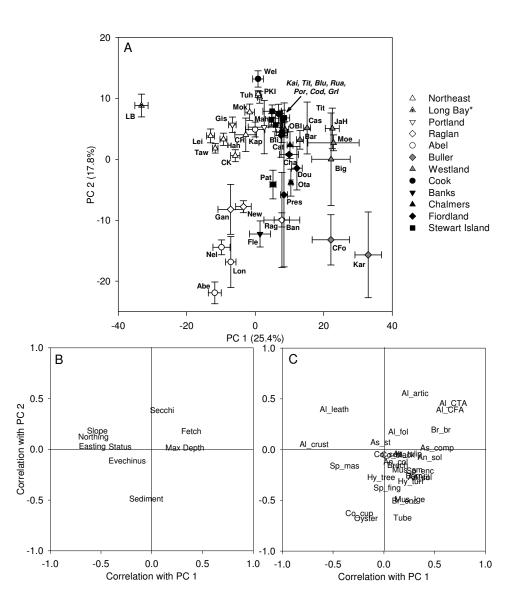


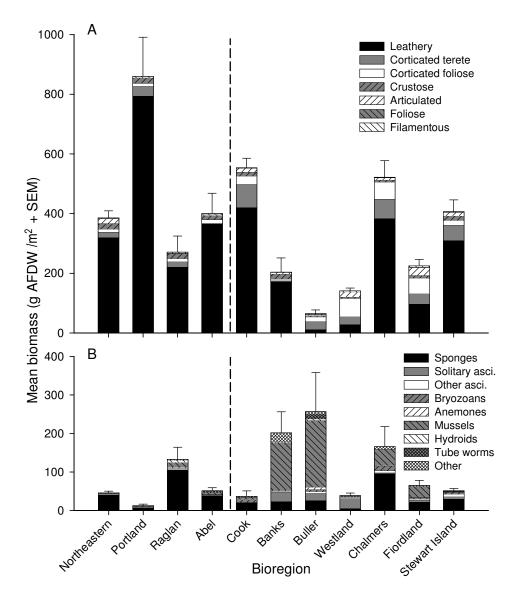

Figure 9. Structural patterns in reef communities among all locations from principal coordinates analysis based on fourth-root transformed AFDW of 29 algal and invertebrate structural groups (A) (see Fig. 1 for location codes and Table 2 for structural group codes). Centroids are plotted for each location; standard error bars indicate the variation among sites at each location. Shaded symbols indicate bioregions in the Southern Province and open symbols indicate bioregions in the Northern Province, Bi-plots give correlations between principal coordinates axes and environmental variables (B) and structural group variables (C). \* Long Bay is distinguished from other Northeastern locations as it was not included in biogeographic analyses (Shears et al. in press).

more dominant, to more oceanic locations (top portion of ordination) with clearer water that are dominated by macroalgal groups.

The amount of variation explained by environmental variables (Table 9) tended to increase with decreasing spatial scale, explaining the most variation at the bioregional level (predominantly Secchi, Fetch and Evechinus). At the national level, Slope explained the greatest variation (8%), but at the provincial level Secchi (Northern: 12%) and Fetch (Southern 8%) explained the most variation. The abundance of *Evechinus chloroticus* was significantly related to benthic community structure at all spatial scales, accounting for only a small proportion of the variation at the national scale (3%), but 9-18% of the variation at the bioregional scale.

## 3.3.2 National patterns in dominant structural groups

Leathery macrophytes made up 67% of the total biomass across all sites (Table 8) and dominated at all bioregions except Buller and Westland on the West Coast (Figs 10 and 11). In general, the biomass of leathery macrophytes was low at most west coast sites compared with sites on the east coast (Fig. 11A). The contribution


of other structural groups was relatively small in Northern bioregions, with sponges, crustose algae and corticated terete algae being the largest contributors after leathery macrophytes. Overall, Southern bioregions tended to have a lower biomass of leathery macrophytes and a larger contribution from other groups such as corticated algae (Figs 10A and 11A) as well as mussels, solitary ascidians, other ascidians, sponges, and bryozoans (Fig. 10B). For the Buller bioregion, total biomass of algal groups was low and the structure of benthic communities was dominated by encrusting invertebrates (mussels, ascidians and sponges).

Among the encrusting invertebrate groups, sponges were the largest contributor to total biomass (9%; Table 8), particularly at Raglan and Chalmers locations (Figs 10B and 11B). Mussels were also a dominant structural component of benthic communities at Banks and Buller. Large mussels such as *Perna canaliculus* and *Mytilus* spp. were important at several locations (Raglan, Karamea, Banks Peninsula North, and those in Fiordland), whereas small mussels (*Xenostrobus pulex*) were an important component of the benthic communities at Cape Foulwind and Raglan. Solitary ascidians accounted for only 1% of the total biomass but were a major component of the benthic community at highly turbid locations where leathery macrophytes were reduced or restricted to shallow water, e.g. Buller, Westland and Banks locations (Figs 10B and 11B). Branching bryozoans were typically more abundant at Southern locations, whereas encrusting bryozoans were locally abundant at Cape Foulwind, Karamea, Abel Tasman, Nelson and New Plymouth. Cup corals (predominantly *Culicia rubeola*) were also locally abundant at Long Island and Abel Tasman (data not presented).

TABLE 9. RESULTS OF NON-PARAMETRIC MULTIVARIATE REGRESSION OF BENTHIC COMMUNITY STRUCTURE DATA (FOURTH-ROOT TRANSFORMED BIOMASS OF 29 STRUCTURAL GROUPS), AND ENVIRONMENTAL AND SPATIAL VARIABLES AT DIFFERING BIOGEOGRAPHIC SCALES. THE PERCENTAGE VARIANCE EXPLAINED BY EACH VARIABLE IS GIVEN (ns = NOT SIGNIFICANT), ALONG WITH CUMULATIVE FREQUENCY EXPLAINED FOLLOWING FORWARD SELECTION OF FACTORS (THE SIGNIFICANT FACTORS FROM THIS PROCEDURE ARE LISTED IN DESCENDING ORDER OF VARIATION EXPLAINED).

| n            |           | BIOGEOGRAPHIC<br>Provinces |                 | BIOREGIONS        |           |            |  |
|--------------|-----------|----------------------------|-----------------|-------------------|-----------|------------|--|
|              |           |                            |                 | NORTHEASTERN ABEL |           | STEWARTI   |  |
|              | NZ<br>247 | NORTHERN<br>135            | SOUTHERN<br>112 |                   | 37        | 42         |  |
|              |           |                            |                 | 81                |           |            |  |
| Local variab | les       |                            |                 |                   |           |            |  |
| Fetch        | 5.5       | 5.1                        | 7.5             | 9.8               | 14.9      | 14.8       |  |
| Status       | 2.9       | 1.5                        | 5.4             | ns                | ns        | -          |  |
| Slope        | 8.3       | 7.6                        | 3.9             | 16.0              | 5.4(0.08) | ns         |  |
| MaxDepth     | 4.2       | 9.4                        | 3.5             | 29.0              | 5.8(0.06) | 4.9        |  |
| Secchi       | 5.2       | 11.9                       | 6.3             | 27.8              | 18.2      | 5.7        |  |
| Evechinus    | 2.7       | 1.6                        | 2.5             | 12.2              | 8.5       | 17.9       |  |
| Sediment     | 5.6       | 9.1                        | 6.1             | 5.9               | 14.6      | 13.0       |  |
| Cumulative   | % 27.6    | 32.0                       | 35.7            | 43.9              | 39.0      | 31.0       |  |
| Significant  | All       | All, excl.                 | All             | MaxDepth,         | Secchi,   | Evechinus, |  |
| factors      |           | Status                     |                 | Secchi, Fetch,    | Fetch,    | Fetch,     |  |
|              |           |                            |                 | Slope             | MaxDepth  | Secchi     |  |
| Spatial-Nor  | thing and | Easting                    |                 |                   |           |            |  |
|              | 14.8      | 21.9                       | 20.3            | 43.9              | 34.1      | 17.5       |  |

Figure 10. Mean biomass of benthic structural groups (macroalgal groups, A, and other groups, B) for all bioregions. Dashed line indicates division between the Northern and Southern Provinces.



Other structural groups were locally abundant at specific locations, e.g. black coral at Fiordland locations; sea tulips at Banks Peninsula and Chalmers locations (data not presented).

## 3.4 BIOREGIONAL PATTERNS IN BENTHIC COMMUNITIES

### 3.4.1 Northeastern bioregion

There was large variation in algal community structure among sites within and between locations in the Northeastern bioregion (Fig. 12). However, consistent patterns were apparent among sites in relation to the environmental variables which explained 39% of the variation (Table 4). Hierarchical cluster analysis divided Northeastern sites into five groups at the 70% similarity level that broadly corresponded to large-scale differences in wave exposure (Fetch) among sites (Fig. 12A). PC1 was strongly correlated with several environmental variables (Fig. 12B) and reflected a gradient in algal community structure from exposed

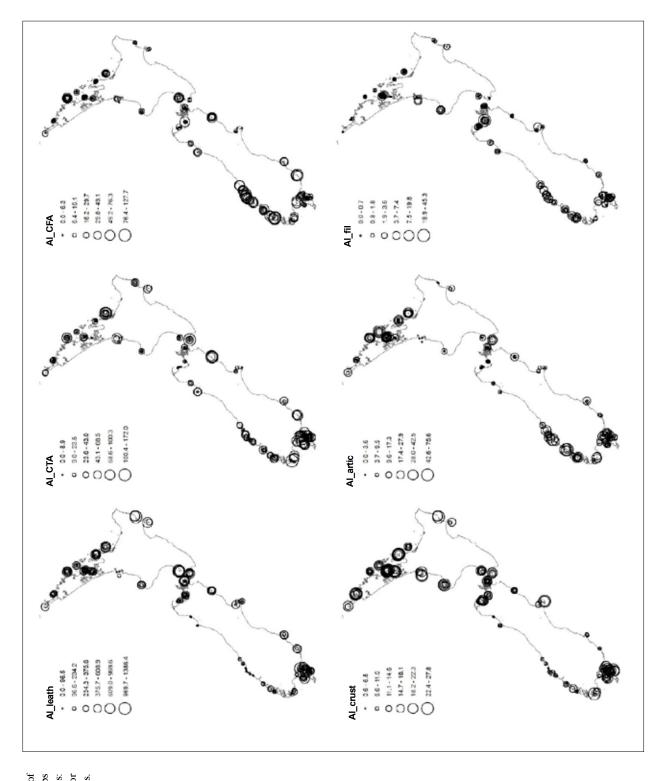



Figure 11A. Biomass of dominant structural groups (g AFDW/m<sup>2</sup>) at all sites: algal groups. See Table 2 for structural group codes.

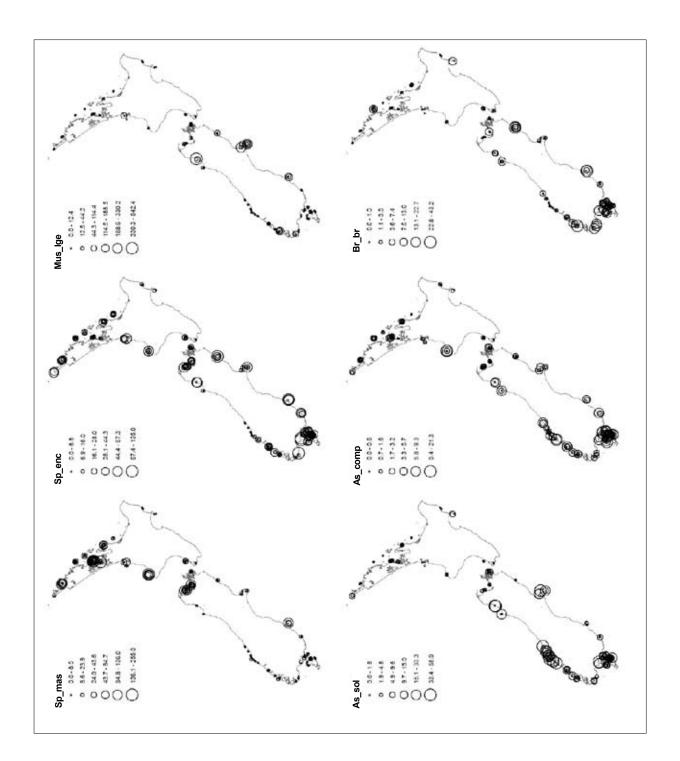



Figure 11B. Biomass of dominant structural groups (g AFDW/m<sup>2</sup>) at all sites: sessile invertebrate groups. See Table 2 for structural group codes. and offshore sites with steeply sloping reefs and clear water to more gradually sloping, sheltered coastal sites with high turbidity and a high percentage cover of sediment (e.g. Long Bay). Evechinus was also negatively correlated with PC1 and tended to be more common at exposed locations. There was a clear gradient in the organisation of algal communities across this large environmental gradient. *Carpophyllum flexuosum* was positively correlated with PC1 and was most abundant at sheltered sites, whereas *Lessonia variegata*, red turfing algae, coralline turf and green algae (e.g. *Ulva* spp.) were negatively correlated and were more characteristic of exposed and/or offshore sites (Fig. 12C). Similar groupings of Northeastern sites in relation to wave exposure were identified and described for each location in Shears & Babcock (2004b). Therefore, overall patterns in reef communities for each exposure group (Fig. 12) are summarised below for all locations combined.

#### Sheltered group

This group included all Long Bay sites and the most sheltered site from Hahei (Mussel Rock) (Fig. 12A). The shallow stratum (< 2 m) was characterised by high biomasses of *Carpophyllum maschalocarpum* and to a lesser extent *Ecklonia radiata* (Fig. 13A), while the 4–6 m depth range was dominated by *C. flexuosum*. A number of other brown algal species were also common at these sites, e.g. *C. plumosum*, *Cystophora retroflexa*, *Sargassum sinclairii* and *Zonaria* spp.

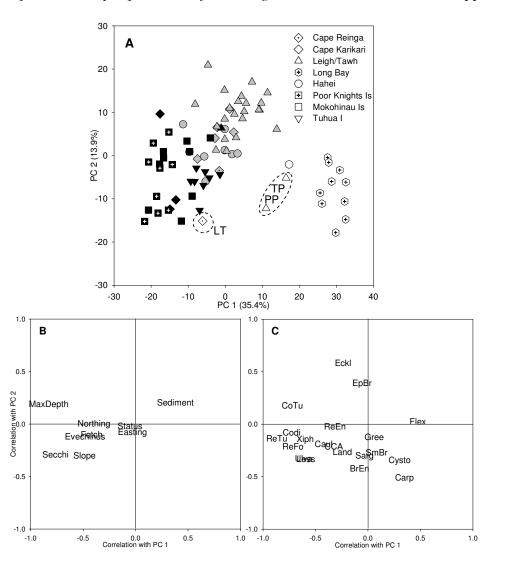



Figure 12. Principal coordinates analysis of sites sampled in the Northeastern bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to groupings identified at the 70% similarity level. White = sheltered, grey = moderately exposed, black = exposedoffshore, LT = Lighthouse, PP and TP = P-Point and Ti Point, respectively. (data not presented). Red foliose and turfing algae were rare across both depths. *Evechinus chloroticus* was rare at all sites, *Turbo smaragdus* occurred at high densities in the < 2 m stratum, and *Trochus viridis* was abundant at 4–6 m (Fig. 13B). Crustose coralline algae ('CCA') were the dominant substratum cover (> 70%), but sediment also covered a considerable proportion of reef (10–20%) (Fig. 13C).

#### Ti Point and P-Point

These two sites at Leigh and Tawharanui formed their own group at the 70% similarity level (Fig. 12A). Unlike other sites at these locations, the reef at both sites was inundated with sand at c. 5 m of depth. *Carpophyllum maschalocarpum* dominated the shallow stratum (< 2 m), whereas the reef at 4–6 m was relatively devoid of large brown macroalgae and sea urchins were common (Fig. 13A). Moderate numbers of *Turbo smaragdus* were recorded in the shallow stratum, whereas *Trochus viridis* and *Cellana stellifera* were most abundant at 4–6 m (Fig. 13B). Crustose coralline algae were the dominant substratum cover, but sediment covered a considerable proportion of reef at 4–6 m, and turfing and foliose algae were rare (Fig. 13C).

### Moderately exposed group

The moderately exposed group included the remaining coastal sites, excluding Sunburn Point, Takini South and Pihoaka Point at Cape Karikari, Cape Rodney at Leigh and Tapotupotu at Cape Reinga, which were grouped in the Exposedoffshore group, as well as the highly exposed Lighthouse site (Cape Reinga), which formed its own group (Fig. 12A). Algal communities at these sites had a bimodal depth distribution with Evechinus chloroticus abundant in the 4-6 m depth stratum and peaks in algal biomass in the shallow (< 2 m) and deeper (7-9 m and 10-12 m) strata (Fig. 13A). Carpophyllum maschalocarpum dominated the < 2 m stratum, although C. plumosum, Ecklonia radiata, coralline turf, red turfing and red foliose algae were also abundant in the shallow stratum at some sites. Carpophyllum angustifolium and Lessonia variegata were common components of this shallow stratum at some of the more exposed sites in this group; however, C. angustifolium was not recorded at Cape Karikari or Cape Reinga. At some sites (e.g. sites in the following reserves: Cape Rodney-Okakari Point Marine Reserve, Tawharanui Marine Park, Te Whanagnui-a-Hei (Cathedral Cove) Marine Reserve), the 4-6m depth stratum was dominated by a mixture of E. radiata, C. maschalocarpum and C. flexuosum. At Koware South (Cape Karikari), C. flexuosum (sheltered morphology) dominated the 4-6 m stratum. For the remaining sites, *Evechinus chloroticus* was common and macroalgal biomass reduced at this depth. Evechinus chloroticus was rare in the deeper strata (7-9 m, 10-12 m) across all sites in this group and forests of Ecklonia radiata dominated. The understorey was dominated by crustose coralline algae, coralline turf, and to a lesser extent sponges, ascidians and small brown algae such as Zonaria spp. and Distromium scottsbergii (Fig. 13C). The percentage cover of sediment tended to increase with depth, on average covering c. 30% of the substratum at 10-12 m. Herbivorous gastropods occurred at relatively high densities at sites within this group (Fig. 13B). Cookia sulcata was the most abundant in the 0-2 m and 4-6 m strata, whereas Trochus viridis and Cantharidus purpureus were most abundant in the deeper strata and associated with E. radiata. Cellana stellifera was most abundant at 4-6m and associated with Evechinus chloroticus, whereas the predatory gastropod Dicathais orbita occurred across all depths.

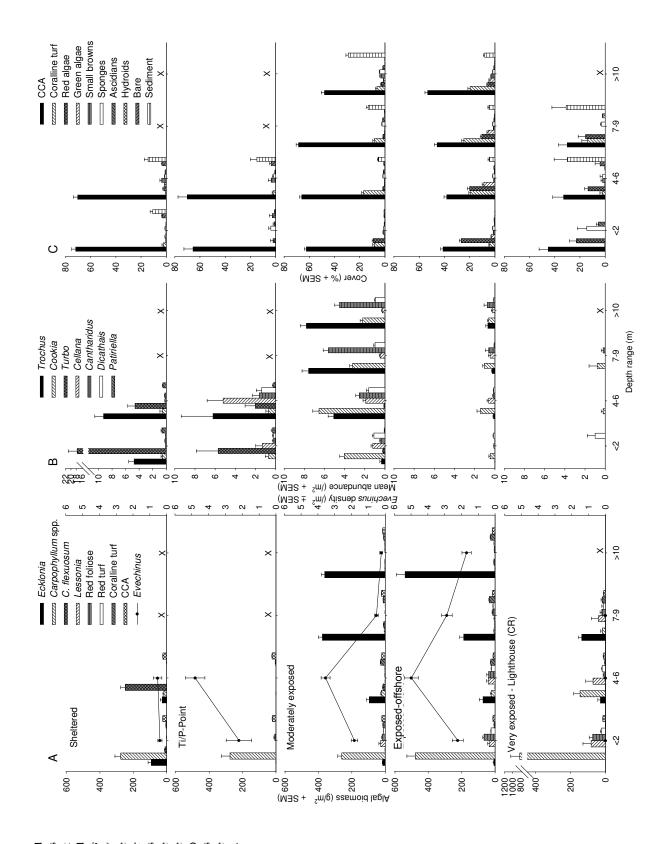



Figure 13. Depth-related patterns in biomass (g AFDW/m<sup>2</sup>) of dominant macroalgal groups and density of *Evechtuus chloroticus* (A), density *of* common mobile invertebrates (B) and cover of common encrusting forms (C) for site groups within the Northeastern bioregion. See Shears & Babcock (2004b) for description of groups within each location for the Northeastern bioregion.

## Exposed-offsbore group

This group included all offshore island sites, and four of the most exposed coastal sites (Sunburn Point, Takini South, Pihoaka Point and Cape Rodney) (Fig. 12A). Algal community structure at sites in the exposed-offshore group also had a bimodal depth distribution, although sea urchins were abundant to depths of c. 8 m and the biomass of Ecklonia radiata was generally reduced (Fig. 13A). The shallow stratum (< 2 m) was dominated by Carpophyllum angustifolium and/or C. maschalocarpum with Lessonia variegata, red foliose and red turfing algae also common. The mid-depth ranges (4-6 m and 7-9 m) were characterised by mixed large brown algae (L. variegata, C. maschalocarpum and E. radiata) interspersed with sea urchins, and patches of coralline turf, red turf, red foliose algae and green algae, mainly Ulva spp. and Caulerpa flexilis. Ecklonia radiata dominated the 10-12 m stratum at most sites in this group, although at some sites sea urchins were abundant and macroalgal biomass reduced to depths of c. 12 m. Crustose coralline algae were the dominant cover at all depths, however, coralline turf, red foliose algae and green algae covered a considerable proportion of the reef at all depths (Fig. 13C). Herbivorous gastropods occurred in only low numbers (Fig. 13B), with Cookia sulcata, Trochus viridis and Cellana stellifera being the most common. The sea urchin Centrostephanus rodgersii and herbivorous gastropod Modelia granosa were also common in the deeper strata (7-9 m and 10-12 m) at some sites (data not presented).

## Very exposed: Lighthouse (Cape Reinga)

The organisation of algal communities at this site was considerably different to that of the other Northeastern bioregion sites. Lighthouse was the most exposed Northeastern site (based on fetch estimates), but the reef was relatively gradually sloping and inundated by sand at c. 9 m. *Evecbinus chloroticus* was rare and restricted to crevices at all depths, and algal biomass tended to decline with depth (Fig. 13A). *Carpophyllum maschalocarpum* dominated the immediate subtidal, whereas at greater depths mixed stands of large brown algae (e.g. *C. maschalocarpum, Lessonia variegata, Ecklonia radiata, C. plumosum, Landsburgia quercifolia*) and patches of red foliose algae (e.g. *Osmundaria colensoi, Pterocladia lucida*) occurred. All gastropod species were rare (Fig. 13B). Crustose coralline algae were the dominant cover at shallow depths but there was a high percentage cover of sediment (mainly coarse sand) in the deepest strata (Fig. 13C).

# 3.4.2 Portland bioregion

Sites from Gisborne and Mahia were clustered among Northeastern localities for all datasets (Figs 2, 6 and 9), and their algal communities were typically dominated by the same few species (*Ecklonia radiata*, *Carpophyllum maschalocarpum*, *C. flexuosum*). Algal community structure was relatively similar between sites from Gisborne and Mahia (Fig. 14), with sites from the two locations being separated at only the 77% similarity level. The correlation between environmental variables and principal coordinates axes (Fig. 14B) gives some indication of factors that may explain the differences between these locations. Sites from Gisborne and Mahia were separated along PC1 (Fig. 14A), which was strongly correlated with Secchi, MaxDepth and Slope (Fig. 14B). Gisborne sites were more turbid, had shallower, more gradually sloping reefs, and a higher biomass of *C. flexuosum* 

(Figs 14C and 15A). In contrast, Mahia had clearer water and a greater biomass of coralline turf, red turf and red foliose algae (Figs 14C and 15C). All the sites sampled in this bioregion were highly exposed compared to most Northeastern locations, with similar wave exposure estimates to the Cape Reinga sites. Fetch was negatively correlated with PC2, and the biomass of *E. radiata* was positively correlated with it, with the most wave-exposed sites (Portland Island, Pouawa Reef North and Pouawa Reef South) having reduced biomass of *E. radiata*.

Algal biomass declined with depth at Gisborne and Mahia, and *Evechinus chloroticus* was rare at all depths (Fig. 15A). *Carpophyllum maschalocarpum* dominated shallow depths down to c. 6 m at Gisborne, and to c. 9 m at the more exposed Mahia sites. *Ecklonia radiata* dominated the deepest stratum at Mahia, but was mixed with *C. flexuosum* and the green algae *Caulerpa articulata* at Gisborne sites. *Landsburgia quercifolia, Lessonia variegata* and *Cystophora* spp. were not recorded at any of the sampling sites in this region. *Durvillaea antarctica* was common in the intertidal at both Mahia and Gisborne and in some cases small plants did extend into the shallow subtidal. The small brown algal species *Zonaria* spp. were also common at Mahia (Appendix 5: Table A5.1). Several red foliose algal species were found in both areas, but were more common at Mahia, e.g. *Osmundaria colensoi, Pterocladia* 



Figure14. Principal coordinates analysis of sites sampled in the Portland bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to grouping at 77% similarity level.

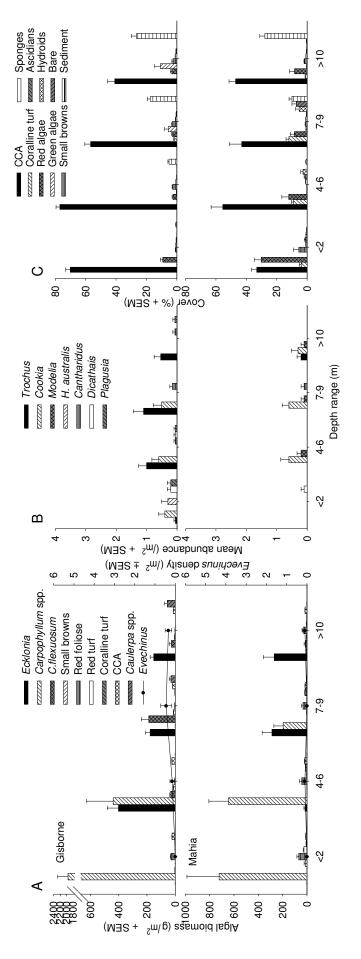



Figure 15. Depth-related patterns in biomass (g AFDW/m<sup>2</sup>) of dominant macroalgal groups and density of *Evechnus chloroticus* (A), density of common mobile invertebrates (B) and cover of common encrusting forms (C) for site groups within the Portland bioregion.

*lucida* and *Plocamium* spp. The substratum was dominated by crustose coralline algae at both locations and the percentage cover of sediment increased with depth (Fig. 15C). Few mobile macroinvertebrates were recorded at both locations (Fig. 15B), with only low numbers of *Haliotis australis*, *Cantharidus purpureus*, *Cookia sulcata*, *Trochus viridis* and *Modelia granosa* being present. *Haliotis iris* was not recorded at the sites surveyed.

# 3.4.3 Raglan bioregion

Algal communities at all Raglan, Gannet Rock and New Plymouth sites were characterised by a shallow band of *Carpophyllum maschalocarpum* and a general lack of deeper macroalgal forests. These sites were divided into three groups at the 65% similarity level: Raglan sites, offshore island sites (including both Gannet Rock sites and one site from New Plymouth (Seal East)), and the remaining New Plymouth sites (Fig. 16A). These groupings generally reflected the large-scale differences in environmental conditions among the three locations. Raglan sites were located on the mainland coast, had shallow reefs (maximum depth of c. 6 m) that were highly exposed and were turbid, whereas Gannet Rock is located c. 28 km offshore, has steep, sloping reefs and is bathed in clear oceanic water. New Plymouth sites were somewhat intermediate along this onshore-offshore gradient, being located on

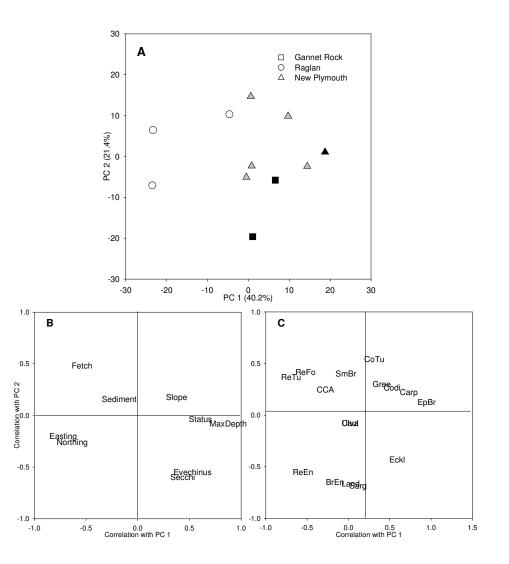
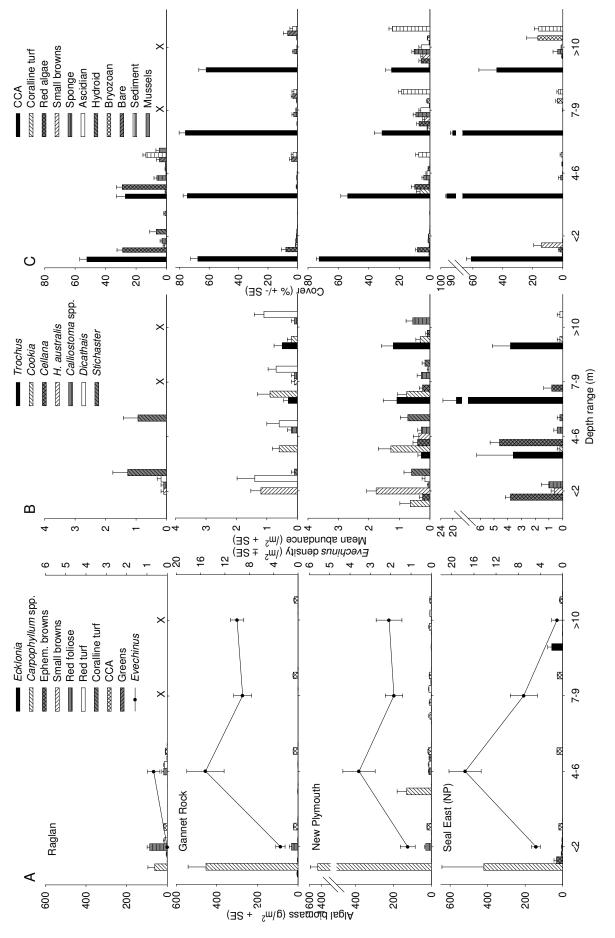



Figure 16. Principal coordinates analysis of sites sampled in the Raglan bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to groupings identified at the 65% similarity level. rockstacks located 1–2 km offshore. The associated gradient in algal community structure was reflected by strong correlations between Fetch, Secchi and MaxDepth, and PC1 (Fig. 16B). Algal species variables that were strongly correlated with PC1 include red turf and red foliose algae, which dominated Raglan sites, and *Carpophyllum maschalocarpum* and ephemeral brown algae (e.g. *Glossophora kunthii* and *Dictyota* spp.), which were more common at New Plymouth sites (Fig. 16C). The abundance of *Evechinus chloroticus* was low at coastal sites and high at offshore sites. PC2 also reflected a gradient from coastal (Raglan) to offshore locations (Gannet Rock). *Ecklonia radiata*, *Landsburgia quercifolia* and *Sargassum sinclairii* were more common at Gannet Rock (Appendix 5) and negatively correlated with PC2.

### Raglan


The shallow reefs at Raglan were relatively devoid of large brown algae except for small amounts of *Carpophyllum maschalocarpum* interspersed with red foliose algae (*Pterocladia lucida*, *Osmundaria colensoi* and *Melanthalia abscissa*) in the shallow stratum (Fig. 17A). *Zonaria* spp. and *Endarachne binghamiae* were also common (Appendix 5). At 4-6 m crustose coralline, red foliose and red turfing algae dominated and there was a relatively high percentage cover of sponges, bryozoans, mussels (*Xenostrobus pulex, Perna canaliculus*), bare rock and sediment (Fig. 17C). The red algal species *Gymnogongrus humilis* and *Lophurella hookeriana* were also present. Mobile macroinvertebrates such as *Evechinus chloroticus* and *Haliotis iris* occurred in low numbers, but the starfish *Stichaster australis* was relatively abundant (Fig. 17B).

#### **Gannet** Rock

The two sites sampled at Gannet Rock were located on the eastern side and somewhat protected from large breaking southwesterly swells. *Evechinus chloroticus* was extremely abundant at both Gannet Rock sites (Fig. 17A), and occurred to depths greater than 25 m. *Carpophyllum maschalocarpum* was restricted to depths less than 4 m; crustose coralline algae dominated below this (Fig. 17A, C). Low numbers of *Landsburgia quercifolia* (not presented, Appendix 5) and *Ecklonia radiata* occurred amongst the *C. maschalocarpum*, along with *Osmundaria colensoi*, *Pterocladia lucida*, *Pterocladiella capillacea* and *Melanthalia abscissa*. On the exposed side of Gannet Rock, *C. maschalocarpum* and *Landsburgia quercifolia* extended to depths of c. 9 m before giving way to urchin barrens (NS, pers. obs.). *Cookia sulcata* and *Dicathais orbita* were common at all depths (Fig. 17B).

# New Plymouth

The shallow band of *Carpophyllum maschalocarpum* extended to depths of 3-4 m, beyond which large brown algae were rare (Fig. 17A). Sea urchins were abundant at 4-6 m, and declined with depth. Crustose coralline algae were the dominant substratum cover but also declined with depth (Fig. 17C). At depths greater than 5 m there was a relatively high percentage cover of sediment, turfing algae, sponges, bryozoans and ascidians. The small cup coral *Culicia rubeola* was also common (c. 2% cover per m<sup>2</sup>) at 7-12 m. The Seal East site was grouped separately (with Gannet Rock sites), the main differences being the occurrence of low numbers of small *Ecklonia radiata* in deeper areas (> 11 m) and the high





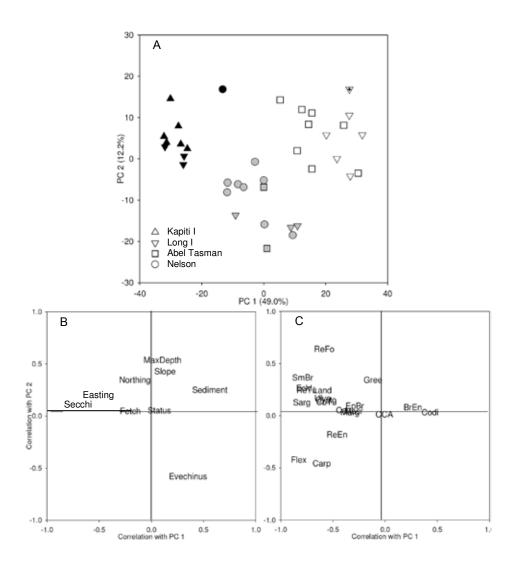
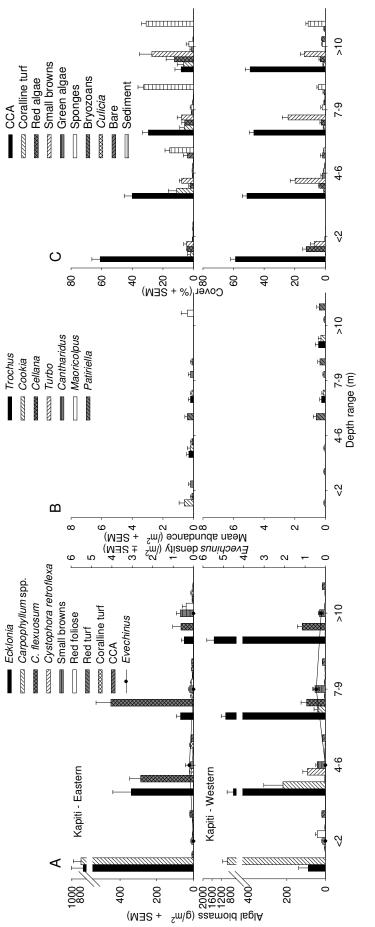
cover of crustose coralline algae at all depths. Seal East also had higher densities of *Evechinus chloroticus*, *Trochus viridis* and *Cellana stellifera* (Fig. 17B). Whereas the algal community structure analysis did not separate out the three offshore sites at New Plymouth (Seal East, Seal West, Saddleback SW), these sites had higher densities of *E. chloroticus*, higher cover of crustose coralline algae and a lower cover of sediment compared to inshore sites which were dominated by turfing algae, encrusting invertebrates and sediment.

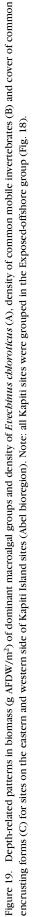
## 3.4.4 Abel bioregion

There was large variation in algal community structure among the locations within this bioregion at the national level (Fig. 2), with Long Island, Nelson and Abel Tasman being clustered most closely to Raglan locations, and Kapiti being more like Northeastern and Portland locations. Site-level cluster analysis based on algal community structure divided Abel sites into four groups at the 60% similarity level that broadly reflected an inshore-offshore gradient along PC1 (Fig. 18). These groups were subjectively termed 'exposed-offshore', 'moderately exposed', 'sheltered' and 'very sheltered' (Blumine Island) to aid in describing the patterns within each location. Environmental variables explained 42% of the variation in algal community structure (Table 4), with Secchi (21%) and Sediment (19%) being strongly correlated with PC1 (Fig. 18B). Fetch was not strongly correlated with PC1 and only explained 7% of the variation across all sites in this bioregion; however, this was largely due to all of the sites from Kapiti (both sheltered and exposed) being grouped together (see below). Most algal species (excluding brown encrusting algae and Codium spp.) were negatively correlated with PC1 (Fig. 18C), which reflects their higher biomass at more exposed and offshore sites. PC2 was correlated with MaxDepth, Slope and Evechinus, and appears to reflect a gradient from deep, steeply sloping sites (e.g. Maheipuku at Nelson) with a higher biomass of red foliose algae to more gradually sloping sites with higher abundances of Evechinus chloroticus and higher biomasses of Carpophyllum flexuosum and C. maschalocarpum (e.g. Foul Point at Abel Tasman).

# Kapiti Island

All sites from Kapiti Island were grouped into the exposed-offshore group (Fig. 18); however, there were clear differences between the sites on the northwestern side of the island and the more sheltered sites on the east (Fig. 19A). Algal community structure at Kapiti was similar to that seen at Gisborne, with Carpophyllum maschalocarpum dominating the immediate subtidal, Evechinus chloroticus being rare, and extensive forests of Ecklonia radiata and C. flexuosum occurring at greater depths. At the more sheltered eastern sites C. maschalocarpum was restricted to the shallow depth stratum. Ecklonia radiata was also abundant at shallow depths, but its biomass declined markedly with depth. Carpophyllum flexuosum was dominant at 7-9 m, although its biomass was also reduced at 10-12 m, where the small brown algae Halopteris sp. (Southeast Point only), Ulva spp. and the red algal species Plocamium spp., Rhodophyllis gunnii and Asparagopsis armata were common. Crustose coralline algae were the dominant substratum cover at shallow depths but sediment dominated the deeper strata (7-9m, 10-12m) (Fig. 19C). Encrusting invertebrates such as sponges and ascidians covered only a small fraction of the substratum and mobile invertebrates were rare at all sites (Fig. 19B).



Figure 18. Principal coordinates analysis of sites sampled in the Abel bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to groupings identified at the 60% similarity level. Black = exposed-offshore, grey = moderately exposed, white = sheltered and cross symbol indicates very sheltered (Blumine Island).

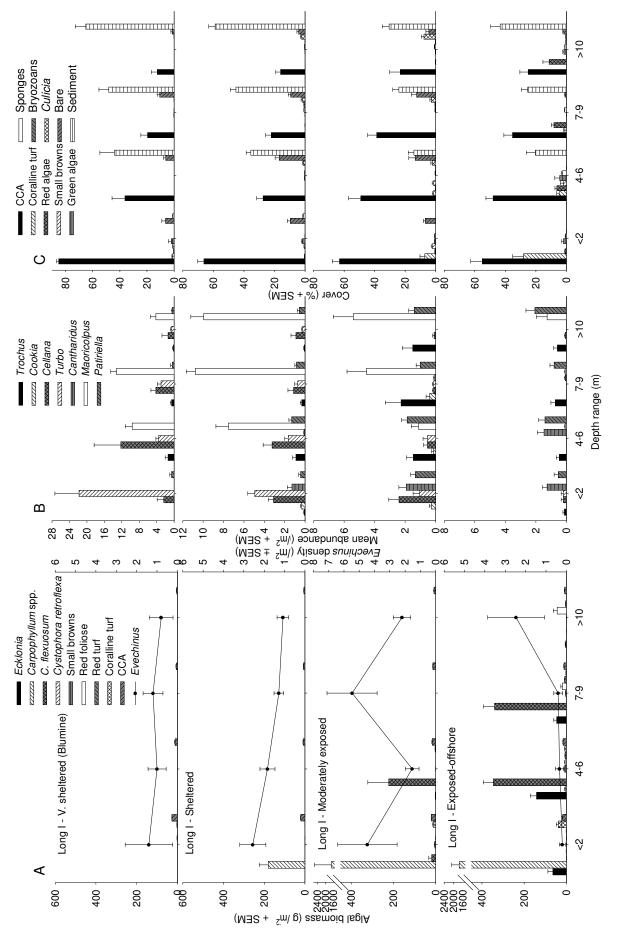
The more exposed western sites at Kapiti had a distinct pattern in algal community structure in that *E. radiata* was abundant, and achieved high biomasses at 4–12 m of depth (Fig. 19A). The biomass of *E. radiata* was reduced in the shallow stratum (< 2 m), where *C. maschalocarpum* dominated, but co-occurred with *C. maschalocarpum* and *Cystophora retroflexa* at 4–6 m, and with *C. flexuosum* at 7–9 m and 10–12 m depths. Low numbers of *Landsburgia quercifolia* also occurred at some of these sites and the red algal species *Plocamium* spp., *Anotrichium crinitum*, *R. gunnii* and *Asparagopsis armata* were common. Crustose coralline algae were the dominant substratum cover at all depths, although small brown algae (*Zonaria* spp., *Carpomitra costata* and *Halopteris* spp.) dominated the understorey (Fig. 19A). Red algae, predominantly *Pterocladia lucida* and red turfing algae, were abundant in the shallow stratum, and *Ulva* spp. were also common. The cushion star *Patiriella* spp. was the most abundant mobile macroinvertebrate and low numbers of *Cookia sulcata*, *Trochus viridis* and *Cantharidus purpureus* were recorded (Fig. 19B).

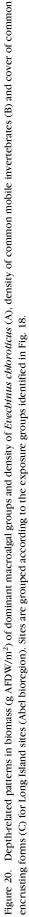
### Long Island

The sites sampled at Long Island spanned a large gradient from inner Queen Charlotte Sound to more exposed outer parts of the Sound and the sites fell into all of the exposure groups identified for the Abel bioregion (Fig. 18). The inner-






most site, Blumine Island, formed its own very sheltered group and was the only site sampled in the entire Northern Province that completely lacked a shallow band of *Carpophyllum maschalocarpum* (Fig. 20A). Large brown algae were absent at this site and crustose coralline algae were the dominant algal group at all depths. Small amounts of filamentous and turfing algae (e.g. *Polysiphonia* sp. and *Chondria* sp.) were present at shallow depths. *Evechinus chloroticus* occurred at moderately low densities (c.  $1/m^2$ ) across all depths. *Turbo smaragdus* occurred at high densities in the shallow stratum (< 2 m), *Cellana stellifera* was abundant at mid-depths, and *Maoricolpus roseus* was abundant in the deepest strata (4-12 m) (Fig. 20B). Crustose coralline algae dominated the shallow stratum, but at greater depths sediment was the dominant cover (Fig. 20C). Bare rock also made up an important component of the substratum.


Large brown algae were also scarce at sites in the sheltered group, except for *C. maschalocarpum* in the immediate subtidal (< 2 m deep). Moderate densities of *E. chloroticus* occurred at shallow depths and densities tended to decline with depth (Fig. 20A). Mobile macroinvertebrates and substratum cover showed similar patterns to those of Blumine Island, although the numbers of *Patiriella* spp. and percentage cover of the cup coral *Culicia rubeola* were higher (Fig. 20B, C). Moderately exposed sites mainly differed in the occurrence of *C. flexuosum* at 4-6 m. The numbers of *E. chloroticus*, *Trochus viridis*, *Cantharidus purpureus*, *Cookia sulcata* and *Patiriella* spp. also tended to be higher than at the sheltered sites. Consistent with increasing wave exposure and/or water movement, the percentage cover of sediment was lower, compared to the more sheltered sites (Fig. 20C).

At the exposed-offshore sites, *Carpophyllum flexuosum* stands were present at depths of 4-9 m, and sea urchins were abundant only in the deepest stratum (10-12 m) (Fig. 20A). *Carpophyllum flexuosum* exhibited a sheltered morphology (Cole et al. 2001) and formed forests typical of sheltered sites in other parts of the country, e.g. Long Bay. *Ecklonia radiata* was also present at 10-12 m interspersed with *C. flexuosum*. *Macrocystis pyrifera*, *Marginariella urvilliana* and tall *Sargassum sinclairii* plants (> 2 m length) also occurred at the Motuara Island site, which was subject to strong currents. In general, the biomass of red foliose algae, e.g. *Rbodymenia* sp. and *Asparagopsis armata*, increased with depth. Crustose coralline algae dominated the substratum at shallow depths, whereas sediment dominated the deepest stratum (Fig. 20C). Mobile macro-invertebrate species were not as common as at the other sites (Fig. 20B), although *Cantharidus purpureus* tended to be more abundant, possibly associated with the higher biomass of *E. radiata*.

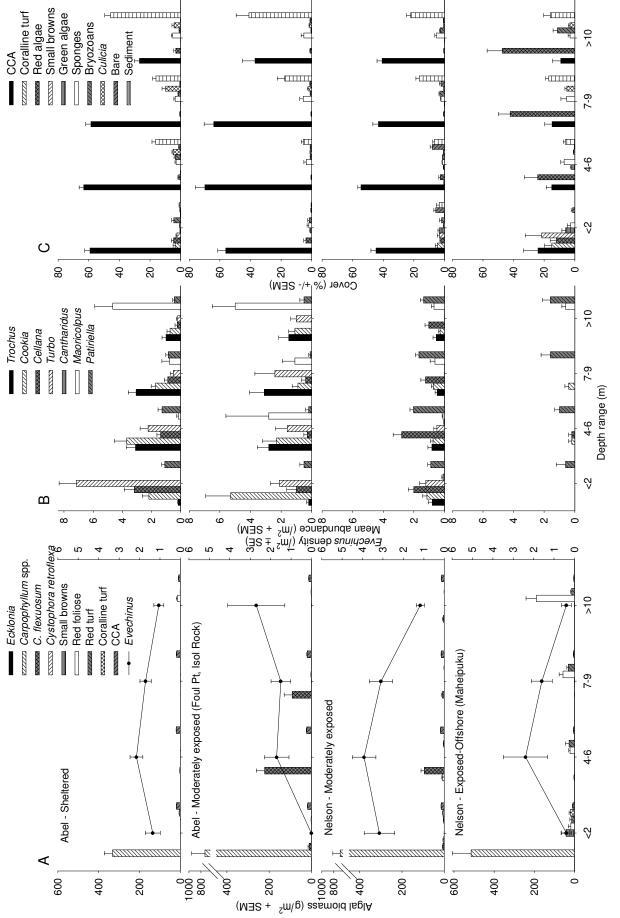
#### Abel Tasman

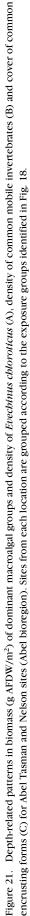
Two sites at Abel Tasman (Foul Point and Isol Rock) were grouped in the moderately exposed group whereas the others were classified as sheltered (Fig. 18). Algal and invertebrate assemblages were similar to those seen in equivalent groups at Long Island. At sheltered sites, the shallow band of *Carpophyllum maschalocarpum* extended to depths less than 2 m and *Evechinus chloroticus* occurred at moderate-low densities across all depths (Fig. 21A). Intermediate exposure sites were characterised by stands of *C. flexuosum* at mid-depths





(4-6 m and 7-9 m) and variable densities of *E. chloroticus. Ecklonia radiata* was absent from all Abel Tasman sites (but see Davidson & Chadderton 1994). There was little difference in mobile macroinvertebrates between the two groups (Fig. 21B), except *Turbo smaragdus* was more abundant at the sheltered sites. *Cookia sulcata, Trochus viridis* and *Maoricolpus roseus* were common at all sites. Crustose coralline algae were the dominant substratum cover at all depths, except for at 10-12 m, where sediment was the dominant cover (Fig. 21C). The percentage cover of sponges and bryozoans was notably higher than that recorded at Long Island sites.


### Nelson


All of the Nelson sites were grouped into the moderately exposed group, except for Maheipuku (exposed-offshore group). Carpophyllum maschalocarpum was the dominant large brown algae at all the sites sampled and was generally restricted to the shallow depth stratum (< 2 m), where it formed dense stands (Fig. 21A). Glossophora kunthii, Sargassum sinclairii, C. flexuosum, Cystophora retroflexa and C. torulosa were also occasionally found in this shallow zone. Ecklonia radiata was absent from all sites. For the moderately exposed sites, depth distributions of large browns and Evechinus chloroticus were consistent with those seen for this group at Long Island. Carpophyllum flexuosum and Sargassum sinclairii were common at 4-6 m, although most of the C. flexuosum was short (< 0.5 m long) and appeared to be grazed by sea urchins. With increasing depth (7-9 m and 10-12 m), the density of *E. chloroticus* tended to decline and large brown algae became rare, with the exception of a few sparsely distributed C. flexuosum. The substratum was dominated by crustose coralline algae at all depths, but the percentage cover of sediment, sponges and bryozoans increased with depth (Fig. 21C). Mobile macroinvertebrates were present in moderate numbers, with Cellana stellifera and Patiriella spp. being the most abundant at all depths (Fig. 21B). The ambush star Stegnaster inflatus was also common at some sites.

Algal community structure at Maheipuku was considerably different from that of other sites within the exposed-offshore group. The reef at this site consisted of a relatively steep wall sloping to 13 m deep. *Carpophyllum maschalocarpum* dominated the shallow depth stratum and large brown algae were rare at greater depths where red foliose and red turfing algae dominated (e.g. *Asparagopsis armata, Anotrichium crinitum* and *Plocamium* spp.) (Fig. 21A). *Carpophyllum flexuosum* was not recorded at this site, but other brown algae including *Sargassum sinclairii*, *Demarestia ligulata, Carpomitra costata* and *Halopteris* sp. were common. *Evechinus chloroticus* occurred at lower numbers compared with other Nelson sites, and the percentage cover of crustose coralline algae was low. Dominant percentage cover categories were red turfing and foliose algae, sediment, bryozoans and sponges (Fig. 21C). Mobile macroinvertebrates were rare, except for *Patiriella* spp., which was found at all depths (Fig. 21B).

## 3.4.5 Cook bioregion

All sites sampled at Wellington and Kaikoura were relatively exposed to the open sea and there was little variation in algal community structure, with sites from the two locations separated at the 75% similarity level (Fig. 22A). There

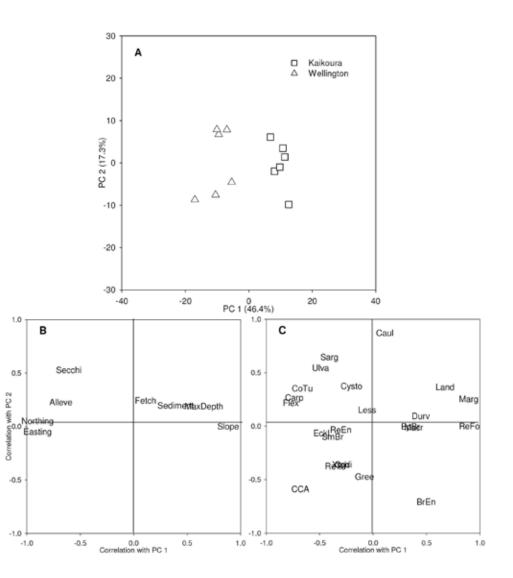


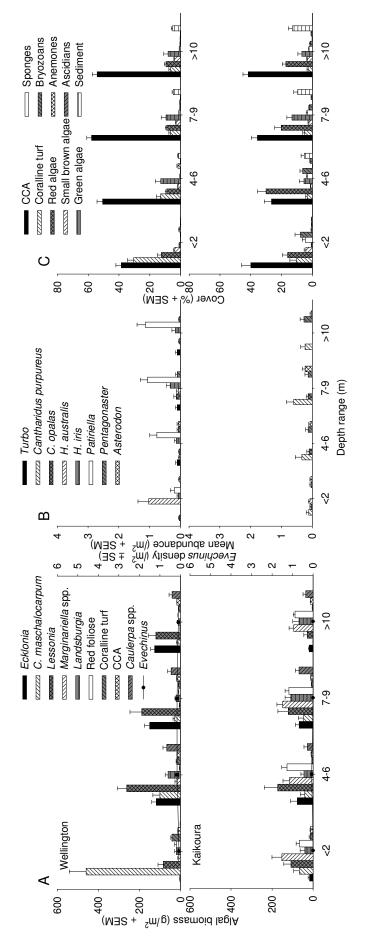


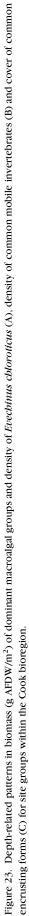
was no clear division between sites sampled on the northern and southern side of the Kaikoura Peninsula, or among sites at Wellington associated with any clear geographic or environmental gradients. The environmental variables Slope, Secchi and MaxDepth were strongly correlated with PC1 (Fig. 22B). Wellington sites tended to have more gently sloping reefs and clearer water than the Kaikoura sites. Differences in the dominant species between the two locations are reflected in the correlations with PC1. *Carpophyllum maschalocarpum* and *C. flexuosum* were more abundant at Wellington, whereas *Landsburgia quercifolia*, *Marginariella* spp. and red foliose algae were more abundant at Kaikoura (Fig. 22C).

#### Wellington

Algal community structure on Wellington's south coast shared several similarities with both Northern and other Southern locations (Fig. 2). As in Northern locations, the immediate subtidal was dominated by *Carpophyllum maschalocarpum*, and *Pterocladia lucida* was also abundant, but species more typical of Southern locations were also abundant in this zone at some sites, e.g. *Marginariella urvilliana*, *Landsburgia quercifolia* and *Lessonia variegata* (Fig. 23A, Appendix 5). *Lessonia variegata* was dominant at greater

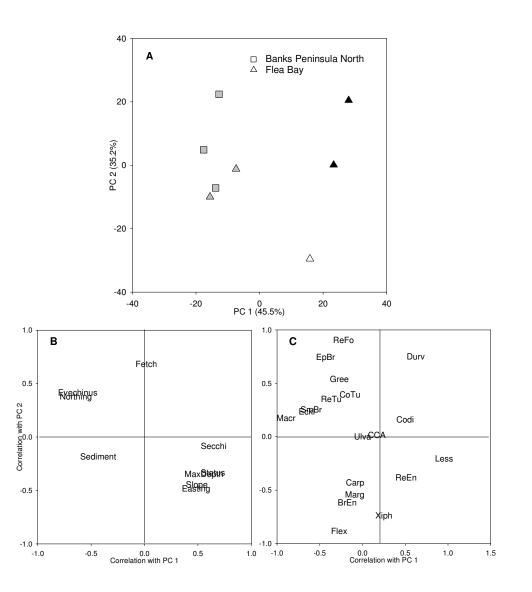




Figure 22. Principal coordinates analysis of sites sampled in the Cook bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites from both locations were separated at the 75% similarity level. depths but formed mixed algal assemblages with *Ecklonia radiata*, *Landsburgia quercifolia* and *M. urvilliana*. There was a diverse understorey of red algae, including *Euptilota formosissima*, *Callophyllis* spp., *Craspedocarpus erosus*, *Plocamium* spp. and *Rhodophyllis gunnii*. Large areas were also dominated by the green algae *Caulerpa brownii*, and to a lesser extent *C. flexilis* and *C. articulata*. *Carpophyllum flexuosum* was common at the most sheltered site, at the entrance to the Wellington Harbour (Palmer Head), and low numbers of both *Macrocystis pyrifera* and the exotic *Undaria pinnatifida* were recorded at this site. *Evechinus chloroticus* and other mobile invertebrates were rare, although *Haliotis australis* was common in the shallow depth stratum, and *Patiriella* spp. were common across deeper strata (Fig. 23B). Crustose coralline algae were the dominant substratum, whereas the green algae *Caulerpa* spp. and also *Ulva* spp. were important at greater depths (Fig. 23C).


### Kaikoura

Algal assemblages at Kaikoura were dominated by a mixture of large brown and red foliose algae at all depths (Fig. 23A). Carpophyllum maschalocarpum was found only in the shallow stratum and mixed with Landsburgia quercifolia, Lessonia variegata, Marginariella urvilliana and red foliose algae. Ecklonia radiata was abundant in mixed stands with L. variegata and M. boryana at 4-8 m at the northern sites but was rare at southern sites, which are more exposed to the prevailing southerly swell. Marginariella boryana dominated the deepest strata at the northern sites, whereas Landsburgia quercifolia was the dominant large brown alga at these depths for the southern sites. Sargassum sinclairii and *Macrocystis pyrifera* were present in low biomasses at sites on the northern side of the peninsula. Some Durvillaea willana plants occurred in the shallow stratum at the southern sites. The Kaikoura sites had a diverse red algal flora that achieved high biomasses across all depths. At shallow depths the red algal species Pterocladia lucida, Hymenocladia sanguinea, Cladhymenia oblongifolia and Rhodymenia spp. were most common, whereas for the deeper strata Euptilota formosissima, Hymenena palmata, Craspedocarpus erosus, Plocamium spp., Rhodophyllis gunnii, Schizoseris spp., Streblocladia glomerulata and Rhodymenia obtusa were most common (Appendix 5). The green alga Caulerpa brownii was also common in the deepest strata (7-9 m and 10-12 m) (Fig. 23A). Mobile macroinvertebrates, e.g. the two starfish species Diplodontias sp. and Pentagonaster pulchellus, occurred in low numbers (Fig. 23B). Crustose coralline algae were the dominant substratum cover (Fig. 23C), but there was a relatively high percentage cover of other encrusting forms, in particular red foliose algae and the green algae Caulerpa brownii. Sites at Kaikoura generally had higher percentages cover for sponges, bryozoans and sediment than Wellington sites, which is consistent with the higher turbidity recorded at Kaikoura.

# 3.4.6 Banks bioregion


Algal community structure at Banks Peninsula North and Flea Bay were similar to those of Northern locations (Fig. 2), largely owing to the predominance of *Carpophyllum maschalocarpum* in the shallow subtidal and *C. flexuosum* at greater depths. The Banks bioregion sites were divided into three groups at the 60% similarity level (Fig. 24A). The relationship between these groupings and



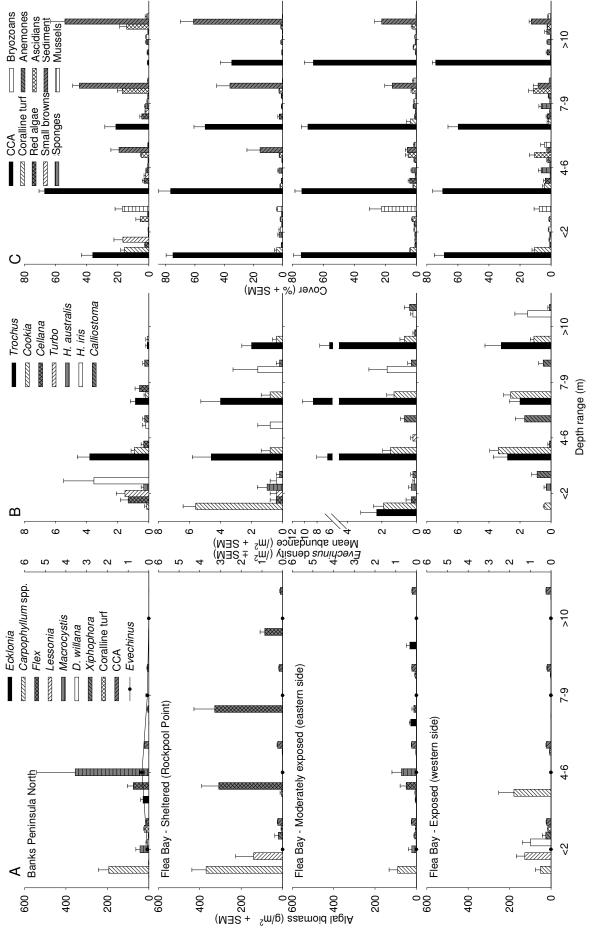


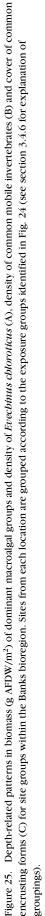
Shears & Babcock-New Zealand's shallow subtidal reef communities

environmental variables was not clear (Fig. 24B), most likely because of the low number of sites sampled. However, differences in algal community structure among groups were broadly consistent with a wave-exposure gradient and groups were subjectively named according to their relative exposure levels. The Banks Peninsula North sites and the two sites from the eastern side of Flea Bay (Hectors Wall and Flea East) made up the moderately exposed group, whereas the sites on the western side of Flea Bay were divided into two groups; the most sheltered site (Rockpool Point) formed one group, whereas the more exposed outer sites (Outer West and Tern Rock) formed the other. Secchi and Sediment were correlated with PC1 (Fig. 24B) which corresponded to the higher turbidity and higher percentage cover of sediment at the Banks Peninsula North sites. There was a general gradient in species composition along PC1, from moderately exposed sites with Macrocystis pyrifera and Ecklonia radiata to exposed sites dominated by Lessonia variegata (Fig. 24C). However, Fetch was strongly correlated with PC2 and reflected the differences between the sheltered site (Rockpool Point) and the other sites. The species most strongly correlated with PC2 included C. flexuosum and Xiphophora gladiata, which were more abundant at Rockpool Point, and Durvillaea willana, which was more abundant at the exposed western sites at Flea Bay.



coordinates analysis of sites sampled in the Banks bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to groupings identified at the 75% similarity level. Black = exposed. grey = moderately exposed, white = sheltered.


Figure 24. Principal


#### **Banks Peninsula North**

Large brown algae extended to a maximum depth of 8m at Banks Peninsula North sites and all fleshy macroalgae were rare in the deepest stratum (10-12m). Carpophyllum maschalocarpum formed a patchy band in the shallow depth stratum, with Marginariella urvilliana, D. antarctica and Macrocystis pyrifera also occurring (Fig. 25A). At this depth Haliotis iris was abundant  $(3.5 \pm 2.0/\text{m}^2)$ , along with the stalked ascidian *Pyura pachydermatina*  $(16 \pm 7.0/m^2)$  and the mussel *Perna canaliculus* (Fig. 25B,C). The brown algal species Glossophora kunthii, Desmarestia ligulata, Halopteris sp. and Microzonia velutina were also common in the shallow subtidal. Macrocystis pyrifera and C. flexuosum were the dominant macroalgal species at 4-6 m of depth and Ecklonia radiata also occurred at this depth. Below 6 m, large brown algae were rare and the substratum was mainly covered by sediment and solitary ascidians (Fig. 25C). Red foliose and red turfing algae were rare at all sites and only small amounts of Rhodophyllis gunnii, Anotrichium crinitum and Plocamium spp. were found at 4-6 m and 7-9 m. Low numbers of Evechinus chloroticus were recorded at all depths; however, patches of E. chloroticus were common in the shallow subtidal at c. 3 m of depth (NS, pers. obs.). Similarly, patches of H. iris (<125 mm shell length) were also observed at this depth. Trochus viridis occurred at moderate numbers at mid-depths, whereas low numbers of Cellana stellifera, Cookia sulcata and Turbo smaragdus were also found at depths down to 9 m (Fig. 25B).

### Flea Bay

Algal community structure at the sheltered site (Rockpool Point) was comparable to that at sheltered sites in Northern locations (e.g. Long Bay) with low algal diversity, a shallow band of Carpophyllum maschalocarpum, and C. flexuosum forests dominating the deeper strata (Fig. 25A). One exception was the occurrence of Lessonia variegata in the shallow subtidal. No red foliose, red turfing or green algal species were recorded at this site and coralline turf was relatively rare. Cookia sulcata and Trochus viridis were abundant across all depths and Haliotis iris was common in the deepest strata (7-9 m and 10-12 m) (Fig. 25B). Crustose coralline algae were the dominant encrusting form at all depths; however, the percentage cover of sediment was high in the deepest strata (Fig. 25C). Moderately exposed sites (eastern Flea Bay) had relatively low biomass of macroalgae at all depths, which may be due to shading effects as both sites were south facing with steeply sloping reefs. Carpophyllum maschalocarpum, Durvillaea willana and Marginariella urvilliana dominated the shallow stratum, whereas C. flexuosum and Macrocystis pyrifera dominated at 4-6 m. Low numbers of Ecklonia radiata and Marginariella urvilliana (sheltered morphology; Adams 1994) were present at 10-12 m. Red foliose, red turfing and green algal species were rare at all depths, and the percentage cover of crustose coralline algae declined with depth and that of sediment increased (Fig. 25C). Perna canaliculus and Pyura pachydermatina were abundant at shallow depths. Trochus viridis was abundant at all depths and low numbers of Cookia sulcata, Haliotis iris and Calliostoma punctulatum also occurred (Fig. 25B). Exposed western Flea Bay sites (Tern Rock and Outer West) were dominated by Carpophyllum maschalocarpum, L. variegata and D. willana at 0-2 m, and C. maschalocarpum at 4-6 m, whereas all fleshy macroalgae were rare at greater depths (Fig. 25A). Crustose coralline





algae were the dominant substratum cover at all depths although sponges and solitary ascidians had a relatively high percentage cover in the deeper strata (Fig. 25C). *Pyura pachydermatina* was abundant at 4-6 m (28.2 ± 11.9/m<sup>2</sup>) and 7-9 m (13.3 ± 7.2/m<sup>2</sup>). Red foliose algae were more common at these sites, particularly as epiphytes on *P. pachydermatina*, e.g. *Callophyllis hombroniana* and *Hymenocladia sanguinea*. Large specimens of *H. iris* (up to 145 mm shell length) were common at 10-12 m.

# 3.4.7 Buller bioregion

All sites at Cape Foulwind and Karamea were highly exposed to large southwesterly swells, and had shallow reefs (<11 m maximum depth) with high sandscour and turbidity. Algal and benthic community structure at these locations was unique at the national scale (Figs 2 and 9). Most key habitat-forming species were absent (e.g. Ecklonia radiata, Carpophyllum spp.) and the reefs were dominated by encrusting invertebrates (Fig. 10). Cluster analysis revealed no clear site groupings associated with any clear spatial or environmental gradients (Fig. 26A). However, several environmental variables were correlated with PC1, and suggested a gradient in community structure between inshore sites and two sites (Fishing Rod Reef and South Seal Rocks) located on offshore rockstacks (known as 'Three Steeples') at Cape Foulwind, which are surrounded by clearer, deeper water and have lower wave-exposure estimates as they have some protection from the prevailing southwesterly swell (Fig. 26B). Secchi was negatively correlated with PC1, whereas Fetch was positively correlated with it, being higher at inshore sites. Evechinus was also negatively correlated with PC1 and was only recorded at the two offshore sites. The algal groups responsible for this pattern appeared to be red turfing algae, ephemeral brown algae (e.g. Endarachne binghamiae and Glossophora kunthii) and brown encrusting algae, which were more common at offshore sites, whereas Durvillaea willana, red foliose algae and crustose coralline algae were more common at the inshore sites (Fig. 26C). Additional information on the reef communities and habitat types found at these sites is given in Shears (2007).

### Karamea

Large brown macroalgae were absent from all the Karamea sites and the shallow stratum (<2 m) was dominated by the mussel *Perna canaliculus*, crustose coralline algae, red foliose and red turfing algae (e.g. *Ballia callitrichia* and *Echinothamnion* sp.) (Fig. 27A). The brown algae *Glossophora kunthii*, *Halopteris* sp. and *Endarachne binghamiae* were also present (Appendix 5). *Ulva* spp. were also common on mussels at Little Wanganui Inlet. At greater depths, macroalgae were rare except for a low percentage cover of crustose coralline algae. Instead the substratum was dominated by encrusting invertebrates (sponges, ascidians and bryozoans), bare rock and sediment (Fig. 27C). At 10-12 m, the majority of the substratum was bare rock, most likely owing to high levels of sandscour. Mobile macroinvertebrates were rare at Karamea sites, with *Stichaster australis* and *Patiriella* spp. being the most common (Fig. 27B).

### **Cape Foulwind**

The sites at Cape Foulwind exhibited a similar pattern in algal community structure to that of Karamea sites, except that *Durvillaea willana* occurred in the shallow stratum at Granite Spot, and crustose coralline algae and red

turfing algae extended to greater depths (Fig. 27A). A short turfing *Halopteris* species (probably *H. congesta*) dominated the shallow stratum at most sites. *Gymnogongrus humilis* and *Ballia callitrichia* were the dominant red foliose algal species in the shallow stratum, although *Plocamium* spp., *Echinothamnion* sp. and *Lophurella hookeriana* were also common (Appendix 5). *Sargassum sinclairii* and *Codium convolutum* were locally abundant at South Seal Rocks. The deeper strata were dominated by sediment, bare rock, the mussel *Xenostrobus pulex*, bryozoans and ascidians (Fig. 27C). Barnacles extended into the shallow subtidal and the hydroid *Amphisbetia bispinosa* ('mussel beard') was relatively common across all depths. *Haliotis iris* was abundant in the deepest stratum, occurring in patches on bare rock. The starfish species *Stichaster australis* (> 1/m<sup>2</sup>) and *Patiriella* spp. occurred at relatively high densities across all depths (Fig. 27B).

## 3.4.8 Westland bioregion

There was a clear distinction in algal community structure between the sites at Open Bay Islands and sites at the mainland locations (Fig. 8A). Algal community structure at the mainland locations in Westland was broadly similar to that of the Buller locations, with stands of large brown algae being rare and short red foliose and turfing algae dominating (Fig. 3). In contrast, large brown algae were

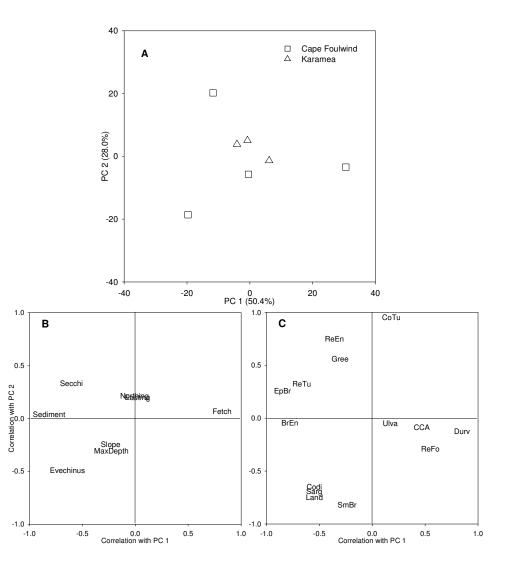
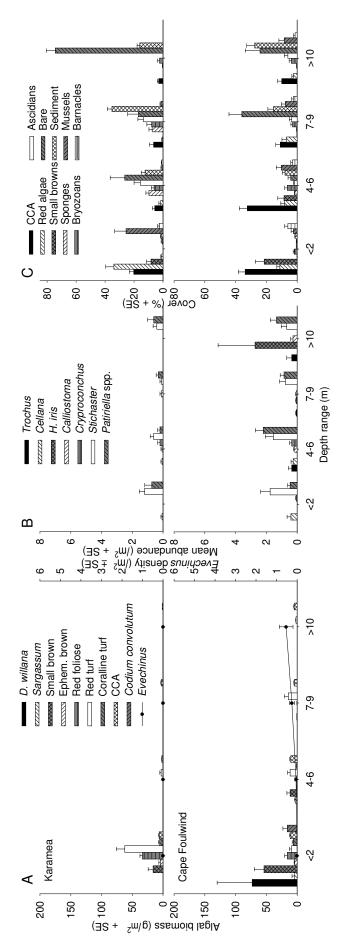




Figure 26. Principal coordinates analysis of Buller sites based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes).





abundant at Open Bay Islands, and these sites were more closely grouped to Fiordland sites (Fig. 2). There was a strong negative correlation between PC1 and Secchi, which reflected the coastal-offshore gradient between locations (Fig. 28B). Evechinus was also negatively correlated with PC1 owing to its higher abundances at Open Bay Islands. The higher abundances of *Ecklonia radiata*, *Landsburgia quercifolia*, *Carpophyllum flexuosum* and *Sargassum sinclairii* at Open Bay Islands was reflected by their negative correlation with PC1 (Fig. 28C). Red turfing algae and small brown algae were positively correlated with PC1 and these generally were recorded at higher biomasses at the mainland locations. Additional information on the reef communities and habitat types found at these sites is given in Shears (2007).

#### **Open Bay Islands**

The organisation of algal assemblages at Open Bay Islands differed considerably from the other highly exposed West Coast locations, with *Ecklonia radiata* and *Landsburgia quercifolia* dominating at shallow depths (Fig. 29A). However, the sites sampled were located in small embayments or areas where there was some shelter from the large southwesterly swell, particularly the NE Taumaka site. *Ecklonia radiata* and *L. quercifolia* had a short (< 50 cm total length), leathery wave-adapted morphology at SE Popotai. *Carpophyllum flexuosum* and *Sargassum sinclairii* were common at 4-6 m,

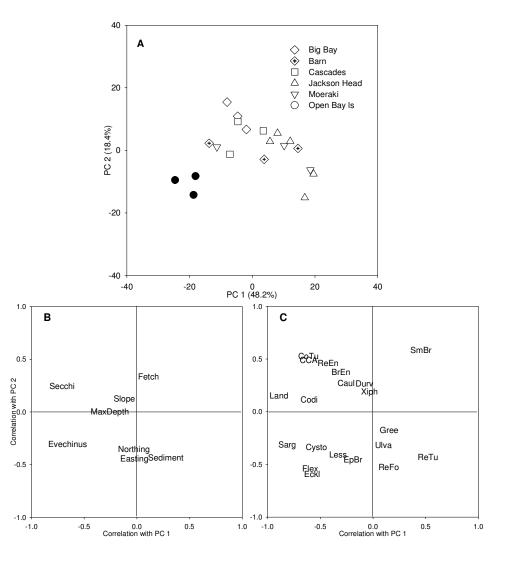
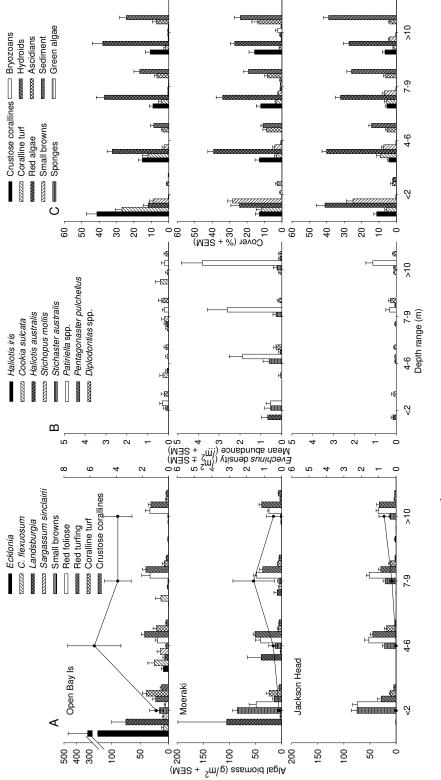
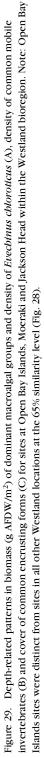
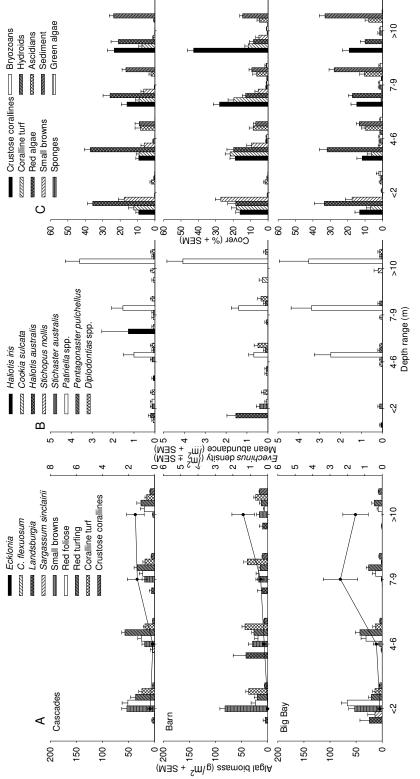
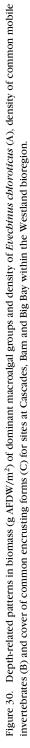





Figure 28. Principal coordinates analysis of Westland sites based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to grouping at the 65% similarity level.






red foliose (predominantly *Asparagopsis armata*, *Rhodophyllis gunnii* and *Anotrichium crinitum*) and red turfing algae were abundant at all depths, and *Evechinus chloroticus* occurred in dense patches in the deeper strata (7-9 m and 10-12 m). Mobile macroinvertebrates occurred at low numbers (Fig. 29B), although *Turbo smaragdus* was common in the < 2 m depth stratum at NE Taumaka  $(2.4 \pm 2.2/m^2)$ , suggesting this site is relatively protected from large swells. Numerous *Astrostole scabra* were observed feeding on *E. chloroticus* at 10-12 m. The dominant substratum covers were crustose coralline algae, coralline turf, red algae and, to a lesser extent, small brown algae (predominantly *Microzonia velutina*) at shallow depths, and red algae, ascidians (mostly solitary species) and sediment in the deeper strata (Fig. 29C).


#### Moeraki and Jackson Head

Depth-related patterns in algal community structure and substratum cover were similar for Moeraki and Jackson Head sites (Fig. 29). Large brown algae were rare (although Landsburgia quercifolia and Sargassum sinclairii were common at Arnott Point) and the reef was covered by a diverse foliose and turfing algal community (Fig. 29A). The immediate subtidal was dominated by a short algal turf assemblage, predominantly Echinothamnion sp., Lophurella hookeriana, *Halopteris* sp., with coralline turf, crustose coralline algae and red turfing algae. Glossophora kunthii, Microzonia velutina, Plocamium spp., Asparagopsis armata, Codium convolutum and Colpomenia sinuosa were also common (Appendix 5). At greater depths, the percentage cover of coralline turf declined, and sediment and solitary ascidians covered most of the substratum (Fig. 29C). The dominant red foliose algae were *Plocamium* spp., *Euptilota formosissima*, Anotrichium crinitum, Lophurella hookeriana, Rhodophyllis gunnii and Ballia callitrichia. The small browns Carpomitra costata, Halopteris spp. and Microzonia velutina were common, and Spatoglossum chapmanii and a Dictyota sp. were also present. Individual *Evechinus chloroticus* were large (> 100 mm TD, Appendix 6) and most abundant in the deeper strata (Fig. 29A). *Patiriella* spp. was the most abundant mobile macroinvertebrate species, particularly at Moeraki sites (Fig. 29B). Other mobile macroinvertebrates occurred at low numbers, e.g. Stichopus mollis, Pentagonaster pulchellus, Diplodontias spp., Coscinasterias muricata and Stichaster australis.

#### Cascades, Barn and Big Bay

Algal community structure at these locations was generally similar to that of Moeraki and Jackson Head (Fig. 30A), although *L. quercifolia* and *S. sinclairii* tended to be more common, particularly at Crayfish Rocks (Big Bay). In general, the biomass of *L. quercifolia* tended to be highest at locations with greater water clarity, e.g. Crayfish Rocks and Barn Island. Small brown algae and red foliose algae dominated the < 2 m depth stratum at most sites, while red turfing algae, crustose corallines, coralline turf and sediment dominated at greater depths (Fig. 30B). *Evechinus chloroticus* was most abundant in the deepest strata and formed patches of urchin barrens habitat (areas up to 10–30 m<sup>2</sup>) at Crayfish Rocks. A number of algal species were particularly abundant at the Crayfish Rocks site, e.g. *Caulerpa brownii* and *Dictyota* spp. As for Moeraki and Jackson Head sites, *Patiriella* spp. was the most abundant mobile macroinvertebrate, although *Haliotis australis* was common in the < 2 m depth stratu at Barn sites, and patches of *Haliotis iris* were recorded in the 7-9 m depth stratum at the Cascades sites (Fig. 30A).





# 3.4.9 Chalmers bioregion

Algal community structure at Otago Peninsula and Catlins was distinctive from other locations (Fig. 2), and several large brown algal species common in Southern locations were notably absent, e.g. *Ecklonia radiata*, *Carpophyllum flexuosum*, *Marginariella* spp. and *Macrocystis pyrifera*. All sites sampled in this bioregion were relatively steeply sloping and highly exposed to southerly swells. There was little variation in algal community structure among sites (Fig. 31A) and there were no clear patterns associated with environmental variables (Fig. 31B). The Tuhawaiki site (far left of ordination) had the lowest wave exposure and highest percentage cover by sediment, and had several species that were not found at other sites, e.g. *Caulerpa flexilis, Cystophora platylobium, Xiphophora gladiata* and *Landsburgia quercifolia*, which were negatively correlated with PC1 (Fig. 31C).

The immediate subtidal (< 2 m) was dominated by a forest of *Durvillaea willana* (Fig. 32A), consisting of plants up to 3 m tall with stipes up to 150 mm in diameter. The forests extended to depths of c. 3 m and had a unique understorey assemblage dominated by mats of *Ballia callitrichia*, coralline turf and crustose coralline algae. Several other red algal species were common in this habitat, including *Camontagnea hirsuta*, *Plocamium cirrbosum*, *Callophyllis calliblepharoides*, *Heterosiphonia concinna*, *Lophurella bookeriana* and *Hymenena durvillaei*.

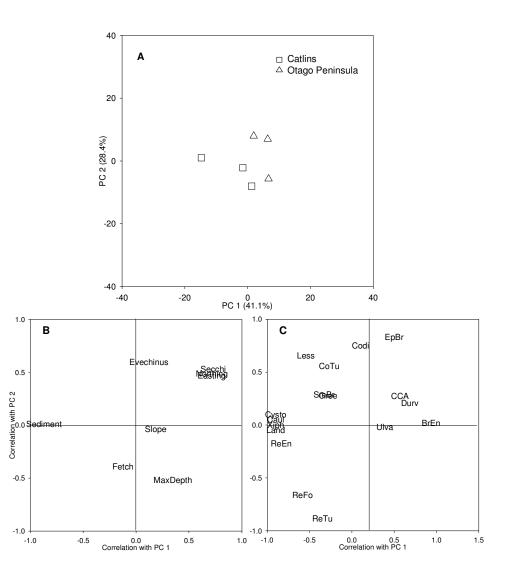
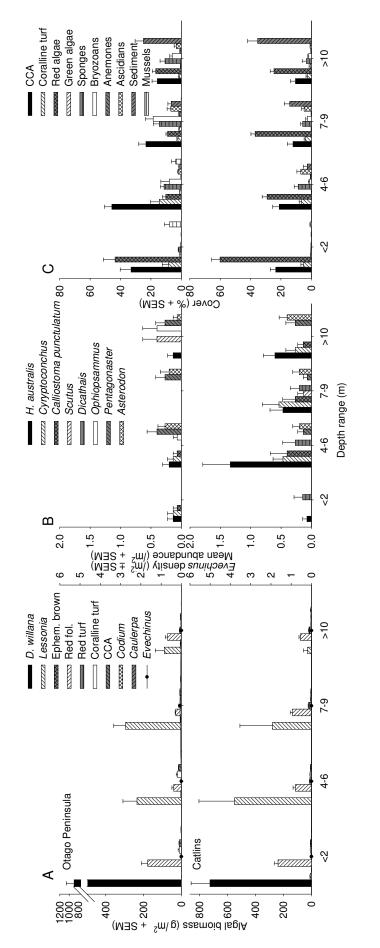
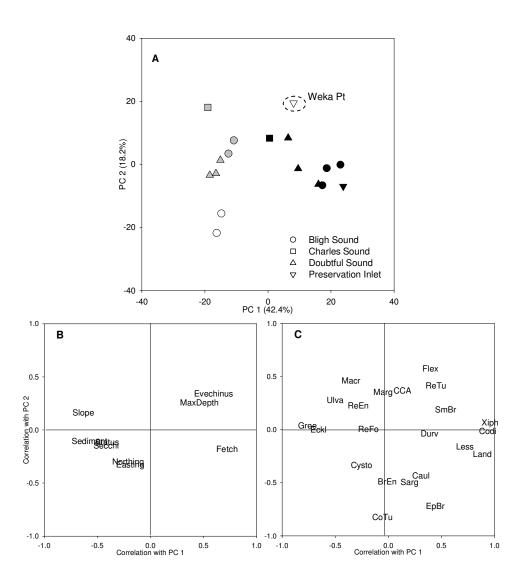



Figure 31. Principal coordinates analysis of sites sampled in the Chalmers bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes).


Mussels (predominantly Perna canaliculus) were also common in this stratum (Fig. 32C), along with *Haliotis australis* and *Cryptoconchus porosus* (Fig. 32B). At greater depths, Lessonia variegata was the dominant large brown alga, and co-occurred with a diverse assemblage of red foliose algal species including Callophyllis hombroniana, C. ornata, Cladhymenia oblongifolia, Curdiea flabellata, Euptilota formosissima, Hymenena palmata, Laingia bookeri, Rhodymenia obtusa, Schizoseris dichotoma and Streblocladia glomerulata (Appendix 5: Table A5.2). Very low numbers of Landsburgia quercifolia and Cystophora platylobium were recorded. Green algae such as Ulva spp., Caulerpa flexilis and Cladophora spp. were occasionally recorded and Codium convolutum was common at Otago Peninsula sites. Evechinus chloroticus was rare (only one recorded), and other grazing invertebrates including Haliotis australis, H. iris and Scutus breviculus occurred in low numbers (Fig. 32B). Haliotis australis was the most common grazing invertebrate, and was found at all depths sampled. Starfishes, including Pentagonaster pulchellus, Diplodontias spp., Stichaster australis and the ophiuroid Ophiopsammus maculata, were found at low numbers ( $< 1/m^2$ ). The percentage cover of crustose coralline algae was relatively low at these locations, with the substratum being covered largely by red algae, sediment and a suite of encrusting invertebrates, in particular sponges, bryozoans and solitary ascidians (Fig. 36C). The percentage cover of red foliose algae tended to be higher at the Catlins, whereas the percentages cover of crustose coralline algae, sponges and ascidians were higher at Otago Peninsula. The ascidian *Pyura pachydermatina* was abundant at depths greater than 4 m.

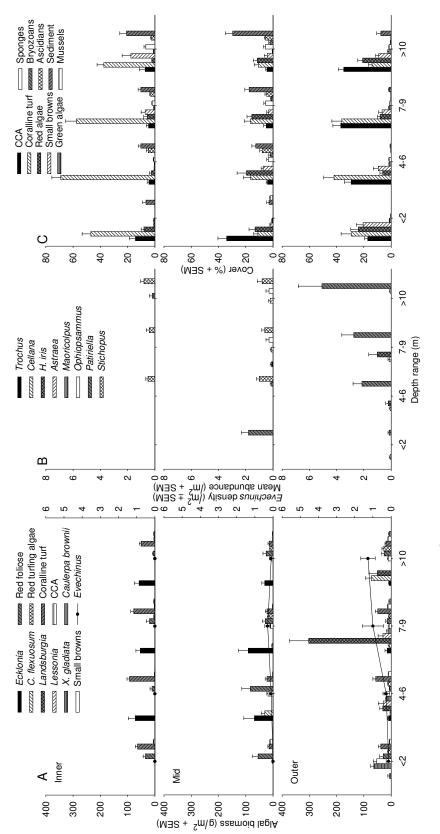
## 3.4.10 Fiordland bioregion

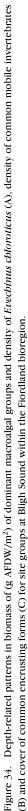

Sites from Fiordland locations were divided into four groups at the 70% similarity level (Fig. 33A), although Weka Point (Preservation Inlet) was separated from all other sites at the 55% similarity level. There were no clear differences in algal community structure among Fiordland locations; instead, groupings broadly corresponded to the position of sites in each fiord (outer, mid and inner), which was correlated with Slope, Sediment, Fetch and Evechinus along PC1 (Fig. 33B). Inner-fiord sites were more steeply sloping and had higher percentages cover of sediment, whereas outer-fiord sites had more gradually sloping reefs, and higher wave exposure and abundances of *Evechinus chloroticus. Landsburgia quercifolia, Lessonia variegata, Xiphophora gladiata* and *Carpophyllum flexuosum* were positively correlated with PC1 and had higher biomasses at outer-fiord sites, whereas *Ecklonia radiata, Macrocystis pyrifera*, red foliose algae, *Ulva* spp. and coralline turf were more typical of mid- and inner-fiord sites (Fig. 33C). Weka Point was grouped separately from other Fiordland sites, largely due to low biomasses of all macroalgal groups except *C. flexuosum*.

## **Bligh Sound**

The inner-fiord sites at Bligh Sound had low algal biomass across all depths (Fig. 34A). Coralline turf dominated all depths (Fig. 34A, C). Red turfing algae also dominated the shallow stratum (< 2 m), and *Sargassum sinclairii*, *Cystophora retroflexa*, *Pterocladiella capillacea*, *Adamsiella angustifolia* and *Hormosira banksii* were also present. In the deeper strata, *Ecklonia radiata*, *S. sinclairii*, *C. retroflexa*, *Codium gracile*, *Asparagopsis armata*, *Dictyota papenfussii* and *Caulerpa brownii* were common. *Evechinus chloroticus* was not recorded, and






*Stichopus mollis* was the only common mobile macroinvertebrate (Fig. 34B). Encrusting invertebrates were rare in the shallow stratum, but sponges and ascidians were common in the deepest strata (Fig. 34C).

The mid-fiord sites also had relatively low algal biomass across all depths (Fig. 34A). Large brown algae were rare in the 0-2 m stratum, except for the occasional patch of plants of *Macrocystis pyrifera*  $(0.8 \pm 0.5/m^2)$ , and the substratum was dominated by crustose corallines, coralline turf, red algae (e.g. *P. capillacea*) (Fig. 34C). *Perna canaliculus* also covered a small proportion of the substratum (<5%). At greater depths, *Ecklonia radiata* and *Carpophyllum flexuosum* formed a sparse assemblage and *Evechinus chloroticus* was present in low numbers. Red foliose algal species were also common in the deeper strata, e.g. *Asparagopsisarmata*, *Anotrichiumcrinitum*, *Plocamium* spp., *Rhodophyllis gunnii* and *Euptilota formosissima*. The green algae *Codium gracile* and *Caulerpa brownii*, and the small brown algae *Zonaria* spp. and *Halopteris* sp., were also common. *Marginariella urvilliana* occurred at low numbers at 10-12 m and had a distinct sheltered morphology, with broad fronds (Adams 1994). Coralline turf, red foliose algae and sediment dominated the substratum in the

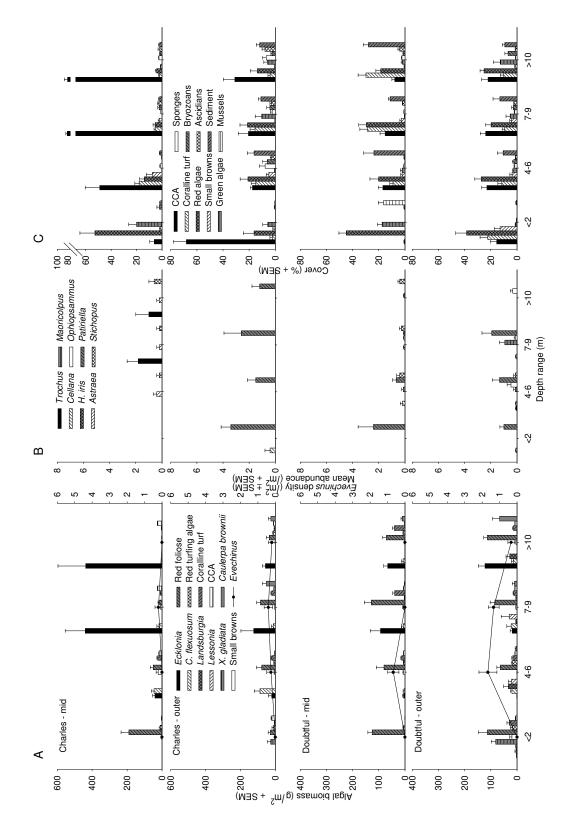
Figure 33. Principal coordinates analysis of sites sampled in the Fiordland bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Weka Point was distinct from other sites at the 55% similarity level. Remaining sites are shaded according to groupings identified at the 70% similarity level and reflect their relative positions in each fiord. Inner = white, mid = grey, outer = black.





deepest strata, although sponges, ascidians and bryozoans were also common (Fig. 34C). *Patiriella* spp. occurred at shallow depths, whereas *Stichopus mollis* and *Ophiopsammus maculata* were common in the deeper strata (Fig. 34B).

The outer, coastal sites at Bligh Sound had extensive stands of large Xiphophora gladiata (up to 80 cm total length) in the shallow stratum and extending down to c. 4m depth (Fig. 34A). Durvillaea willana was also present in low numbers in the immediate subtidal, along with a variety of red turfing and smaller brown algal species (e.g. Camontagnea birsuta, Lophurella hookeriana, Plocamium spp., Halopteris sp., Colpomenia sinuosa, Microzonia velutina and Glossophora kunthii). At 4-6m, X. gladiata was interspersed with Lessonia variegata, Landsburgia quercifolia, Ecklonia radiata, red foliose algae (e.g. Asparagopsis armata, Plocamium spp., R. gunnii), small brown algae (e.g. Halopteris sp., Dictyota papenfussii, Carpomitra costata, Zonaria spp.), green algae (Caulerpa brownii, Codium convolutum) and coralline turf. The morphology of E. radiata was characteristic of highly wave exposed sites, having short stipes and long primary laminae. Landsburgia quercifolia dominated at 7-9 m and co-occurred with short *Carpophyllum flexuosum* plants (<50 cm total length) at 10-12 m. The substratum was dominated by crustose corallines, coralline turf, red algae, small brown algae and the green alga *Caulerpa brownii* (Fig. 34C). Encrusting invertebrates and sediment covered a small proportion of the reef (<1%). Individual *Evechinus chloroticus* were large and they increased in abundance with depth, typically being found around the base of large boulders or rocky outcrops. Haliotis iris also occurred in isolated patches at some sites (Fig. 34B). Patiriella spp. was the most common mobile invertebrate and its abundance also increased with depth.


#### **Charles Sound**

At the mid-fiord site (Charles inner), large brown algae were absent from the shallow stratum and a mixture of red (Gigartina livida, Polysiphonia spp., *Pterocladiella capillacea*) and green (*Ulva* spp., *Cladophora* sp.) algae dominated (Fig. 35A). Mussels (Mytilus sp.) were also recorded in this stratum, but they covered only a small proportion of the reef (< 5%). At 4-6 m, crustose coralline algae and coralline turf dominated, with small amounts of Ecklonia radiata, Carpophyllum flexuosum and Macrocystis pyrifera present. In the deeper strata (7-9 m and 10-12 m), E. radiata dominated. Plants of E. radiata were large (up to 100 cm total length) and they resembled a forest more typical of Northern locations. Crustose coralline algae were the dominant substratum cover in the deeper strata, and sponges, bryozoans and ascidians covered a small percentage of the substratum (Fig. 35A). Mobile macroinvertebrates were absent from the shallow stratum, but at greater depths Trochus viridis, Astraea heliotropium and Stichopus mollis were common (Fig. 35C). At the outer Charles Sound site (Charles outer), Durvillaea willana and Xiphophora gladiata dominated the 0-2m depth stratum (Fig. 35A). Crustose corallines were the dominant cover beneath the D. willana, and Ballia callitrichia, Camontagnea birsuta and Ulva spp. were also common. Ecklonia radiata and Carpophyllum flexuosum were the dominant large brown algal species at greater depths, forming a sparse assemblage interspersed with *Caulerpa brownii* and red foliose algal species (e.g. Euptilota formosissima, Rhodymenia sp., Plocamium spp., Rhodophyllis gunnii, Asparagopsis armata). Marginariella urvilliana was also common at 4-6 m. The substratum in the deepest strata was covered by a mixture of crustose corallines, coralline turf, red algae, sponges, ascidians, bryozoans and sediment (Fig. 35C). *Patiriella* spp. was the only commonly recorded mobile invertebrate species across all depths (Fig. 35B).

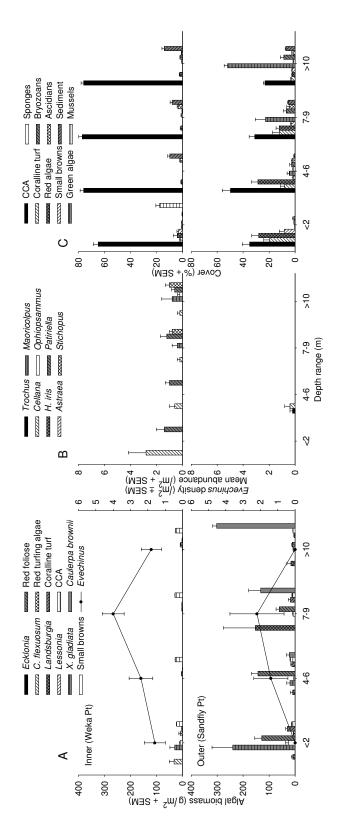
### Doubtful Sound

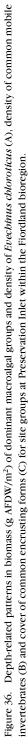
Three sites were sampled in outer Doubtful Sound, and three in the mid-fiord area at the intersection between Thompson and Doubtful Sounds. At mid-fiord sites, the shallow zone was comparable to the mid-fiord site in Charles Sound, with an absence of large brown algae, a dominance of red foliose algae (Polysiphonia spp., Gigartina spp., Gracilaria chilensis, Delisea elegans), and green algae (Chaetomorpha aerea, Cladophora spp., Ulva spp.) (Fig. 35A). However, barnacles and mussels (Perna canaliculus and Mytilus sp.) were also dominant in this depth stratum (5-50% cover). Evechinus chloroticus was absent from the shallow stratum, but most abundant at 4-6 m, where large brown algae were rare and the substratum was dominated by crustose corallines, coralline turf, red foliose algae and sediment (Fig. 35C). Ecklonia radiata was the dominant large brown algae at greater depths (7-9 m and 10-12 m), but was generally sparse, and coralline turf and red foliose algae (e.g. Euptilota formosissima, Rhodymenia sp., Plocamium spp., Rhodophyllis gunnii and Asparagopsis armata) dominated. Carpophyllum flexuosum, Marginariella urvilliana (sheltered morphology) and Sargassum verruculosum were also present in low densities in the deeper strata. The substratum was dominated by a red foliose algal mat, coralline turf and sediment, with a low percentage cover of sponges and ascidians (Fig. 39C). Patiriella spp. was common in the shallow stratum, but rarer at greater depths, where *Stichopus mollis* tended to be more common (Fig. 35B). Herbivorous gastropods were rare.

At sites located at the entrance of Doubtful Sound, the algal communities at all depths were characterised by a mixture of large brown algae, red foliose algae and green algae (Fig. 35A). The algal assemblages in the shallow stratum were similar to those of the outer Bligh Sound sites, with Xiphophora gladiata and Glossophora kunthii being abundant, along with coralline turf and several short turfing algal species (e.g. Halopteris sp. (probably H. congesta), Microzonia velutina, Lophurella hookeriana). Lessonia variegata and Landsburgia quercifolia were also common in the shallow stratum at some of the outer sound sites. Lessonia variegata was most common in the 4-6 m stratum, whereas Landsburgia quercifolia and Carpophyllum flexuosum were common at all depths excluding the 0-2 m stratum. Ecklonia radiata occurred in low numbers at all depths but was most abundant in the deepest stratum. Red foliose algae such as Euptilota formosissima, Plocamium spp., Rhodophyllis gunnii, Anotrichium crinitum and Delisea elegans were common at all depths, whereas Caulerpa brownii was most abundant at 10-12 m. Evechinus chloroticus occurred in dense patches in the 4-6m and 7-9m depth strata. Mobile macroinvertebrates were rare except for *Patiriella* spp. and *Ophiopsammus maculata* (Fig. 35B). The percentage cover of sponges and bryozoans tended to increase with depth, whereas the cover of coralline turf declined with depth (Fig. 35C).






### **Preservation Inlet**


Two sites were sampled at Preservation Inlet, one very sheltered site in the inner fiord (Weka Point) and one more exposed site at the fiord entrance (Sandfly Point). Reef communities varied considerably between these two sites (Fig. 36A). Large brown algae (*Xiphophora gladiata*, *C. flexuosum* and *C. retroflexa*) were restricted to the shallow stratum at Weka Point and CCA dominated at greater depths. The biomass and cover of other groups was low at these depths (Fig. 36C). *Evechinus chloroticus* was abundant across all depths sampled and *Cellana stellifera*, *Patiriella* spp., *Maoricolpus roseus* and *Stichopus mollis* were also common (Fig. 36B). The mussel *Mytilus* sp. was also a dominant component in the shallow stratum.

Sandfly Point was more similar to other outer Fiordland sites with *X. gladiata*, red foliose algae and coralline turf dominating the shallow strata (0-2 m and 4-6 m) and *Landsburgia quercifolia* and *Caulerpa brownii* dominating at 7-9 m (Fig. 36A). The deepest stratum (10-12 m) was dominated by *C. brownii* (> 50% cover). *Ecklonia radiata*, *Marginariella* spp., *Lessonia variegata* and *C. platylobium* were notably absent. Bryozoans, ascidians and sediment were an important component in the deeper strata (Fig. 36C). *Evechinus chloroticus* was recorded in relatively high numbers at 4-6 m and 7-9 m where it occurred in large patches. Other mobile macroinvertebrates were rare at all depths (Fig. 36B).

## 3.4.11 Stewart Island bioregion

The sites sampled in the Stewart Island bioregion spanned a large environmental gradient, from sheltered reefs inside Paterson Inlet to offshore islands and the highly exposed southern coast of the South Island. Based on algal community structure, sites were divided into six groups which broadly corresponded to this gradient (Fig. 37A). The sites from inside Paterson Inlet (excluding Octopus Island) formed one group (termed 'very sheltered') and were separated from the remaining more open coast sites at the 55% similarity level. The remaining sites were divided among five groups that broadly corresponded to differences in wave exposure. The most sheltered of these included sites on the northeastern coast of Stewart Island (termed 'sheltered'), while the most exposed sites sampled at Green Islets formed their own group ('Green Islets'). Three highly exposed sites formed another group and these were characterised by large Durvillaea willana forests and have been termed the 'Durvillaea' group. The remaining sites were divided among two groups: one including moderately exposed sites from Titi Islands, Port Adventure, Ruapuke Island and Codfish-Ruggedy (termed 'moderately exposed') and the other group included the more exposed sites from Bluff, Codfish-Ruggedy, Ruapuke and Titi Islands (termed 'highly exposed'). Fetch and Sediment were strongly correlated with PC1 and each explained 20% of the variation among sites (Fig. 37B, Table 4). These two variables were inversely correlated and sediment cover was typically highest at the most sheltered sites. Macrocystis pyrifera and Carpophyllum flexuosum were positively correlated with PC1 and more common at more sheltered sites, while Lessonia variegata, Landsburgia quercifolia, red foliose algae and coralline turf were negatively correlated and more abundant at exposed sites (Fig. 37C). Evechinus was positively correlated with PC2 and both Ecklonia radiata and Marginariella spp. were negatively correlated. Evechinus, Sediment and Fetch were all significantly related to algal community structure and explained 32% of the variation among sites (Table 4).





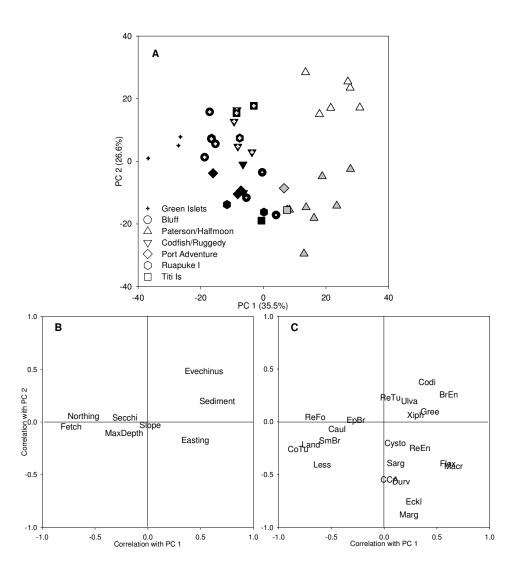
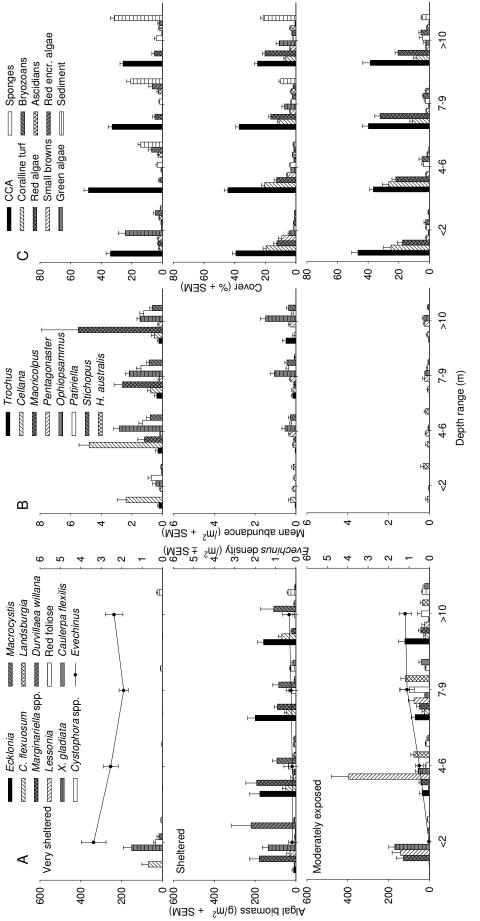


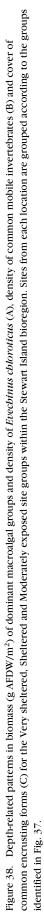

Figure 37. Principal coordinates analysis of sites sampled in the Stewart Island bioregion, based on fourth-root transformed biomass of 23 macroalgal groups (A). Bi-plots give correlations between principal coordinates axes and environmental variables (B) and original macroalgal species groups (C) (see Table 1 for macroalgal group codes). Sites shaded according to groupings identified at the 70% similarity level. White = very sheltered, grey = sheltered, black = four exposed groups (blank = moderately exposed, dots = Durvillaea, crosshair = highly exposed, and Green Islets sites (+) formed their own group). See section 3.4.11 for explanation of groups.

# Very sheltered: Inner Paterson Inlet

All sites inside Paterson Inlet, excluding Octopus Island, were grouped together in the very sheltered group based on algal community structure (Fig. 37). Evechinus chloroticus was abundant at these sites across all depths and large brown algae (predominantly Xiphophora gladiata and Carpophyllum *flexuosum*) were restricted to a shallow band (< 1 m depth) (Fig. 38A). Several other species including Cystophora scalaris, C. retroflexa, Macrocystis pyrifera, Marginariella boryana and the green alga Codium convolutum were also common in this stratum. In the deepest stratum an assemblage of red foliose algae often occurred on the sand-reef boundary (e.g. Dasya collabens, Delisea elegans, Adamsiella chauvinii, Asparagopsis armata, Rhodymenia spp. and Brongniartella australis). Mobile macroinvertebrates were abundant, in particular Cellana stellifera at 0-2 m and 4-6 m, and Maoricolpus roseus at 7-9 m and 10-12 m (Fig. 38B). The starfish Patiriella spp., ophiuroid Ophiopsammus maculata and holothurians Stichopus mollis and Ocnus spp. were common at all depths. Low numbers of Haliotis iris and H. australis were recorded at some sites. The percentage cover of crustose coralline algae declined with depth and sediment increased (Fig. 38C). Coralline turf was rare, and sponges, ascidians and bare rock were common.

#### Sheltered


The sites in this group were mainly situated on the open northeastern coast of Stewart Island (in the lee of the prevailing southwesterly swell) and included Octopus Island and open coast sites at Paterson Inlet and a site from both Titi Islands (Edwards Island), Port Adventure (Browns Garden) and the Codfish-Ruggedy locations (Lucky Point). These sites were dominated by large brown algae at all depths (Fig. 38A). The shallow stratum was dominated by Marginariella urvilliana, Xiphophora gladiata and at some sites Lessonia variegata (Native North) and Durvillaea willana (West Head, Bob's Point, Horseshoe). Glossophora kunthii, Spatoglossum chapmanii, Halopteris sp. and Codium convolutum were also common in this zone. The deeper strata were characterised by a mixed assemblage of Macrocystis pyrifera, Ecklonia radiata, Carpophyllum flexuosum, Marginariella boryana and Cystophora platylobium (Fig. 38A). The biomass of red foliose algae (e.g. Euptilota formosissima, Plocamium spp., Delisea plumosa, D. elegans, Rhodophyllis gunnii and Callophyllis spp.) tended to increase with depth and the small brown algae Sporochnus stylosus, Halopteris sp., Carpomitra costata and Desmarestia ligulata were also common. Crustose coralline algae were the dominant substratum cover at all depths, although there was also a high percentage cover of sediment at 10-12 m (Fig. 38C). Percentage cover of coralline turf was highest in the shallowest stratum, whereas the percentage cover of red algae, small browns, ascidians and sponges was greater in deeper strata. Evechinus were generally rare, except for the two sites located at the entrance of Paterson Inlet (Native North, Neck North) where they were abundant in the deepest strata (7-9 m and 10-12 m) and macroalgal biomass was reduced. Ophiopsammus maculata, Patiriella spp., Stichopus mollis and Trochus viridis were the most common mobile macroinvertebrate species, but overall abundance was considerably lower than at the inner Paterson Inlet sites (Fig. 38B).


### Moderately exposed

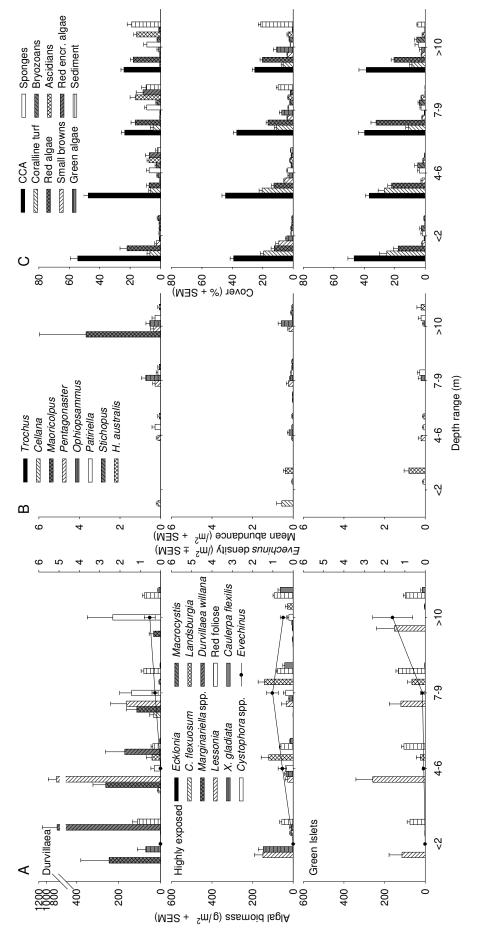
This group included a selection of moderately exposed sites from Titi Islands (Herekopere), Port Adventure (Tia Island, Lords River Head, Owens Island), Ruapuke Island (North Head, Bird Rock, Caroline Bay) and Codfish Island (Codfish East, Codfish Southeast). At these sites *Xipbophora gladiata*, *Lessonia variegata* and *Marginariella urvilliana* typically dominated the shallow stratum, while *L. variegata* and, to a lesser extent, *Landsburgia quercifolia*, dominated at 4-6 m (Fig. 38A). The deeper strata were characterised by a mixed assemblage of *Ecklonia radiata*, *Carpophyllum flexuosum*, *Lessonia variegata*, *Landsburgia quercifolia*, *Cystophora* spp., *M. boryana*, *Caulerpa brownii* and red foliose algae. The biomass of *E. radiata* was generally lower than at sites in the sheltered group, while the cover of red algae was typically higher and cover of sediment lower (Fig. 38C). Patches of *Evechinus* were common in the deepest strata at most of the sites excluding the Ruapuke Island site where they were rare. Other mobile macroinvertebrate species generally occurred at lower numbers compared to sites in the sheltered group (Fig. 38B).

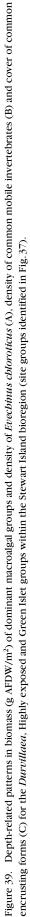
#### Durvillaea

This group included three sites at Bluff (Pig Island, Tiwai Point and Stirling Point) where *Durvillaea willana* formed large forests in the shallow subtidal to depths of






4-5 m (Fig. 39A). These sites also had high biomasses of *Marginariella urvilliana* and/or *Lessonia variegata* at mid-depths, with *Cystophora platylobium* and red foliose algae dominating the deepest stratum. Crustose corallines were the dominant cover at shallow depths beneath the *D. willana* canopy while, in the deeper strata, red foliose algae, sediment and ascidians were also important components (Fig. 39C). *Pyura pachydermatina* was particularly abundant at Pig Island (25.7 ± 6.0/m<sup>2</sup>) and Stirling Point (12.2 ± 4.2/m<sup>2</sup>). *Evechinus chloroticus* was generally restricted to the deepest stratum where it was recorded in low numbers. Mobile macroinvertebrates were present in low numbers, although *Maoricolpus roseus* was common in the deepest stratum at Stirling Point (Fig. 39B). Paua (*Haliotis iris*) were generally rare but small patches of large individuals (> 150 mm) were observed at Tiwai Point.


## Highly exposed

The remaining Bluff sites (Oraka Point, Shag Rock, Barracouta Point, Lookout Point) and the most exposed sites from Codfish-Ruggedy (North Sealers, Ruggedy NE, Ruggedy Passage, Black Rock Point), Ruapuke Island (South Islets) and Titi Islands (Bench North, Bench SE Point) made up this group. The biomass of large brown algae was typically reduced at these sites across all depths (Fig. 39A), with Xiphophora gladiata and Lessonia variegata dominating the shallow stratum (<2m), and Landsburgia quericfolia, red foliose algae and Caulerpa brownii at greater depths. Lessonia variegata, Marginariella spp. and Cystophora *platylobium* also occurred at low biomasses. In general, the deeper strata at these sites were dominated by a mix of red foliose algae, C. brownii, ascidians, sponges and sediment (Fig. 39C). Evechinus chloroticus was recorded at low numbers in the deeper strata, but large patches (> 100 individuals) were observed at depths greater than 10 m at a number of sites (e.g. Shag Rock, Lookout Point). Individual E. chloroticus were typically large (up to 190 mm TD), and no individuals smaller than 100 mm were recorded (Appendix 6). Other mobile macroinvertebrates occurred at low numbers, e.g. Cellana stellifera and Haliotis iris in the shallow stratum and Ophiopsammus maculata in the deepest stratum (Fig. 39B).

### **Green** Islets

All of the sites sampled at the Green Islets were highly exposed to the south and southwest and, based on algal community structure, formed their own distinct group (Fig. 37). Lessonia variegata was the dominant large brown algae at each site and across all depths (Fig. 39A). Landsburgia quercifolia was the only other common large brown algae and typically occurred in the deeper strata. A number of common large brown algal species were notably absent from these sites, e.g. Xiphophora gladiata, Cystophora platylobium, Marginariella spp., Durvillaea willana, Ecklonia radiata and Carpophyllum flexuosum. Coralline turf and red foliose algae were a dominant component of the algal assemblages at all depths. CCA, coralline turf, red foliose algae, bryozoans and sponges were the primary space occupiers (Fig. 39C). Evechinus chloroticus was generally absent from depths less than 10m, but occurred in dense patches in the deepest stratum (10-12 m) at Archway and NW Bay. All individual E. chloroticus recorded were > 100 mm TD (Appendix 6). Haliotis australis, Ophiopsammus maculata and *Patiriella* spp. were the most common mobile macroinvertebrates, but generally occurred in low numbers (Fig. 39B).





# 4.1 **BIOGEOGRAPHIC DISTRIBUTION OF KEY SPECIES**

This study provides quantitative information on the distribution of a large number of shallow subtidal reef species throughout mainland New Zealand based on a consistent methodology employed across all sites. While we were unable to sample large stretches of coast (e.g. Wairarapa and the northwestern coast) and the one-off sampling procedure may have missed particular species that are present at certain sites and locations, this study provides an unprecedented quantitative description of subtidal reefs across mainland New Zealand that will provide a basis for futher study of New Zealand's reefs.

The biogeographic classification of Shears et al. (in press) based on this national dataset provided a spatial framework within which to describe regional and national scale variation in communities. One of the most prevalent patterns identified by Shears et al. (in press) was a clear division in algal species composition between the Northern and Southern biogeographic provinces. In the present study we found that algal community structure based on the biomass of 23 algal species groups exhibited a similar division between provinces (Fig. 2). In general, several dominant macroalgal species had clear Northern (e.g. C. maschalocarpum, C. plumosum, C. angustifolium, Osmundaria colensoi, Pterocladia lucida and Caulerpa flexilis) or Southern (e.g. Durvillaea willana, Marginariella spp., Macrocystis pyrifera, Hymenena spp. and Caulerpa brownii) distributions. Few species, however, were solely restricted to either the Northern or Southern Province. For example, Marginariella boryana and Macrocystis pyrifera had Southern distributions, but both species were found at one site at Long Island (classified in the Northern Province). Similarly, while a shallow band of Carpophyllum maschalocarpum was a characteristic feature of locations in the Northern Province, C. maschalocarpum was also an important component at some locations in the Southern Province (Wellington, Kaikoura Peninsula and Banks Peninsula North). Carpophyllum maschalocarpum was not recorded at any of the locations on the West Coast of the South Island, despite being reported from Open Bay Islands (Neale & Nelson 1998) and Fiordland (Nelson et al. 2002).

*Carpophyllum angustifolium* and *C. plumosum* were found only at Northeastern locations, although *C. plumosum* occurs at Gisborne (Hogan et al. 1991) and on the Wairarapa Coast (Nelson 1994). *Carpophyllum angustifolium* typically dominated the sublittoral fringe on exposed reefs throughout the Northeastern bioregion, but was not recorded at Cape Karikari or Cape Reinga in this study. Moore (1961) reported the northerly range of this species to about Cape Brett (Moore 1961); however, it has been recorded from North Cape and the Three Kings Islands (Nelson 1994). At highly exposed Northern locations (e.g. Cape Reinga, Gannet Rock) *C. maschalocarpum* exhibits a long slender morphology resembling *C. angustifolium* (NS, pers. obs.). Furthermore, potential hybrids of these species may complicate these distributional patterns and additional work on the taxonomy and ecology of these species is needed to resolve these contrasting patterns.

In contrast to the other *Carpophyllum* species, which characterise the shallow subtidal fringe in Northern locations, *C. flexuosum* typically occurred in deeper water and was found throughout the country. This species formed extensive forests in areas with low wave action (e.g. Long Bay, Long Island and the eastern side of Kapiti Island) or areas with high turbidity (e.g. Banks Peninsula North and Gisborne). Schiel & Hickford (2001) found *C. flexuosum* to be the dominant fucalean alga at several Southern locations, e.g. Banks Peninsula North and Fiordland. However, we found *C. flexuosum* to have a rather patchy distribution in Southern New Zealand, as it was not recorded at Otago Peninsula, Catlins, Kaikoura or several locations on the west coast (e.g. Raglan, New Plymouth, and all Buller and Westland locations except Open Bay Islands).

Ecklonia radiata was the most commonly recorded large brown algal species and made up 25.5% of total algal biomass. Ecklonia radiata occurs throughout New Zealand, but was notably absent from some locations including Otago Peninsula, Catlins, Bluff, Green Islets, Abel Tasman, Nelson and numerous west coast locations. The large mono-specific stands of E. radiata, typical of the Northeastern bioregion (Choat & Schiel 1982), were not observed in any other areas except Mahia, Kapiti Island and occasional sites in the Fiordland (Charles inner) and Stewart Island (Tia Island, Lucky Point and Edwards Island) bioregions. At other Southern locations (e.g. Wellington, Kaikoura, Paterson Inlet, Codfish-Ruggedy, Ruapuke Island, Titi Islands, Port Adventure and outerfiord sites), E. radiata was found in a mixed assemblage with other large brown algal species, e.g. Lessonia variegata, Landsburgia quercifolia, Cystophora spp. and *Marginariella* spp., which is consistent with Southern sites examined by Choat & Schiel (1982) and Schiel & Hickford (2001). The absence of E. radiata from some locations is probably the result of a combination of factors including water temperature, high wave action, turbidity, sandscour and urchin grazing. For example, on the west coast, E. radiata was only found at Fiordland locations, Open Bay Islands and Gannet Rock sites, and one offshore site at New Plymouth (Seal East). It is probably absent from most other west coast coastal sites (e.g. Raglan, Karamea South, Cape Foulwind, Jackson Head and Cascades) because of extreme wave action and high levels of sandscour and turbidity. At the west coast offshore islands, E. radiata appeared to be restricted to either shallow (e.g. Gannet Rock) or deep (e.g. New Plymouth) water by high densities of Evechinus chloroticus at mid-depths. Ecklonia radiata does occur at some coastal sites near New Plymouth, but high turbidity limits its distribution in these areas (R. Cole, NIWA, pers. comm. 2006). High abundances of sea urchins may be responsible for the absence of *E. radiata* from some locations, e.g. Abel Tasman and Nelson, as algal assemblages in these locations were dominated by C. maschalocarpum and C. flexuosum, two species that are considerably more resistant to grazing than E. radiata (Cole & Haggitt 2001). Low water temperatures may also play a role in excluding E. radiata from some parts of New Zealand. For example, while *E. radiata* has been reported in the Otago Harbour (Batham 1956) and observed on the outer coast at Karitane (J. Fyfe, DOC, pers. comm. 2006), it was not recorded in the Chalmers bioregion in this study. Ecklonia radiata does occur further south, at Stewart Island and the Snares Islands, but is absent from other more southern subantarctic islands (Nelson 1994). The close proximity of the Otago coast to the subtropical convergence means that water temperatures in this area are typically colder than those at Stewart Island and the Snares Islands (Heath 1985).

Some species exhibited clear Southern distributions. For example, Macrocystis *pyrifera*, which is associated with cooler water temperatures (Hay 1990), was found only at South Island locations and at one North Island site (Palmer Head, Wellington). Although M. pyrifera was not recorded at Otago Peninsula or Catlins sites, extensive forests are present north of Nugget Point where there is some protection from the large southerly swell (Fyfe 1992). Durvillaea willana was found only at Southern New Zealand locations, being most abundant at the Catlins, Otago Peninsula and some Paterson Inlet (West Head and Bob's Point) and Bluff (Pig Island and Tiwai Point) sites. Species such as Lessonia variegata and Landsburgia quercifolia tended to achieve greatest biomasses at Southern locations, but were also common at Cape Reinga and offshore islands in Northeastern. Both Marginariella species were important components in the Stewart Island and Cook bioregions and had clear differences in their depth distributions with *M. urvilliana* typically occurring in the shallow depth strata (< 2 m and 4-6 m), while *M. boryana* was more abundant in the deeper strata (7-9 m and 10-12 m).

In addition to biogeographic patterns in the distributions of key algal species, there was a general increase in macroalgal diversity with latitude. This pattern is the opposite of that described for reef fish in New Zealand, where the highest diversity occurs in the north (Francis 1996). Although the mechanism for this pattern in algal diversity is unknown, algal diversity was also strongly correlated with water clarity, where highly turbid sites typically had lower algal diversity. This pattern was clearly evident within some bioregions, e.g. offshore islands in the Northeastern bioregion had low turbidity and a relatively high algal diversity compared to coastal sites.

The dominant mobile macroinvertebrate species recorded in this study also exhibited clear biogeographic patterns between Northern and Southern locations. However, there was no clear bioregional separation of locations, as has been documented for macroalgal species composition (Shears et al. in press). This was largely owing to the lower number of species recorded, and the widespread distributions of most of the dominant species (e.g. Evechinus chloroticus, Trochus viridis, Patiriella spp., Cellana stellifera). Herbivorous gastropods, predominantly T. viridis, Cookia sulcata, Cantharidus purpureus, Cellana stellifera and Turbo smaragdus, were more abundant in the Northern Province, whereas the starfishes Patiriella spp., Pentagonaster pulchellus, Diplodontias spp. and the ophiuroid Ophiopsammus maculata were more common in the Southern Province. Evechinus chloroticus was found to be the dominant invertebrate grazer on shallow subtidal reefs throughout New Zealand, although it was rare along large stretches of coastline, e.g. the entire east and southeast coast from Gisborne to the Catlins, including the northern shore of Cook Strait. Haliotis iris was generally rare but was the most common large grazer at some sites at Cape Foulwind and Banks Peninsula North. Historically H. iris may have been more abundant and played a greater role in structuring algal assemblages in other areas prior to the commencement of commercial harvesting (e.g. Stewart Island).

# 4.2 NATIONAL PATTERNS IN COMMUNITY STRUCTURE

There was a high degree of variability in benthic community structure among bioregions, among sites within bioregions, and among depth ranges within sites. There were, however, some consistent patterns in community structure at the national and bioregional levels. Overall, leathery macrophytes were the dominant component of the shallow subtidal reefs examined in this study (68% of total biomass). The leathery macrophyte group was made up of large brown algal species which were the dominant structural component of reef communities at all locations, except for Buller and West Coast locations where smaller algal groups and encrusting invertebrates dominated (also see Shears 2007). As a result, the Buller and Westland bioregions provide a unique example of temperate reef systems where both large brown algae and macroinvertebrate grazers, such as sea urchins and paua, are rare.

The immediate subtidal (< 2 m depth) in most bioregions (excluding Buller and Westland) was typical of temperate reef systems worldwide in that it was characterised by high densities and biomasses of fucalean algae (Schiel & Foster 1986; Underwood et al. 1991). In Northern locations, this habitat was dominated by Carpophyllum maschalocarpum and/or C. angustifolium, whereas in most Southern locations it was occupied by varying combinations of Xiphophora gladiata, Durvillaea willana, Lessonia variegata, Marginariella urvilliana or *Cystophora* spp. At some sites, the shallow band of large brown algae was absent, e.g. at inner-fiord sites where the shallow subtidal was dominated by mussels and an assemblage of ephemeral green and red algae. This is most likely because of the presence of a low-salinity layer of surface water that may directly inhibit the recruitment of large brown algae, as well as exclude predators and grazers, and therefore allow mussels to dominate (Witman & Grange 1998). The absence of large brown algae from the shallow subtidal in many West Coast locations may be due to extreme wave action. Durvillaea antarctica was patchily distributed on the intertidal-subtidal boundary in these areas and potentially acts to exclude other algae from the shallow subtidal through physical abrasion.

We found large variation in the organisation of algal assemblages with depth across most sites. The bimodal depth distribution of macroalgae previously described for northern New Zealand (Choat & Schiel 1982) was recorded at some Northeastern locations and exposed sites at Kapiti Island. In the Northeastern bioregion, this bimodality is thought to be a result of high abundances of *Evechinus chloroticus* reducing algal biomass at mid-depths, whereas fucaleans dominate the shallows and Ecklonia radiata forests occur at greater depths (Choat & Schiel 1982). A similar bimodal algal distribution has been recorded in Dusky Sound (Villouta et al. 2001) and was recorded in this study at a few Doubtful Sound sites, where *Evechinus chloroticus* was abundant at 4-6 m. However, at the majority of sites examined algal biomass was found to decline with depth. This may be due to several factors such as high abundances of *E. chloroticus* at greater depths (e.g. Gannet Rock, Abel Tasman and Nelson) or other factors, such as low light levels (high turbidity), high levels of sedimentation, sand abrasion and low levels of propagule supply, which may prevent the establishment of deeper algal stands (Schiel & Foster 1986). For example, high turbidity appears to restrict macroalgal forests to shallow depths at the Banks sites. At these sites Ecklonia radiata was rare below 5 m and *C. flexuosum* occurred at low densities. This is in contrast to Schiel & Hickford (2001) who found high densities of *E. radiata* (13-15 plants per m<sup>2</sup>) at 9-12 m of depth at Godley Head in the early 1990s. Those authors also described mixed stands of *E. radiata*, *Landsburgia quercifolia*, *Lessonia variegata* and *Marginariella* spp. at c. 8 m depth for another site nearby (Taylors Mistake), which is in stark contrast to the patterns we observed. Schiel & Hickford (2001) commented that underwater visibility tended to be better at Banks Peninsula than at Kaikoura. However, we found the opposite pattern (average Secchi disc depth during the sampling period was c. 2.5 m at Banks Peninsula North compared with c. 6 m at Kaikoura). It is unknown whether these contrasting descriptions of algal assemblages for Banks Peninsula North represent site-level variation or long-term changes. In general, little is known about the temporal variability in subtidal algal assemblages around much of New Zealand, the mechanisms responsible for variation in community structure, and the factors that potentially restrict deeper water algal assemblages in many regions.

# 4.3 ENVIRONMENTAL CORRELATES AND STRUCTURING PROCESSES

At the national and bioregional levels, both macroalgal and mobile macroinvertebrate communities were most strongly related to turbidity (Secchi depth) and/or wave exposure (fetch). The largest variation in community structure among sites was associated with a gradient from turbid, more coastally influenced locations, to more oceanic locations with clearer water, rather than any clear latitudinal gradient. The importance of the environmental variables also increased with decreasing spatial scale, such that they explained greater variation at the bioregional level for all datasets. However, the variable that explained the greatest variation in community structure differed among bioregions. This was largely associated with the types of gradients sampled within each bioregion and how environmental variables covaried across them. For example, at the Northeastern bioregion locations, water clarity was generally lowest at the sheltered coastal sites and increased with increasing wave exposure. However, at the offshore island locations the water was clear at both sheltered and exposed sites. Furthermore, the reefs at the turbid coastal sites extended to only c. 5m depth, whereas at the offshore islands the reefs extended beyond 12 m of depth, even at the most sheltered sites. As a result, the maxium depth sampled (MaxDepth) and turbidity (Secchi) explained the greatest variation in algal community structure among Northeastern sites and the wave exposure estimates had less explanatory power. Similar patterns were seen in the Abel bioregion where the 'exposed-offshore' group included both exposed and sheltered sites from Kapiti Island and wave exposure explained only 7% of the variation across all sites. While the relationships between community structure and environmental variables reflect differences in the environmental gradients sampled among sites within each bioregion, they also provide insights into the potentially important physical factors controlling community structure.

Water clarity (Secchi depth) was consistently one of the environmental variables that explained the most variation in each of the datasets examined at all spatial scales. This was particularly apparent for bioregions or locations where sites spanned an onshore-offshore gradient, e.g. many west coast locations. The majority of the inshore sites sampled on the west coast (e.g. Raglan, Buller and Westland) were highly turbid, had shallow (< 10 m) reefs and had a high degree of sediment resuspension and abrasion associated with the high wave action. At these sites, large brown algae were largely restricted to a shallow subtidal fringe and the deeper subtidal communities were dominated by short turfing algae and sessile invertebrates such as mussels, sponges and ascidians. It is hypothesised that large brown algae are restricted to shallow depths at these coastal sites by a combination of high water motion, sandscour and high turbidity. In contrast, offshore sites had clearer water, more expansive subtidal reefs that extend into deeper water (e.g. Open Bay Islands, Gannet Rock, Sugarloaf Island at New Plymouth), less sediment and more extensive macroalgal habitats. However, sea urchins were also more abundant at these sites, compared with inshore sites, and appeared to play a role in excluding macroalgae from deep water in these environments.

In bioregions where the sites were not located across a strong turbidity gradient, wave exposure (fetch) was most strongly related to community structure, e.g. Stewart Island. In these cases, groupings of sites corresponded to broad differences in wave exposure and the relative abundance of different species varied across these gradients. For example, Carpophyllum flexuosum was consistently dominant at the most sheltered sites within some bioregions (e.g. Northeastern and Banks), whereas species such as Ecklonia radiata, Macrocystis pyrifera and/or Marginariella boryana were more typical of moderately exposed sites (e.g. those at Banks and Stewart Island), and species such as *Lessonia variegata*, Landsburgia quercifolia and/or Durvillaea willana were most typical of highly exposed sites (e.g. those at Chalmers, Stewart Island and Cook). There were, however, numerous exceptions to these general patterns; e.g. C. flexuosum was abundant at exposed outer-fiord sites, and also on exposed reefs at Gisborne. These findings demonstrate strong couplings between the environmental variables measured and community structure at a variety of scales, but also highlight the complex and co-varying nature of these relationships and the need for research into the mechanisms responsible for the observed patterns.

# 4.4 THE ROLE OF SEA URCHINS

The urchin barrens habitat is generally considered to be a feature of subtidal reefs in northern parts of New Zealand (Schiel 1990), although several studies suggest urchins have important effects on algal assemblages in southern regions, e.g. Abel Tasman (Davidson & Chadderton 1994), Kaikoura (Dix 1969) and Fiordland (Villouta et al. 2001). In the present study, *Evechinus chloroticus* was abundant in Northeastern locations; however, it was also found to be abundant and to form urchin barrens habitat at numerous other locations throughout New Zealand. These locations included contrasting environments, from relatively wave-protected coastal embayments (e.g. Paterson Inlet, Nelson, Long Island, Abel Tasman and sites in Fiordland) to exposed offshore islands on the west coast (e.g. Open Bay Island, Gannet Rock and the Sugarloaf Islands at New Plymouth). At the national level, Evechinus explained only 4% of the variation in algal community structure, but explained up to 17% (Stewart Island) at the bioregional

level. Overall the low variation at these spatial scales is not surprising as the analysis was carried out on depth-averaged algal biomass data and the effects of grazing by *E. chloroticus* are generally restricted to specific depth ranges (Shears & Babcock 2004a).

There was large variation in the relationship between *E. chloroticus* abundance and environmental variables among bioregions. At the national level, E. chloroticus was most strongly related to water clarity (Secchi) and was rare at the most turbid locations (e.g. Long Bay, Raglan, Gisborne, Karamea, Cape Foulwind, Banks Peninsula North, Flea Bay and the Catlins), and abundant at locations with high water clarity (e.g. Gannet Rock, Poor Knights Islands, Mokohinau Islands and Tuhua Islands). These patterns were most evident in bioregions where sites were located across an onshore-offshore gradient, e.g. those in Northeastern, Raglan, Buller and Westland bioregions. In all cases, offshore islands with higher water clarity supported greater abundances of urchins. The estimate of water clarity used in this study, however, was based on a one-off field measurement of Secchi depth and it is proposed that better information on national patterns in ambient turbidity (suspended sediment) would explain a higher proportion of the variation in the abundance of *E. chloroticus*. A potential mechanism excluding E. chloroticus from turbid areas is the adverse effect of suspended sediments on larval survival (Phillips & Shima 2006), settlement success and the survival of juvenile E. chloroticus (Walker 2007). The percentage cover of sediment on the reef, however, was not a good predictor of the abundance of *E. chloroticus* at a national scale and, in some bioregions, E. chloroticus was actually positively associated with sediment cover (e.g. Paterson Inlet, Nelson and Long Island).

*Evechinus chloroticus* exhibited contrasting relationships with wave exposure among bioregions. In the Northeastern bioregion, *E. chloroticus* was generally positively associated with wave exposure, although the species was rare at the most exposed sites at Cape Reinga. However, as mentioned above this wave-exposure gradient also corresponded to a gradient in water clarity from turbid sheltered coastal sites where *E. chloroticus* was rare to exposed and offshore island locations that have clear water and abundant *E. chloroticus* (Grace 1983; Shears & Babcock 2004b). In the Abel and Stewart Island bioregions, however, this pattern in the abundance of *E. chloroticus* was reversed, with the species being abundant at sheltered sites (e.g. Paterson Inlet, Long Island, Nelson and Abel Tasman) and rare at more exposed open coast sites (e.g. Titi Islands, and exposed Kapiti Island and Long Island sites). However, water clarity at these sheltered sites was considerably higher (Secchi depth 5-10 m) than at sheltered Northeastern sites and did not appear to limit the distribution of *E. chloroticus*.

The apparent decline in the abundance of *E. chloroticus* with increasing exposure at sites in the Abel and Stewart Island bioregions is consistent with increasing wave action preventing the species from overgrazing, as has been suggested for the most exposed locations in the Northeastern bioregion (e.g. Cape Reinga; Shears & Babcock 2004b). However, exposed sites at Titi Islands, Kapiti and Long Island had only moderately high wind fetch values. In other parts of New Zealand, *E. chloroticus* is abundant at sites with similar or even higher wave-exposure estimates (e.g. Gannet Rock, New Plymouth and some Northeastern sites). Furthermore, algal assemblages at these sites suggested they are not subjected to extreme wave action. For example, at 'exposed-offshore' sites at Long Island, *C. flexuosum* plants were tall (total length > 1 m) and exhibited a

sheltered morphology (Cole et al. 2001). Similarly, on the western side of Kapiti Island, Ecklonia radiata occurred at high biomasses at shallow depths suggesting these sites were not exposed to large swell waves. These observations suggest that other mechanisms are excluding Evechinus chloroticus from these sites. Individual E. chloroticus at these sites were also large (> 100 mm TD), present at the bottom of the reef (10-12 m), and juveniles were rare, suggesting low recruitment into these habitats. In Doubtful Sound, Wing et al. (2003) suggest that low settlement of *E. chloroticus* at the entrance of the fiord is due to the loss of larvae to the open ocean. Furthermore, in such situations where kelp dominates, negative feedback effects may further reduce settlement and prevent the species from establishing in these areas (Andrew & Choat 1985; Rowley 1990; Konar & Estes 2003). The high abundances of both adults and juveniles in the relatively sheltered embayment locations (e.g. Paterson Inlet, Long Island, Nelson and Abel Tasman) may result from a high retention of larvae owing to high residence times and stratification of the water column in summer. This has been shown to occur in Doubtful Sound, where the greatest abundance and settlement of E. chloroticus occur at mid-fiord sites (Wing et al. 2003). More research into urchin recruitment and larval urchin dispersal is needed to better understand the distribution patterns of urchins and the occurrence of urchin barrens habitat.

# 4.5 CONSERVATION AND MANAGEMENT IMPLICATIONS

With increased awareness of the potential effects of land-based activities on coastal ecosystems, there is a growing literature in New Zealand on the effects of various components of sedimentation on reef-associated species (e.g. Phillips & Shima 2006; Schiel et al. 2006; Steger & Gardner 2007; Walker 2007). All of these studies show negative effects of sediment on survival, settlement or metabolic rates of different life history stages. High turbidity is generally associated with high levels of sedimentation and we found that turbidity (Secchi) was consistently important in explaining variation in algal community structure among sites at all spatial scales examined. While this suggests that sedimentation may play a fundamental role in structuring New Zealand's reef communities, it is important to note that gradients in water clarity and, potentially sedimentation, may largely be natural (e.g. coastal-offshore), with certain parts of the New Zealand coast naturally having larger sediment inputs (Carter 1975) and higher turbidity, e.g. Portland, Banks and locations on the West Coast. Furthermore, while such areas of high turbidity had distinctive attributes or community structures, we demonstrate complex associations between water clarity and a variety of other physical (wave exposure) and, potentially biological processes (phytoplankton productivity). Identifying the actual mechanisms responsible for these patterns and separating anthropogenic from environmental variation is necessary to inform management and remains the challenge to ecologists.

The effects of fishing are also likely to have influenced the patterns in algal and invertebrate communities described in this study both directly and indirectly. For example, the low numbers of paua recorded throughout the country are likely to be a direct result of overfishing of this species. In contrast, the prevalence of *Evechinus chloroticus* in many areas may be an indirect effect of overfishing of sea urchin predators. Such effects have been shown through comparisons of marine reserves and fished sites in parts of Northeastern (Babcock et al. 1999; Shears & Babcock 2002, 2003), but these trophic cascade effects have not been demonstrated in other parts of the country (Shears & Babcock 2004a). However, the establishment of networks of marine reserves throughout the country, and continued monitoring of existing reserves, will allow broader generalisations about where these effects occur. While trophic cascade effects are likely to occur following the recovery of predator populations in areas where *E. chloroticus* is abundant, in parts of the coastline where urchins are not common more subtle and potentially more complex interactions may occur as a result of the cessation of fishing.

The biogeographic classification for mainland New Zealand based on the dataset analysed here (Shears et al. in press) provides a large-scale spatial framework for further ecological study and systematic conservation planning. The description of 11 major bioregions has important implications for any conservation effort that aims to protect New Zealand's coastal marine biodiversity through the establishment and management of a comprehensive system of adequate and representative marine reserves (Day et al. 2002). The analyses and descriptions in the present report demonstrate how the structure of algal and invertebrate assemblages on shallow reefs vary greatly across environmental gradients within bioregions. It is important that this variation is represented in the design of notake marine reserve networks within bioregions. Although we were only able to sample large environmental gradients in a few bioregions, similar variation in community structure is expected to occur in all bioregions should such gradients exist.

# 5. Conclusions

This study provides the first quantitative description of subtidal habitats for many of the areas examined. Both national and regional patterns in community structure, and their associations with environmental variables, were complex and multidimensional largely owing to the highly complex nature of the New Zealand coast and the inter-related nature of the environmental variables examined. However, some general relationships between biological pattern and environmental variables were apparent. Firstly, the proportion of variation explained by a local-scale environmental variable tended to increase with decreasing spatial scale for all biological datasets. The structure of algal and benthic communities was most strongly associated with water clarity, suggesting that community structure varies most strongly across a gradient from coastally influenced sites (e.g. shallow areas or embayments) with high turbidity to more oceanically influenced locations (e.g. offshore islands). The effect of wave exposure did not vary consistently across these gradients and water clarity was a better predictor of community structure and species composition. The abundance of *Evechinus chloroticus*, the dominant invertebrate grazer, also varied considerably around New Zealand. The environmental variables that were found to be correlated with the abundance of *E. chloroticus* varied among bioregions, and the species was found to be abundant in contrasting environments, demonstrating a complex association with environmental conditions. Water clarity explained the greatest variation in the abundance of *E. chloroticus*, its abundance being low in highly turbid areas (e.g. southeastern coast). While there is much we still need to understand about the processes driving variability at the local and regional level, we can see similarities in the relationships between environmental factors and marine community structure around the entire country.

# 6. Acknowledgements

This project has been made possible with the support and assistance of a large number of people around the country, in particular numerous DOC conservancy staff who provided their time, resources and local knowledge. Special thanks to Clinton Duffy, Robert Russell, Natalie Managh, Jarrod Walker, Debbie Freeman, Don Neale, David Feary, Phil Ross and Helen Kettles who all provided invaluable diving assistance during the study. Clinton Duffy also provided valuable experience and knowledge of reefs around the country, and organised local area support and the logistics of fieldtrips. Dr Eduardo Villouta provided the initiative for this project, valuable technical advice throughout, and software for calculating wind fetch. Thanks to the staff of the Leigh Marine Lab, particularly Arthur Cozens for providing logistical support, and also Dr Wendy Nelson for assistance with seaweed identification. Franz Smith and Marti Anderson provided valuable statistical support. Eduardo Villouta, Franz Smith and Clinton Duffy also provided valuable advice and comments on earlier versions of this report. This study was funded by Department of Conservation, Science and Research Division, under Science Investigation No. 2481, and additional surveys were supported by the Southland and West Coast Conservancies.

# 7. References

- Adams, N.M. 1994: Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch. 360 p.
- Airoldi, L.; Virgillio, M. 1998: Response of turf-forming algae to spatial variations in the deposition of sediments. *Marine Ecology Progress Series* 165: 271–282.
- Anderson, M.J. 2000: PCOORD: a FORTRAN computer program for principal coordinate analysis. Department of Statistics, University of Auckland, Auckland. 7 p.
- Anderson, M.J. 2002: DISTLM v2: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model. Department of Statistics, University of Auckland, Auckland, 9p.
- Anderson, M.J.; Ford, R.B.; Feary, D.A.; Honeywill, C. 2004: Quantitative measures of sedimentation in an estuarine system and its relationship with intertidal soft-sediment infauna. *Marine Ecology Progress Series* 272: 33–48.
- Andrew, N.L. 1988: Ecological aspects of the common sea urchin, *Evechinus chloroticus*, in northern New Zealand: a review. *New Zealand Journal of Marine & Freshwater Research 22*: 415-426.
- Andrew, N.L.; Choat, J.H. 1982: The influence of predation and conspecific adults on the abundance of juvenile *Evechinus chloroticus* (Echinoidea: Echinometridae). *Oecologia* 54: 80-87.
- Andrew, N.L.; Choat, J.H. 1985: Habitat related differences in the growth and survivorship of juvenile echinoids. *Marine Ecology Progress Series* 27: 155-161.
- Babcock, R.C.; Kelly, S.; Shears, N.T.; Walker, J.W.; Willis, T.J. 1999: Changes in community structure in temperate marine reserves. *Marine Ecology Progress Series* 189: 125-134.
- Batham, E.J. 1956: Ecology of southern New Zealand sheltered shores. *Transactions of the Royal* Society of New Zealand 84: 447-465.
- Benedetti-Cecchi, L.; Airoldi, L.; Abbiati, M.; Cinelli, F. 1996: Estimating the abundance of benthic invertebrates: a comparison of procedures and variability between observers. *Marine Ecology Progress Series 138*: 93–101.
- Broitman, B.R.; Navarrete, S.A.; Smith, F.; Gaines, S.D. 2001: Geographic variation of southeastern Pacific intertidal communities. *Marine Ecology Progress Series* 224: 21-34.
- Carter, L. 1975: Sedimentation on the continental terrace around New Zealand: a review. *Marine Geology 19*: 209–237.
- Choat, J.H.; Schiel, D.R. 1982: Patterns of distribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of northern New Zealand. *Journal of Experimental Marine Biology & Ecology 60*: 129-162.
- Clarke, K.R.; Warwick, R.M. 1994: Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, Plymouth, UK. 144 p.
- Cole, R.G. 1993: Distributional relationships among subtidal algae, sea urchins and reef fish in northeastern New Zealand. University of Auckland, Auckland. 160 p.
- Cole, R.G.; Haggitt, T.R. 2001: Dietary preferences of *Evechinus chloroticus* and the persistence of the fucalean macroalga *Carpophyllum flexuosum* on coralline-dominated areas in northeastern New Zealand. Pp. 425-430 in Barker, M.F. (Ed.): Echinoderms 2000. Swets & Zeitlinger, Lisse.
- Cole, R.G.; Babcock, R.C.; Travers, V.; Creese, R.G. 2001: Distributional expansion of *Carpophyllum flexuosum* onto wave-exposed reefs in northeastern New Zealand. New Zealand Journal of Marine & Freshwater Research 35: 17–32.
- Colwell, R.K.; Coddington, J.K. 1994: Estimating terrestrial biodiversity through extrapolation. *Philosophical Transactions of the Royal Society (Series B)* 345: 101-118.

- Cowen, R.K.; Agegian, C.R.; Foster, M.S. 1982: The maintenance of community structure in a central California giant kelp forest. *Journal of Experimental Marine Biology & Ecology 64*: 189-201.
- Davidson, R.J.; Chadderton, W.L. 1994: Marine reserve site selection along the Abel Tasman National Park coast, New Zealand: consideration of subtidal rocky communities. Aquatic Conservation: Marine & Freshwater Ecosystems 4: 153-167.
- Day, J.; Fernandes, L.; Barnett, B.; Slegers, S.; Kerrigan, B.; Breen, D.; De'ath, G.; Lewis, A.; Innes, J.; Oliver, J. 2002: The representative areas program for protecting the biodiversity of the Great Barrier Reef World Heritage Area. Pp. 687-696 in Moosa, M.K.; Soemodihardjo, S.; Soegiarto, A.; Romimohtarto, K.; Nontji, A.; Suharsono, S. (Eds): Proceedings of the ninth International coral reef symposium, 23-27th October 2000, Bali. Indonesian Institute of Sciences, Jakarta.
- Dayton, P.K. 1985: Ecology of kelp communities. *Annual Review of Ecology and Systematics 16*: 215-245.
- Dix, T.G. 1969: The biology of the echinoid *Evecbinus chloroticus* (Val.) in different habitats. Unpublished PhD thesis, University of Canterbury, Christchurch. 109 p.
- Eriksson, B.K.; Johansson, G.; Snoeijs, P. 2002: Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast. *Journal of Phycology* 38: 284-296.
- Fowler-Walker, M.J.; Connell, S.D. 2002: Opposing states of subtidal habitats across temperate Australia: consistency and predictability in kelp-canopy benthic associations. *Marine Ecology Progress Series 240*: 49–56.
- Francis, M. 1996: Geographic distribution of marine reef fishes in the New Zealand region. New Zealand Journal of Marine & Freshwater Research 30: 35-55.
- Fyfe, J. 1992: Four Otago marine reserve options: an overview of biological values. Unpublished report to Department of Conservation, Otago Conservancy. 64p.
- Gorman, R.M.; Bryan, K.R.; Laing, A.K. 2003: Wave hindcast for the New Zealand region: nearshore validation and coastal wave climate. *New Zealand Journal of Marine & Freshwater Research* 37: 567-588.
- Gorostiaga, J.M.; Santolaria, A.; Secilla, A.; Diez, I. 1998: Sublittoral benthic vegetation of the eastern Basque coast (N. Spain): structure and environmental factors. *Botanica Marina* 41: 455-465.
- Grace, R.V. 1983: Zonation of sublittoral rocky bottom marine life and its changes from the outer to the inner Hauraki Gulf, northeastern New Zealand. *Tane 29*: 97–108.
- Harrold, C.; Pearse, J.S. 1987: The ecological role of echinoderms in kelp forests. *Echinoderm Studies 2*: 137-233.
- Harrold, C.; Watanabe, J.M.; Lisin, S. 1988: Spatial variation in the structure of kelp forest communities along a wave exposure gradient. *Pubblicazioni della Stazione Zoolgica di Napoli I: Marine Ecology 9*: 131–156.
- Hay, C.H. 1990: The distribution of *Macrocystis* (Phaeophyta: Laminariales) as a biological indicator of cool sea surface temperature, with special reference to New Zealand waters. *Journal of the Royal Society of New Zealand 20*: 313-336.
- Heath, R.A. 1985: A review of the physical oceanography of the seas around New Zealand—1982. New Zealand Journal of Marine & Freshwater Research 19: 79-124.
- Hogan, K.; Seymour, T.; Gordon, P. 1991: Kaiora marine reserve proposal: a preliminary intertidal, subtidal and site survey. Department of Conservation, East Coast Conservancy, Gisborne.
- Hurd, C.L.; Nelson, W.A.; Falshaw, R.; Neill, K.F. 2004: History, current status and future of marine macroalgal research in New Zealand: taxonomy, ecology, physiology and human uses. *Phycological Research* 52: 80-106.
- Irving, A.D.; Connell, S.D. 2002: Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. *Marine Ecology Progress Series* 245: 83–91.

- Jones, G.P.; Andrew, N.L. 1990. Herbivory and patch dynamics on rocky reefs in temperate Australasia: the roles of fish and sea urchins. *Australian Journal of Ecology* 15: 505–520.
- Konar, B.; Estes, J.A. 2003. The stability of boundary regions between kelp beds and deforested areas. *Ecology* 84: 174–185.
- Larson, G.L.; Buktenica, M.W. 1998: Variability of secchi disk readings in an exceptionally clear and deep caldera lake. *Archiv fur Hydrobiologie* 141: 377-388.
- Lawrence, J.M. 1975: On the relationships between marine plants and sea urchins. *Oceanography and Marine Biology Annual Review 13*: 213-286.
- Leliaert, F.; Anderson, R.J.; Bolton, J.J.; Coppejans, E. 2000: Subtidal understorey algal community structure in kelp beds around the Cape Peninsula (Western Cape, South Africa). *Botanica Marina* 43: 359–366.
- Lourie, S.A.; Vincent, A.C.J. 2004: Using biogeography to help set priorities in marine conservation. *Conservation Biology 18*: 1004–1020.
- Lumb, C.M. 1989: Algal depth distribution as an indicator of long-term turbidity change. Pp. 69–74 in McManus, J.; Elliot, M. (Eds): Developments in estuarine and coastal study techniques. Olsen & Olsen, International Symposium Series, Fredensborg, Denmark.
- McArdle, B.H.; Anderson, M.J. 2001: Fitting multivariate models to community data: a comment on distance-based redundancy analysis. *Ecology* 82: 290–297.
- Moore, L.B. 1961: Distribution patterns in New Zealand seaweeds. Tuatara 9: 18-23.
- Neale, D.; Nelson, W. 1998: Marine algae of the West Coast, South Island, New Zealand. *Tubinga 10*: 87–118.
- Nelson, W. 1994: Distribution of macroalgae in New Zealand—an archipelago in space and time. *Botanica Marina* 37: 221-233.
- Nelson, W.A.; Villouta, E.; Neill, K.F.; Williams, G.C.; Adams, N.M.; Slivsgaard, R. 2002: Marine macroalgae of Fiordland, New Zealand. *Tubinga* 13: 117-152.
- O'Loughlin, P.M.; Waters, J.M.; Roy, M.S. 2002: Description of a new species of *Patiriella* from New Zealand, and review of *Patiriella regularis* (Echinodermata, Asteroidea) based on morphological and molecular data. *Journal of the Royal Society of New Zealand 32*: 697-711.
- Phillips, N.E.; Shima, J.S. 2006: Differential effects of suspended sediments on larval survival and settlement of New Zealand urchins *Evechinus chloroticus* and abalone *Haliotis iris*. *Marine Ecology Progress Series* 314: 149–158.
- Reed, D.C. 1990: The effects of variable settlement and early competition on patterns of kelp recruitment. *Ecology* 71: 776-787.
- Rowley, R.J. 1990: Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. *Marine Ecology Progress Series* 62: 229-240.
- Schiel, D.R. 1990: Macroalgal assemblages in New Zealand: structure, interactions and demography. *Hydrobiologia 192*: 59–76.
- Schiel, D.R.; Foster, M.S. 1986: The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology Annual Review 24: 265-307.
- Schiel, D.R.; Hickford, M.J.H. 2001: Biological structure of nearshore rocky subtidal habitats in southern New Zealand. *Science for Conservation 182*. Department of Conservation, Wellington, New Zealand. 54 p.
- Schiel, D.R.; Wood, S.A.; Dunmore, R.A.; Taylor, D.I. 2006: Sediment on rocky intertidal reefs: effects on early post-settlement stages of habitat-forming seaweeds. *Journal of Experimental Marine Biology & Ecology 331*: 158-172.
- Schils, T.; De Clerck, O.; Leliaert, F.; Bolton, J.J.; Coppejans, E. 2001: The change in macroalgal assemblages through the Saldanha Bay/Langebaan Lagoon ecosystem (South Africa). *Botanica Marina* 44: 295-305.

- Shears, N.T. 2007: Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand. *Science for Conservation 281*. Department of Conservation, Wellington. 53 p.
- Shears, N.T.; Babcock, R.C. 2002: Marine reserves demonstrate top-down control of community structure on temperate reefs. *Oecologia 132*: 131-142.
- Shears, N.T.; Babcock, R.C. 2003: Continuing trophic cascade effects after 25 years of no-take marine reserve protection. *Marine Ecology Progress Series 246*: 1–16.
- Shears, N.T.; Babcock, R.C. 2004a: Indirect effects of marine reserves on New Zealand's rocky coastal communities. DOC Science Internal Series No. 192. Department of Conservation, Wellington, New Zealand. 49 p.
- Shears, N.T.; Babcock, R.C. 2004b: Community composition and structure of shallow subtidal reefs in northeastern New Zealand. *Science for Conservation 245*. Department of Conservation, Wellington, New Zealand. 65 p.
- Shears, N.T.; Smith, F.; Babcock, R.C.; Duffy, C.A.J.; Villouta, E. in press: Evaluation of biogeographic classification schemes for conservation planning: application to New Zealand's coastal marine environment. *Conservation Biology*.
- Steger, K.K.; Gardner, J.P.A. 2007: Laboratory experiments on the effects of variable suspended sediment concentrations on the ecophysiology of the porcelain crab *Petrolistbes elongatus* (Milne Edwards, 1837). *Journal of Experimental Marine Biology & Ecology 344*: 181-192.
- Steneck, R.S.; Dethier, M.N. 1994: A functional group approach to the structure of algal-dominated communities. Oikos 69: 476-498.
- Underwood, A.J.; Kingsford, M.J.; Andrew, N.L. 1991: Patterns in shallow subtidal marine assemblages along the coast of New South Wales Australia. *Australian Journal of Ecology 16*: 231-250.
- Underwood, A.J.; Chapman, M.G.; Connell, S.D. 2000: Observations in ecology: you can't make progress on processes without understanding the patterns. *Journal of Experimental Marine Biology & Ecology 250*: 97-115.
- Villouta, E.; Chadderton, W.L.; Pugsley, C.W.; Hay, C.H. 2001: Effects of sea urchin (*Evechinus chloroticus*) grazing in Dusky Sound, Fiordland, New Zealand. New Zealand Journal of Marine & Freshwater Research 35: 1007–1024.
- Walker, J.W. 1999: Subtidal reefs of the Hauraki Gulf. Unpublished MSc thesis, University of Auckland, New Zealand. 79 p.
- Walker, J.W. 2007: Effects of fine sediments on settlement and survival of the sea urchin *Evechinus cbloroticus* in northeastern New Zealand. *Marine Ecology Progress Series* 331: 109-118.
- Wing, S.R.; Gibbs, M.T.; Lamare, M.D. 2003: Reproductive sources and sinks within a sea urchin, *Evechinus chloroticus*, population of a New Zealand fjord. *Marine Ecology Progress Series* 248: 109–123.
- Witman, J.D.; Grange, K.R. 1998: Links between rain, salinity, and predation in a rocky subtidal community. *Ecology* 79: 2429-2447.

# Appendix 1

# DETAILS OF SAMPLING LOCATIONS AND SITES

| LOCATION      | SITE           | EASTING | NORTHING | DATE       |
|---------------|----------------|---------|----------|------------|
| Northeastern  |                |         |          |            |
| Cape Karikari | Takini South   | 2549612 | 6708196  | 7/10/1999  |
| Cape Karikari | CK4            | 2552073 | 6704156  | 8/10/1999  |
| Cape Karikari | Koware South   | 2552750 | 6704345  | 8/10/1999  |
| Cape Karikari | Whale          | 2545848 | 6712376  | 9/10/1999  |
| Cape Karikari | Whangatupere   | 2551761 | 6707401  | 9/10/1999  |
| Cape Karikari | Omahuri        | 2548866 | 6708787  | 10/10/1999 |
| Cape Karikari | Pihoaka Point  | 2551727 | 6708248  | 10/10/1999 |
| Cape Karikari | Sunburn Point  | 2548292 | 6711752  | 10/10/1999 |
| Cape Reinga   | Lighthouse     | 2481893 | 6753367  | 11/10/1999 |
| Cape Reinga   | Tapotupotu     | 2486322 | 6751851  | 11/10/1999 |
| Hahei         | Cooks Bluff    | 2757571 | 6483105  | 10/05/1999 |
| Hahei         | Sandy Cove     | 2758899 | 6482610  | 10/05/1999 |
| Hahei         | SE Motueka     | 2760416 | 6482908  | 11/05/1999 |
| Hahei         | Twin gauge     | 2762066 | 6481777  | 11/05/1999 |
| Hahei         | Mahurangi Pinn | 2761755 | 6481256  | 12/05/1999 |
| Hahei         | Whitecaves     | 2761731 | 6479881  | 12/05/1999 |
| Hahei         | Mussell Rock   | 2756861 | 6482939  | 13/05/1999 |
| Hahei         | Razor          | 2760471 | 6483166  | 13/05/1999 |
| Hahei         | Mahungarape    | 2755919 | 6486296  | 14/05/1999 |
| Hahei         | Whitecliffs    | 2758466 | 6482784  | 1/05/2000  |
| Leigh         | ABC            | 2671853 | 6546767  | 16/12/1998 |
| Leigh         | Nordic         | 2673093 | 6543630  | 15/03/1999 |
| Leigh         | Rodney         | 2674176 | 6545146  | 15/3/1999  |
| Leigh         | Kemps          | 2669136 | 6547458  | 16/03/1999 |
| Leigh         | Onespot        | 2673503 | 6545795  | 16/03/1999 |
| Leigh         | Mathesons      | 2672272 | 6542562  | 17/03/1999 |
| Leigh         | Ti Point       | 2672136 | 6540956  | 17/03/1999 |
| Leigh         | Outpost        | 2673923 | 6544131  | 18/03/1999 |
| Leigh         | Schiels        | 2671943 | 6546990  | 23/03/1999 |
| Leigh         | Tower          | 2672527 | 6546361  | 24/03/1999 |
| Leigh         | Martins rock   | 2670741 | 6546565  | 4/05/1999  |
| Leigh         | Okakari Point  | 2669323 | 6547541  | 4/05/1999  |
| Leigh         | TeRere         | 2670114 | 6546945  | 4/05/1999  |
| Leigh         | Cape Rodney    | 2674152 | 6545535  | 25/05/1999 |
| Leigh         | Waterfall      | 2672183 | 6546526  | 25/05/1999 |
| Long Bay      | DOC sign       | 2667199 | 6499909  | 13/04/1999 |
| Long Bay      | Skull Rock     | 2667364 | 6499835  | 13/04/1999 |
| Long Bay      | Wet Rock       | 2666661 | 6501912  | 13/04/1999 |
| Long Bay      | Mushrooms      | 2667662 | 6498879  | 14/04/1999 |
| Long Bay      | Outer Tor      | 2667497 | 6498445  | 14/04/1999 |
| Long Bay      | Hot tub        | 2668514 | 6505648  | 15/04/1999 |
| Long Bay      | Matakatia      | 2668858 | 6506334  | 15/04/1999 |
| Long Bay      | Ritch Reef     | 2668964 | 6506036  | 15/04/1999 |
| Long Bay      | N-sign         | 2666782 | 6501120  | 12/09/1999 |

Appendix 1-continued

| LOCATION             | SITE            | EASTING | NORTHING | DATE       |
|----------------------|-----------------|---------|----------|------------|
| Long Bay             | Pines           | 2666811 | 6502553  | 12/09/1999 |
| Mokohinau Islands    | Lizard          | 2701371 | 6585652  | 1/06/1999  |
| Mokohinau Islands    | Dragon          | 2700547 | 6585296  | 2/06/1999  |
| Mokohinau Islands    | PinnSth         | 2699726 | 6584844  | 2/06/1999  |
| Mokohinau Islands    | Sentinel        | 2700385 | 6584921  | 2/06/1999  |
| Mokohinau Islands    | Arches          | 2700220 | 6585467  | 3/06/1999  |
| Mokohinau Islands    | Pudding         | 2700557 | 6586008  | 3/06/1999  |
| Mokohinau Islands    | SW Bay          | 2700666 | 6585531  | 3/06/1999  |
| Mokohinau Islands    | House Bay       | 2701287 | 6586216  | 4/06/1999  |
| Mokohinau Islands    | Light Point     | 2701840 | 6586156  | 6/07/1999  |
| Poor Knights Islands | Cleanerfish     | 2668059 | 6636866  | 8/06/1999  |
| Poor Knights Islands | Skull Bay       | 2668289 | 6636118  | 8/06/1999  |
| Poor Knights Islands | Frasers         | 2669024 | 6633668  | 9/06/1999  |
| Poor Knights Islands | Labrid          | 2668543 | 6633083  | 9/06/1999  |
| Poor Knights Islands | Rock Lilly Cove | 2668741 | 6636787  | 9/06/1999  |
| Poor Knights Islands | Bartels' Bay    | 2668554 | 6634747  | 10/06/1999 |
| Poor Knights Islands | Light Bay       | 2668637 | 6637499  | 10/06/1999 |
| Poor Knights Islands | Matt's Crack    | 2668846 | 6634467  | 10/06/1999 |
| Poor Knights Islands | Nursery         | 2668452 | 6634558  | 11/06/1999 |
| Tawharanui           | Takatu          | 2677683 | 6535969  | 19/04/1999 |
| Tawharanui           | Twin Peaks      | 2678018 | 6535722  | 19/04/1999 |
| Tawharanui           | Pinnacle        | 2677435 | 6535904  | 20/04/1999 |
| Tawharanui           | T-Cave          | 2678192 | 6535511  | 20/04/1999 |
| Tawharanui           | Karamuroa       | 2672542 | 6537667  | 21/04/1999 |
| Tawharanui           | P-Point         | 2673550 | 6536649  | 21/04/1999 |
| Tawharanui           | Iguana          | 2677210 | 6535671  | 22/04/1999 |
| Tawharanui           | Mid-Point       | 2676710 | 6535623  | 22/04/1999 |
| Tawharanui           | Comet           | 2674920 | 6535612  | 3/05/1999  |
| Tawharanui           | North Cove      | 2676045 | 6535619  | 3/05/1999  |
| Tuhua Island         | Turanganui      | 2800918 | 6431404  | 15/03/2000 |
| Tuhua Island         | Awatukoro Point | 2796796 | 6430789  | 16/03/2000 |
| Tuhua Island         | Hurihurihunga   | 2799367 | 6431942  | 16/03/2000 |
| Tuhua Island         | Maorichief      | 2798268 | 6431898  | 16/03/2000 |
| Tuhua Island         | Bait Pond       | 2797426 | 6431457  | 17/-3/2000 |
| Tuhua Island         | Okawa           | 2800838 | 6430305  | 17/03/2000 |
| Tuhua Island         | Hot Springs     | 2800658 | 6431789  | 18/03/2000 |
| Tuhua Island         | Te Roto         | 2800658 | 6429485  | 18/03/2000 |
| Portland             |                 |         |          |            |
| Gisborne             | Pouawa South    | 2963647 | 6274453  | 16/01/2002 |
| Gisborne             | Baldy Reef      | 2961200 | 6272250  | 17/01/2002 |
| Gisborne             | Makorori        | 2958008 | 6269378  | 17/01/2002 |
| Gisborne             | Pouawa North    | 2963796 | 6274642  | 17/01/2002 |
| Mahia                | Black Reef      | 2928393 | 6206527  | 18/06/2002 |
| Mahia                | Portland South  | 2929760 | 6198616  | 18/06/2002 |
| Raglan               |                 |         |          |            |
| Gannet Rock          | Gannets leap    | 2647833 | 6357898  | 22/03/2001 |
| Gannet Rock          | SE Bay          | 2647813 | 6357785  | 22/03/2001 |
| New Plymouth         | Seal East       | 2596933 | 6238202  | 18/12/2000 |
| New Plymouth         | Lion W          | 2598866 | 6238943  | 19/12/2000 |

\_

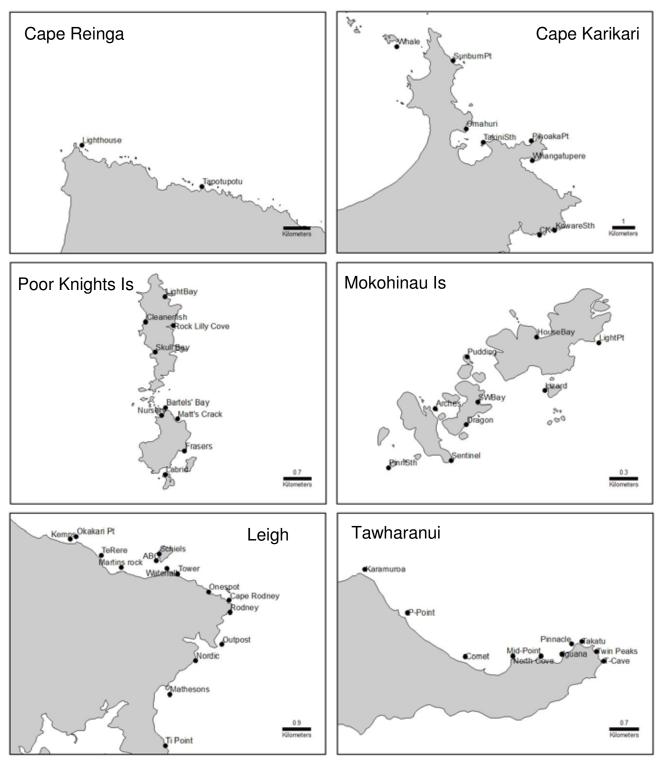
| LOCATION      | SITE             | EASTING | NORTHING | DATE       |
|---------------|------------------|---------|----------|------------|
| New Plymouth  | Saddleback SW    | 2597835 | 6239366  | 19/12/2000 |
| New Plymouth  | Seal West        | 2596816 | 6238252  | 19/12/2000 |
| New Plymouth  | Moa Bay          | 2599112 | 6239076  | 20/12/2000 |
| New Plymouth  | Shilling Rock    | 2597679 | 6237742  | 20/12/2000 |
| Raglan        | Raglan Island    | 2665705 | 6372184  | 23/03/2001 |
| Raglan        | Redline Rock     | 2664760 | 6369665  | 23/03/2001 |
| Raglan        | Taranaki Point   | 2666602 | 6357875  | 23/03/2001 |
| Cook          |                  |         |          |            |
| Kaikoura      | 9Pin             | 2568050 | 5866257  | 7/12/1999  |
| Kaikoura      | Homestead        | 2569415 | 5865337  | 8/12/1999  |
| Kaikoura      | Seal Reef        | 2569415 | 5864996  | 9/12/1999  |
| Kaikoura      | Baxters          | 2566040 | 5863924  | 12/12/1999 |
| Kaikoura      | Shark tooth      | 2567680 | 5863289  | 12/12/1999 |
| Kaikoura      | Lastone          | 2567234 | 5863346  | 13/12/1999 |
| Wellington    | 3Peak            | 2658417 | 5982512  | 11/08/1999 |
| Wellington    | Durv Rocks       | 2658148 | 5982551  | 11/09/1999 |
| Wellington    | Sirens           | 2657483 | 5982639  | 11/09/1999 |
| Wellington    | Moa Point        | 2661443 | 5982971  | 11/10/1999 |
| Wellington    | Shark fin        | 2659940 | 5982726  | 11/10/1999 |
| Wellington    | Palmer           | 2662396 | 5983050  | 11/11/1999 |
| Abel          |                  |         |          |            |
| Abel Tasman   | Foul Point       | 2515324 | 6033097  | 30/11/1999 |
| Abel Tasman   | Seal Colony      | 2515763 | 6035029  | 30/11/1999 |
| Abel Tasman   | Wharf Rock       | 2515494 | 6036413  | 30/11/1999 |
| Abel Tasman   | Isol Rock        | 2511057 | 6044518  | 1/12/1999  |
| Abel Tasman   | Nthn Boundary    | 2513845 | 6039465  | 1/12/1999  |
| Abel Tasman   | Separation Point | 2509748 | 6047167  | 1/12/1999  |
| Abel Tasman   | Abel Head        | 2514836 | 6038883  | 2/12/1999  |
| Abel Tasman   | FG Rock          | 2515200 | 6037996  | 2/12/1999  |
| Abel Tasman   | Pinnacle Island  | 2515568 | 6030807  | 2/12/1999  |
| Abel Tasman   | Pitt Island      | 2515648 | 6028741  | 3/12/1999  |
| Kapiti Island | Aropawaiti East  | 2672338 | 6040876  | 8/12/2000  |
| Kapiti Island | Onepoto Bay      | 2671952 | 6040573  | 8/12/2000  |
| Kapiti Island | Ulva Rock        | 2670003 | 6037336  | 8/12/2000  |
| Kapiti Island | Tokahaki         | 2673377 | 6041217  | 9/12/2000  |
| Kapiti Island | South West Point | 2669541 | 6033916  | 10/12/2000 |
| Kapiti Island | Te Rere Stream   | 2673278 | 6038374  | 10/12/2000 |
| Long Island   | Nob Rock         | 2618257 | 6009413  | 16/11/1999 |
| Long Island   | Thresher Point   | 2616432 | 6007500  | 16/11/1999 |
| Long Island   | Bluemine         | 2614507 | 6002125  | 17/11/1999 |
| Long Island   | Te Ruatarore     | 2614687 | 6008622  | 17/11/1999 |
| Long Island   | Landing          | 2619057 | 6010010  | 18/11/1999 |
| Long Island   | Ship Cove        | 2614745 | 6012282  | 18/11/1999 |
| Long Island   | South Beach      | 2616600 | 6007974  | 18/11/1999 |
| Long Island   | Motuara Island   | 2617543 | 6012835  | 19/11/1999 |
| Long Island   | Sleeping Man     | 2617956 | 6009865  | 19/11/1999 |
| Long Island   | Twin Cave        | 2619136 | 6010290  | 19/11/1999 |
| Long Island   | Cooper Point     | 2620483 | 6009053  | 20/11/1999 |
| Long Island   | Kotukutuku       | 2619512 | 6008099  | 20/11/1999 |

Appendix 1-continued

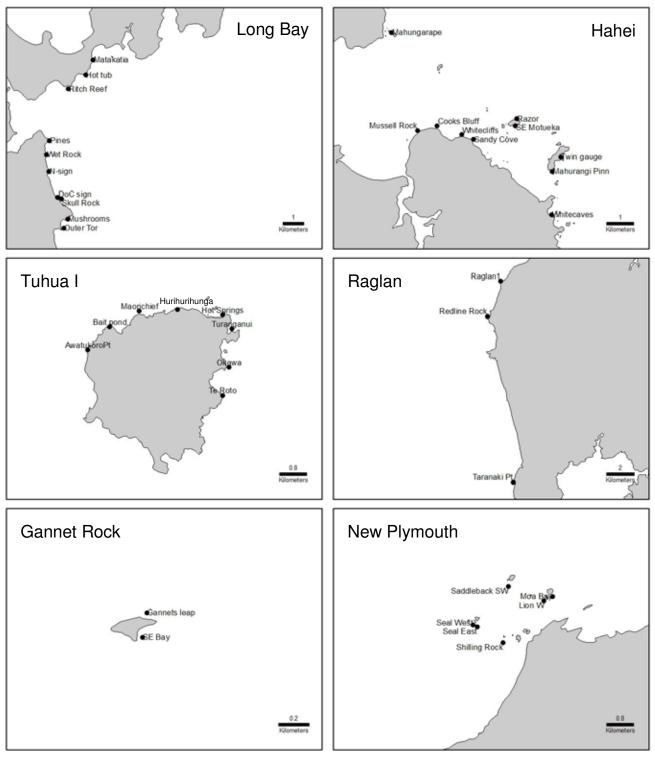
| LOCATION        | SITE             | EASTING | NORTHING | DATE       |
|-----------------|------------------|---------|----------|------------|
| Nelson          | NE Beach         | 2544697 | 6006050  | 23/11/1999 |
| Nelson          | Pepin Cave       | 2544497 | 6007303  | 23/11/1999 |
| Nelson          | Cable NW         | 2543877 | 6005684  | 23/11/1999 |
| Nelson          | Goat Rock        | 2543610 | 6005362  | 24/11/1999 |
| Nelson          | Ноор             | 2540206 | 6002479  | 25/11/1999 |
| Nelson          | Pine/Sign        | 2540472 | 6002889  | 25/11/1999 |
| Nelson          | Summit           | 2541769 | 6003909  | 25/11/1999 |
| Nelson          | BB House         | 2539818 | 6002257  | 26/11/1999 |
| Nelson          | Maheipuku        | 2544963 | 6007990  | 26/11/1999 |
| Banks           |                  |         |          |            |
| Banks Peninsula |                  |         |          |            |
| North           | Godley North     | 2493891 | 5736235  | 18/01/2000 |
| Banks Peninsula |                  |         |          |            |
| North           | Lubchenco        | 2493316 | 5736088  | 18/01/2000 |
| Banks Peninsula | <b>***</b>       |         |          |            |
| North           | Little Akaloa    | 2511739 | 5728539  | 25/02/2000 |
| Flea Bay        | Flea East        | 2510793 | 5703958  | 23/02/2000 |
| Flea Bay        | Outer West       | 2511002 | 5703426  | 23/02/2000 |
| Flea Bay        | Rockpool Point   | 2510731 | 5703669  | 23/02/2000 |
| Flea Bay        | Hectors Wall     | 2511360 | 5703579  | 24/02/2000 |
| Flea Bay        | Tern Rock        | 2511478 | 5703134  | 24/02/2000 |
| Chalmers        |                  |         |          |            |
| Catlins         | False Islet      | 2260635 | 5409277  | 12/02/2000 |
| Catlins         | Hole Point       | 2261955 | 5410586  | 12/02/2000 |
| Catlins         | Tuhawaiki Island | 2257416 | 5406373  | 12/02/2000 |
| Otago Peninsula | Cape Saunders    | 2333964 | 5478632  | 19/02/2000 |
| Otago Peninsula | Puddingstone     | 2335078 | 5479650  | 19/02/2000 |
| Otago Peninsula | Sandymount       | 2330190 | 5476635  | 20/02/2000 |
| Buller          |                  |         |          |            |
| Cape Foulwind   | Fishing Rod reef | 2383024 | 5941736  | 24/02/2001 |
| Cape Foulwind   | Granite spot     | 2381671 | 5938138  | 24/02/2001 |
| Cape Foulwind   | South Seal Rocks | 2382840 | 5940581  | 24/02/2001 |
| Cape Foulwind   | North Granite    | 2381700 | 5938290  | 27/02/2001 |
| Karamea         | Falls Creek      | 2428497 | 5976797  | 25/02/2001 |
| Karamea         | Kongahu Point    | 2425899 | 5973459  | 25/02/2001 |
| Karamea         | Little Wanganui  | 2430778 | 5979244  | 25/02/2001 |
| Westland        |                  |         |          |            |
| Barn            | Barn Island      | 2134236 | 5669941  | 21/02/2001 |
| Barn            | Brown Island     | 2130224 | 5663309  | 9/12/2003  |
| Barn            | Gorge Island     | 2125321 | 5658550  | 9/12/2003  |
| Big Bay         | Penguin Inner    | 2116300 | 5642142  | 8/12/2003  |
| Big Bay         | Penguin Rocks    | 2115697 | 5642167  | 8/12/2003  |
| Big Bay         | Crayfish Rock    | 2119708 | 5646604  | 12/12/200  |
| Cascades        | Cascade Island   | 2141018 | 5679231  | 21/02/2001 |
| Cascades        | Cement Face      | 2143307 | 5678981  | 21/02/2001 |
| Cascades        | Cascade Point    | 2138476 | 5678640  | 9/12/2003  |
| Jackson Head    | Frog Rocks       | 2155031 | 5683225  | 20/02/2001 |

## Appendix 1—continued

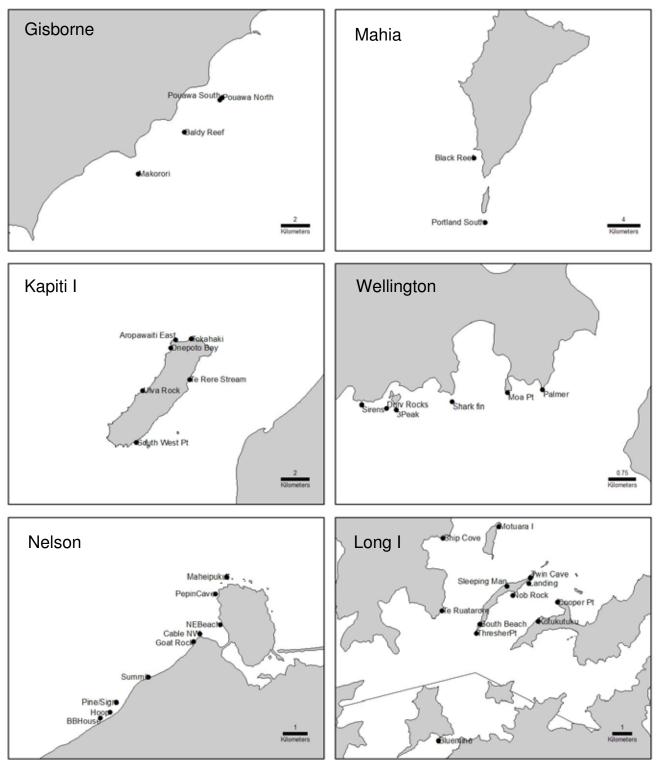
| LOCATION           | SITE              | EASTING | NORTHING | DATE       |
|--------------------|-------------------|---------|----------|------------|
| Jackson Head       | Moccasin Gap      | 2157047 | 5684270  | 20/02/2001 |
| Jackson Head       | Smoothwater Point | 2156495 | 5684352  | 20/02/2001 |
| Jackson Head       | Jackson Bluff     | 2158886 | 5684454  | 12/12/2003 |
| Jackson Head       | Jackson Head      | 2158984 | 5685079  | 12/12/2003 |
| Moeraki            | Arnott Point      | 2204776 | 5714279  | 10/12/2003 |
| Moeraki            | Moeraki River     | 2208106 | 5716501  | 10/12/2003 |
| Moeraki            | Whakapoai         | 2206988 | 5715906  | 11/12/2003 |
| Open Bay Islands   | NE Taumaka        | 2179646 | 5697156  | 22/02/2001 |
| Open Bay Islands   | SW Popotai        | 2178539 | 5696721  | 22/02/2001 |
| Open Bay Islands   | NW Taumaka        | 2179505 | 5697478  | 11/12/2003 |
| Fiordland          |                   |         |          |            |
| Bligh Sound        | Bligh OW          | 2071295 | 5589037  | 25/01/1999 |
| Bligh Sound        | Franzinner        | 2077508 | 5583660  | 25/01/2000 |
| Bligh Sound        | Chasland Head     | 2072478 | 5589151  | 25/01/2000 |
| Bligh Sound        | Turnaround Point  | 2078109 | 5586225  | 25/01/2000 |
| Bligh Sound        | Bligh IW          | 2075802 | 5583017  | 26/01/2000 |
| Bligh Sound        | Bligh ME          | 2078872 | 5586425  | 26/01/2000 |
| Bligh Sound        | Bligh ON          | 2074630 | 5591877  | 26/01/2000 |
| Charles Sound      | Charles inner     | 2048460 | 5551129  | 23/01/2000 |
| Charles Sound      | Charles outer     | 2045293 | 5554418  | 23/01/2000 |
| Doubtful Sound     | Hubs Spur         | 2029146 | 5533804  | 21/01/2000 |
| Doubtful Sound     | Hut Bay           | 2036333 | 5528325  | 21/01/2000 |
| Doubtful Sound     | Joseph Point      | 2037307 | 5525670  | 21/01/2000 |
| Doubtful Sound     | Jamieson          | 2030626 | 5528830  | 22/01/2000 |
| Doubtful Sound     | Renown Rock       | 2037523 | 5527670  | 22/01/2000 |
| Doubtful Sound     | Sail Rock         | 2032513 | 5530768  | 22/01/2000 |
| Preservation Inlet | Sandfly Point     | 2017127 | 5437298  | 16/03/2005 |
| Preservation Inlet | Weka Point        | 2020786 | 5438548  | 16/03/2005 |
| Stewart Island     |                   |         |          |            |
| Bluff              | Oraka Pt          | 2114848 | 5411531  | 22/03/2005 |
| Bluff              | Pig Island        | 2123913 | 5410486  | 22/03/2005 |
| Bluff              | Barracouta Point  | 2147406 | 5392227  | 23/03/2005 |
| Bluff              | Lookout Point     | 2152629 | 5387851  | 23/03/2005 |
| Bluff              | Shag Rock         | 2144141 | 5395393  | 23/03/2005 |
| Bluff              | Stirling Point    | 2154032 | 5388640  | 24/03/2005 |
| Bluff              | Tiwai Point       | 2155425 | 5390468  | 24/03/2005 |
| Codfish-Ruggedy    | Codfish Southeast | 2102422 | 5367193  | 14/03/2005 |
| Codfish-Ruggedy    | Ruggedy Passage   | 2105692 | 5376044  | 14/03/2005 |
| Codfish-Ruggedy    | Codfish East      | 2102363 | 5368359  | 17/03/2005 |
| Codfish-Ruggedy    | North Sealers     | 2100414 | 5370663  | 17/03/2005 |
| Codfish-Ruggedy    | Ruggedy NE        | 2106226 | 5376207  | 17/03/2005 |
| Codfish-Ruggedy    | Black Rock Point  | 2117548 | 5379304  | 18/03/2005 |
| Codfish-Ruggedy    | Lucky Point       | 2123254 | 5377092  | 18/03/2005 |
| Green Islets       | Archway           | 2033766 | 5425664  | 15/03/2005 |
| Green Islets       | NW Bay            | 2031101 | 5424077  | 15/03/2005 |
| Green Islets       | Prices Point      | 2041905 | 5424702  | 15/03/2005 |
| Paterson Inlet     | Octopus           | 2139273 | 5353661  | 31/01/2000 |
| Paterson Inlet     | Refuge Island     | 2138857 | 5351088  | 31/01/2000 |
| Paterson Inlet     | Neck North        | 2142802 | 5353784  | 1/02/2000  |


Appendix 1-continued

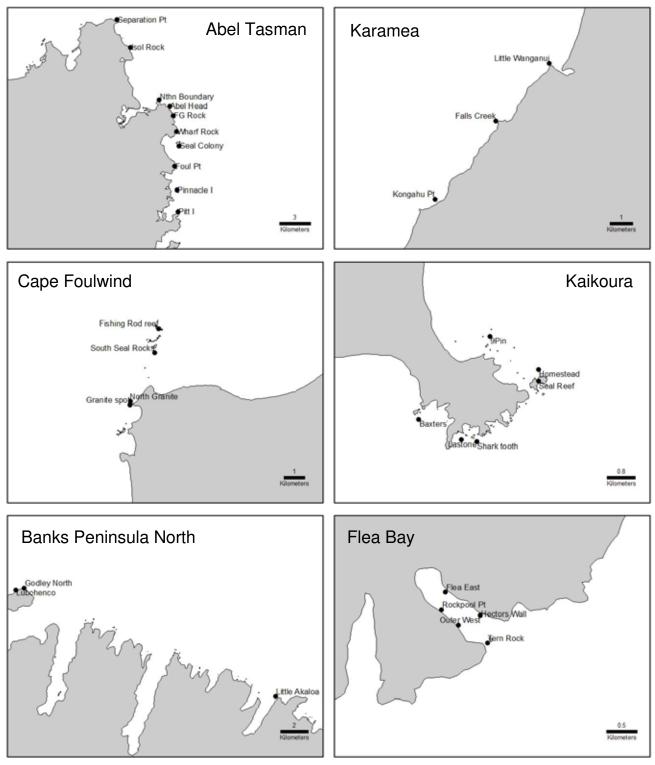
| LOCATION       | SITE             | EASTING | NORTHING | DATE       |
|----------------|------------------|---------|----------|------------|
| Paterson Inlet | Balancing Rock   | 2137416 | 5353010  | 1/02/2000  |
| Paterson Inlet | Ulva East        | 2140838 | 5352512  | 1/02/2000  |
| Paterson Inlet | Ackers Point     | 2140868 | 5356773  | 2/02/2000  |
| Paterson Inlet | Native North     | 2141284 | 5354940  | 2/02/2000  |
| Paterson Inlet | Iona South       | 2138244 | 5355536  | 2/02/2000  |
| Paterson Inlet | Horseshoe        | 2139545 | 5359778  | 7/02/2000  |
| Paterson Inlet | Tamihou Island   | 2137091 | 5352726  | 19/03/2005 |
| Paterson Inlet | Ulva East2       | 2140763 | 5352545  | 19/03/2005 |
| Paterson Inlet | Bobs Point       | 2138192 | 5361525  | 21/03/2005 |
| Paterson Inlet | West Head        | 2135454 | 5363772  | 21/03/2005 |
| Port Adventure | Browns Garden    | 2144760 | 5338590  | 12/03/2005 |
| Port Adventure | Lords River Head | 2140594 | 5332620  | 13/03/2005 |
| Port Adventure | Owens Island     | 2142866 | 5331715  | 13/03/2005 |
| Port Adventure | Tia Island       | 2146867 | 5337926  | 13/03/2005 |
| Ruapuke Island | Bird Rock        | 2159992 | 5372755  | 20/03/2005 |
| Ruapuke Island | Caroline Bay     | 2165302 | 5374494  | 20/03/2005 |
| Ruapuke Island | North Head       | 2167810 | 5376729  | 20/03/2005 |
| Ruapuke Island | South Islets     | 2166573 | 5368849  | 20/03/2005 |
| Titi Islands   | Edwards          | 2144826 | 5364838  | 3/02/2000  |
| Titi Islands   | Herekopere       | 2146140 | 5360395  | 3/02/2000  |
| Titi Islands   | Bench Nth        | 2147096 | 5356879  | 4/02/2000  |
| Titi Islands   | Bench SE Point   | 2147989 | 5355765  | 4/02/2000  |


# Appendix 2

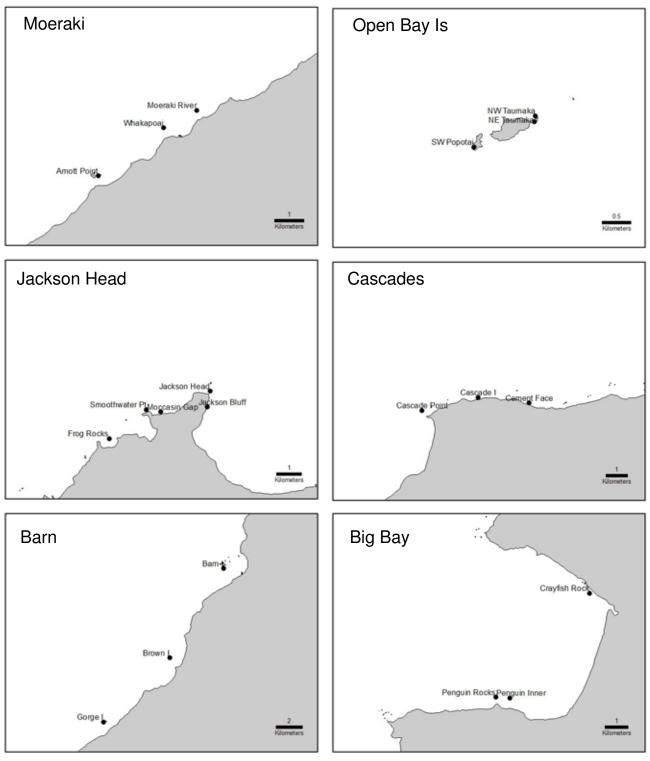
# MAPS OF STUDY SITES


Position of sampling sites shown for each location. See Appendix 1 for site names and co-ordinates.

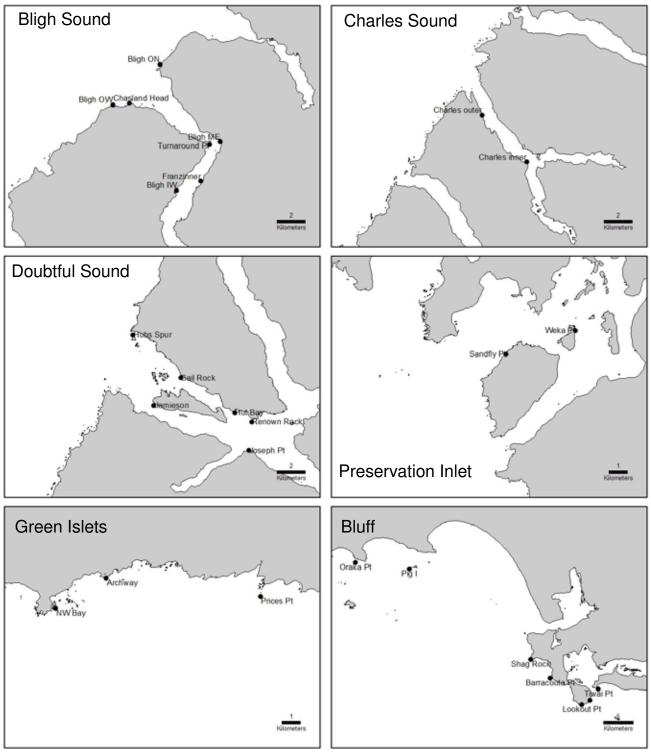



Appendix 2-continued



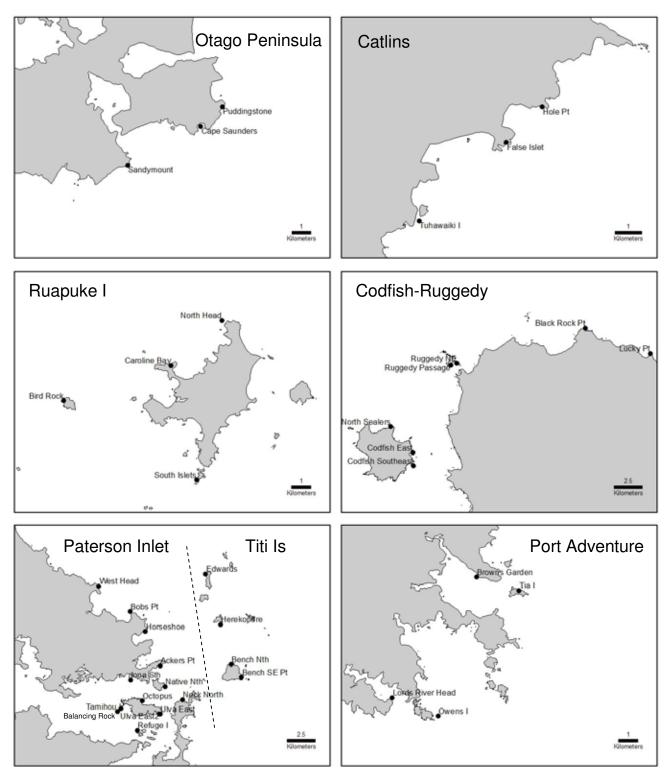

Appendix 2-continued




Appendix 2-continued



Appendix 2-continued




Appendix 2-continued



Continued on next page

Appendix 2-continued



#### MACROALGAL BIOMASS EQUATIONS

Length-weight and/or percentage cover-weight relationships for major algal species and groups. y = dry weight (g), x = total length(cm), SD = stipe diameter(cm), SL = stipe length(cm), LL = laminae length(cm).

| GROUP/SPECIES                           | EQUATION                                   | $R^2$ | n   | COLLECTED         |
|-----------------------------------------|--------------------------------------------|-------|-----|-------------------|
| Ecklonia radiata                        | $\ln(y) = 2.625 \ln(x) - 7.885$            | 0.97  | 21  | Cape Reinga       |
| Stipe                                   | $\ln(y) = 1.671\ln(SL) - 3.787$            | 0.97  | 46  | Leigh             |
| Rest                                    | $\ln(y) = 1.177 \ln(SL \times LL) - 3.879$ | 0.94  | 55  | Leigh             |
| Carpophyllum flexuosum                  | $\ln(y) = 1.890 \ln(x) - 4.823$            | 0.91  | 22  | Long Bay          |
|                                         | $\ln(y) = 2.049 \ln(x) - 5.251$            | 0.90  | 52  | Tawharanui        |
|                                         | $\ln(y) = 1.792\ln(x) - 4.538$             | 0.89  | 59  | Mokohinau Islands |
|                                         | $\ln(y) = 1.282 \ln(x) - 2.135$            | 0.91  | 31  | Nelson            |
| Other Carpophyllum spp.                 |                                            |       |     |                   |
| Carpophyllum angustifolium <sup>a</sup> | y = 0.068x - 0.27                          | 0.92  | 23  | Leigh             |
|                                         | $\ln(y) = 1.131\ln(x) - 3.522$             | 0.89  | 117 | Mokohinau Islands |
| C. maschalocarpum                       | $\ln(y) = 2.078 \ln(x) - 5.903$            | 0.88  | 116 | Long Bay          |
|                                         | $\ln(y) = 1.764 \ln(x) - 4.311$            | 0.72  | 46  | Leigh             |
|                                         | $\ln(\gamma) = 1.567 \ln(x) - 4.204$       | 0.96  | 38  | Mokohinau Islands |
|                                         | $\ln(y) = 1.9624 \ln(x) - 4.86$            | 0.89  | 41  | Nelson            |
| C. plumosum                             | $\ln(y) = 1.472\ln(x) - 3.850$             | 0.66  | 62  | Leigh             |
|                                         | y = 1.638x - 4.413                         | 0.92  | 31  | Hahei             |
|                                         | $\ln(y) = 1.517 \ln(x) - 4.778$            | 0.69  | 60  | Mokohinau Islands |
| <i>Cystophora</i> spp.                  |                                            |       |     |                   |
| C. torulosa                             | $\ln(y) = 1.551\ln(x) - 2.6282$            | 0.79  | 12  | Nelson            |
| C. retroflexa                           | $\ln(y) = 1.560 \ln(x) - 3.9486$           | 0.90  | 14  | Nelson            |
| C. platylobium                          | $\ln(y) = 2.7464 \ln(x) - 7.9721$          | 0.66  | 6   | Stewart Island    |
| Lessonia variegata                      | $\ln(y) = 1.677 \ln(x) - 5.537$            | 0.83  | 9   | Mokohinau Islands |
| Landsburgia quercifolia                 | $\ln(y) = 1.971 \ln(x) - 5.058$            | 0.83  | 19  | Cape Reinga       |
|                                         | $\ln(y) = 2.5645 \ln(x) - 6.741$           | 0.90  | 12  | Stewart Island    |
| Macrocystis pyrifera                    | $\ln(y) = 1.7997 \ln(x) - 5.672$           | 0.79  | 42  | Stewart Island    |
| <i>Marginariella</i> spp.               |                                            |       |     |                   |
| M. boryana                              | $\ln(y) = 2.1691 \ln(x) - 6.4778$          | 0.95  | 21  | Kaikoura          |
| M. urvilliana                           | $\ln(y) = 3.4274 \ln(x) - 12.405$          | 0.77  | 18  | Kaikoura          |
| Sargassum sinclairii                    | y = 0.075x + 0.124                         | 0.58  | 25  | Cape Reinga       |
|                                         | $\ln(y) = 1.3007 \ln(x) - 2.6964$          | 0.79  | 26  | Nelson            |
| Xiphophora spp.                         |                                            |       |     |                   |
| X. chondrophylla                        | y = 1.786x - 4.171                         | 0.62  | 18  | Hahei             |
|                                         | $\ln(y) = 2.01 \ln(x) - 5.377$             | 0.75  | 33  | Mokohinau Islands |
| X. gladiata                             | $\ln(y) = 1.4995 \ln(x) - 3.4541$          | 0.73  | 27  | Bligh             |
|                                         | 1% = 58.8 g                                |       | 5   |                   |
| Durvillaea willana                      | $\ln(\gamma) = 2.1216\ln(SD) - 2.7727$     | 0.95  | 6   | Westport          |

#### Appendix 3-continued

| GROUP/SPECIES                    | EQUATION                         | $R^2$ | n  | COLLECTED         |
|----------------------------------|----------------------------------|-------|----|-------------------|
| Red foliose                      |                                  |       |    |                   |
| Osmundaria colensoi              | $\ln(y) = 1.720  \ln(x) - 3.379$ | 0.70  | 14 | Mokohinau Islands |
|                                  | 1% = 22.93g                      |       | 3  |                   |
| Pterocladia lucida               | $\ln(y) = 1.963 \ln(x) - 5.076$  | 0.73  | 47 | Leigh             |
|                                  | 1% = 10  g                       |       | 3  |                   |
| Melanthalia abscissa             | $\ln(y) = 1.775 \ln(x) - 4.247$  | 0.64  | 22 | Leigh             |
| Plocamium spp.                   | $\ln(y) = 2.649 \ln(x) - 8.812$  | 0.80  | 34 | Mokohinau Islands |
| Euptilota formosissima           | $\ln(y) = 1.616 \ln(x) - 4.971$  | 0.78  | 13 | Mokohinau Islands |
| Placentophora colensoi           | $\ln(y) = 2.582 \ln(x) - 6.392$  | 0.87  | 23 | Cape Karikari     |
| Red turfing                      | 1% = 1.74 g                      |       | 3  | Mokohinau Islands |
| Coralline turf <sup>b</sup>      | 1% = 1.5 g                       |       | 3  | Mokohinau Islands |
| Crustose corallines <sup>b</sup> | 1% = 0.35 g                      |       | 3  | Leigh             |
| Brown turfing                    | 1% = 1.74  g                     |       | 3  | Mokohinau Islands |
| Small browns                     |                                  |       |    |                   |
| Carpomitra costata               | $\ln(y) = 1.735 \ln(x) - 5.856$  | 0.43  | 18 | Mokohinau Islands |
| Zonaria turneriana               | $\ln(y) = 2.587 \ln(x) - 6.443$  | 0.83  | 27 | Mokohinau Islands |
|                                  | 1% = 2.48  g                     |       | 3  |                   |
| Caulerpa flexilis                | 1% = 5.81 g                      |       | 3  | Mokohinau Islands |
| Other greens                     |                                  |       |    |                   |
| Codium convolutum                | 1% = 4.68  g                     |       | 3  | Mokohinau Islands |
| Codium fragile                   | $\ln(y) = 1.7635\ln(x) - 4.3427$ | 0.90  | 13 | Doubtful          |
| Ulva spp.                        | 1% = 1.71 g                      |       | 3  | Mokohinau Islands |

<sup>a</sup> From Choat & Schiel (1982).

<sup>b</sup> The proportion of CaCO<sub>3</sub> in *Corallina officinalis* has been estimated as 45% of the dry weight. The value given is the total dry weight of samples less 45%.

# STRUCTURAL GROUP AFDW CONVERSION FACTORS

Samples collected from Leigh (Lei), Mokohinau Islands (Mok) and Raglan (Rag).

| TAXON         | STRUCTURAL<br>GROUP     | SPECIES                       | UNIT  | AFDW<br>(g) | SE  | n |
|---------------|-------------------------|-------------------------------|-------|-------------|-----|---|
| Ascidians     | Compound ascidians      | Didemnum sp. (Lei)            | 1%    | 1.6         | 0.2 | 3 |
|               | Solitary ascidians      | Asterocarpa sp. (Lei)         | 1%    | 6.4         | 0.6 | 3 |
|               | Stalked ascidians       | Pseudodistoma sp. (Lei)       | 1%    | 2.2         | 0.3 | 3 |
| Barnacles     | Barnacles               | Balanus sp. (Lei)             | 1%    | 1.8         | 0.2 | 3 |
| Mollusca      | Oysters                 | Crassostrea sp. (Lei)         | 1%    | 5.0         | 1.4 | 3 |
|               | Large mussels           | Perna canaliculus (Lei)       | 1%    | 26.0        | 5.0 | 3 |
|               | Small mussels           | Xenostrobus pulex (Lei)       | 1%    | 8.9         | 0.5 | 3 |
| Brachiopoda   | Brachiopods             | Unknown brachiopod (Lei)      | 0.25% | 0.4         | 0.1 | 3 |
| Bryozoa       | Branched bryozoans      | Cribricellina cribraria (Mok) | 1%    | 3.5         | 0.8 | 3 |
|               | Encrusting bryozoans    | Membranipora sp. (Mok)        | 1%    | 0.5         | 0.1 | 3 |
| Coelenterates | Colonial anemones       | Actinothoe albocincta (Lei)   | 1%    | 2.3         | 0.4 | 3 |
|               | Large solitary anemones | Phlyctinactis sp. (Lei)       | 1%    | 4.0         | 0.6 | 3 |
|               | Cup corals              | Monomyces rubrum (Lei)        | 0.25% | 0.3         | 0.1 | 3 |
|               | Soft corals             | Alcyonium sp. (Mok)           | 1%    | 3.1         | 0.5 | 3 |
| Hydrozoa      | Hydroid turf            | Unknown hydroid (Mok)         | 0.25% | 0.4         | 0.0 | 3 |
|               |                         | Amphisbetia bispinosa (Rag)   | 1%    | 8.1         | 0.4 | 2 |
|               | Hydroid trees           | Solanderia ericopsis (Mok)    | 1%    | 10.0        | 1.2 | 3 |
| Porifera      | Encrusting sponges      | <i>Cliona celata</i> (Lei)    | 1%    | 11.4        | 2.2 | 3 |
|               | Finger sponges          | Raspailia topsenti (Mok)      | 1%    | 44.9        | 7.1 | 2 |
|               | Massive sponges         | Polymastia croceus (Lei)      | 1%    | 22.2        | 2.0 | 3 |
|               |                         | Ancorina alata (Lei)          | 1%    | 64.7        | 4.4 | 3 |

### OCCURRENCE OF MACROALGAL SPECIES

Percentage of quadrats in which each species was recorded (n indicates the number of quadrats sampled at each location).

TABLE A5.1. NORTHERN LOCATIONS.

| LOCATION                    | CYPE REINGA | СУЬЕ КУВІКУВІ | POOR KNIGHTS IS | SUNAINAU ISLAUDS | ГЕІСН | TUNAAAHWAT | LONG BAY    | ІЗНУНЕІ | UNAUA ISLAND | <b>GISBORNE</b> | AIHAM | RAGLAN | GANNET ROCK | NEM BLYNOUTH | ANAJZI ITIAAN | ANAJ21 JUOJ | NOSTAN | NAM2AT JJ8A |
|-----------------------------|-------------|---------------|-----------------|------------------|-------|------------|-------------|---------|--------------|-----------------|-------|--------|-------------|--------------|---------------|-------------|--------|-------------|
| и                           | 35          | 160           | 180             | 175              | 275   | 180        | 75          | 165     | 160          | 75              | 40    | 26     | 40 1        | 120          | 115           | 235         | 175    | 200         |
| Large brown algae           |             |               |                 |                  |       |            |             |         |              |                 |       |        |             |              |               |             |        |             |
| Carpophyllum angustifolium  | ı           |               | 20.0            | 14.9             | 6.9   | 2.2        |             | 10.3    | 23.8         | ,               | ı     |        | ,           |              |               |             |        |             |
| Carpophyllum flexuosum      |             | 31.9          | 7.8             | 23.4             | 12.7  | 27.8       | <b>48.0</b> | 37.0    | 8.1          | 52.0            | 2.5   |        |             | 4            |               | 17.9        | 25.7   | 13.5        |
| Carpophyllum maschalocarpum | 94.3        | 41.9          | 18.3            | 27.4             | 50.9  | 52.8       | 80.0        | 49.7    | 49.4         | 49.3            |       | 26.9 2 | 4.          | f3.3 5       |               | 2.1         | 29.1   | 24.5        |
| Carpophyllum plumosum       | 20.0        | 15.6          | 8.9             | 9.1              | 14.2  | 8.9        | 20.0        | 28.5    | 18.1         |                 | ,     |        |             |              |               |             |        |             |
| Cystophora retroflexa       |             |               |                 | 0.6              |       |            | 24.0        |         | 17.5         |                 |       |        |             |              |               | 0.4         | 5.7    |             |
| Cystophora torulosa         |             | 0.6           |                 |                  |       |            |             |         |              |                 |       |        |             |              |               |             | 3.4    | 3.0         |
| Durvillaea antarctica       |             |               |                 |                  |       |            |             |         |              |                 | 7.5   |        |             |              |               |             |        |             |
| Ecklonia radiata            | 57.1        | 55.0          | 66.7            | 45.1             | 76.0  | 73.9       | 60.0        | 80.6    | 44.4         | -               | 65.0  |        |             | •            |               | 0.0         |        |             |
| Landsburgia quercifolia     | 45.7        | 7.5           | 5.6             |                  | 1.1   |            |             | 3.0     |              |                 |       |        |             |              |               | 1.3         |        |             |
| Lessonia variegata          | 25.7        | 7.5           | 20.0            | 12.6             |       |            |             | 7.9     |              |                 |       |        |             |              |               |             |        |             |
| Macrocystis pyrifera        | ·           |               | ,               | ,                | ŀ     |            | ŀ           | ·       | ,            | ,               | ı     | ,      | ,           | ,            | ,             | 4.7         |        |             |
| Marginariella boryana       |             |               |                 |                  |       |            |             |         |              |                 |       |        |             |              |               | 3.4         |        |             |
| Sargassum sinclairii        | 28.6        | 36.3          | 16.7            | 10.3             | 5.5   | 7.2        | 33.3        | 25.5    | 19.4         | 17.3            | 10.0  |        |             |              |               | 6.0         | 20.0   | 1.0         |
| Xiphophora chondrophylla    | ı           | 27.5          | 23.9            | 16.6             | 5.5   | 1.7        |             | 30.3    | 26.9         |                 | ı     |        |             |              |               |             |        | ŀ           |
| Small brown algae           |             |               |                 |                  |       |            |             |         |              |                 |       |        |             |              |               |             |        |             |
| Carpomitra costata          | 5.7         | 13.1          | 4.4             | 9.7              |       |            |             | 5.5     | 17.5         | 33.3            | 15.0  |        |             |              |               | 14.0        | 1.7    | 11.5        |
| Distromium scottsbergii     |             | 3.8           | 7.8             | 1.7              | 4.4   |            |             | 0.6     | 11.9         | 8.0             |       |        |             |              |               |             |        |             |
| Halopteris spp.             | 5.7         | 0.6           | 3.9             | 3.4              | 0.7   | ı          | ,           | 1.2     | 8.1          | 1.3             | 47.5  |        |             |              |               | 1.1         | 3.4    |             |
| Perithalia capillaris       |             | 1.9           |                 |                  | ,     | ī          | ,           | ,       | ,            |                 | ,     |        |             |              |               |             |        |             |
| Sporochnus sp.              | 8.6         | 3.8           |                 |                  |       |            |             |         |              |                 |       |        |             | 1.7          | 2.6           | 0.9         |        | 1.5         |
| Zonaria spp.                | 57.1        | 20.6          | 21.7            | 38.3             | 7.3   | 11.7       | 62.7        | 39.4    | 69.4         | 81.3            | 47.5  |        |             |              |               | 8.9         |        |             |

Table A5.1–continued

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 | NUKIF        | IN ON LIFE AN EAN |            |          |       |              |          |       |        |             |              |               | ADEL        | 4      |             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------|-------------------|------------|----------|-------|--------------|----------|-------|--------|-------------|--------------|---------------|-------------|--------|-------------|
| LOC                       | CYDE BEINCY<br>CYDE DC<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>CY<br>TO<br>C<br>C<br>CY<br>TO<br>CY<br>TO<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | СУБЕ КУВІКУВІ | POOR KNIGHTS IS | SI ΠΥΝΙΗΟΧΟΜ | FEIGH             | IUNAAAHWAT | LONG BAY | ІАНАН | UNAJZI AUHUT | GISBORNE | AIHAM | RAGLAN | GANNET ROCK | NEM PLYNOLLH | KVDILI ISFVAD | UNVISI 9NOI | NOSTEN | NYWSYL 138V |
| Ephemeral brown algae     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |              |                   |            |          |       |              |          |       |        |             |              |               |             |        |             |
| Brown turf (< 5 cm)       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,             | 0.6             | 1.1          | ı                 |            |          |       | 8.8          |          | ı     |        |             | 0.8          |               |             |        | ,           |
| Colpomenia sinuosa        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5           | 1.7             | 4.6          | 7.3               | 8.9        | 1.3      |       | 8.8          |          | 5.0   |        | 5.0         | 9.2          |               | 14.9        | 2.3    | 8.0         |
| Cutleria multifida        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·             |                 |              |                   | ,          |          |       | ı            | ı        |       |        |             |              | 0.9           |             |        |             |
| Desmarestia ligulata      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | '             |                 |              |                   |            |          |       | ŀ            |          |       |        |             |              |               | 6.0         | 1.7    |             |
| Dictyota spp.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.8           |                 |              | 6.2               | 1.7        |          |       |              |          |       |        |             | <b>30.0</b>  | 7.8           |             |        | 3.0         |
| Endarachne bingbamiae     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |              |                   |            |          |       |              |          |       | 7.7    |             |              |               |             |        |             |
| Glossophora kunthii       | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 3.1         |                 | 2.9          | 0.7               | 0.6        |          | 1.8   | 10.0         | 10.7     | 10.0  | 3.8    |             | 9.2          | 15.7          | 5.1         | 18.3   | 8.0         |
| Spatoglossum chapmanii    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı             | ı               |              |                   |            |          | ,     |              |          |       |        |             |              |               | 0.4         | ,      | ,           |
| Brown encrusting          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |              |                   |            |          |       |              |          |       |        |             |              |               |             |        |             |
| Ralfsta spp.              | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 16.3        | 8.9             | 21.1         | 13.1              | 35.0       | 26.7     | 22.4  | 21.9         | 17.3     | 10.0  | 11.5   | 22.5        | 15.0         | 15.7          | 49.4        | 43.4   | 22.5        |
| Green algae               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |              |                   |            |          |       |              |          |       |        |             |              |               |             |        |             |
| Bryopsis spp.             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              |                   |            |          |       |              |          |       |        |             | 0.8          |               |             |        |             |
| Caulerpa articulata       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9           | ·               | ,            | ı                 | ı          |          |       | ı            | 22.7     | ·     |        | ŀ           |              |               |             |        | ,           |
| Caulerpa brownii          | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·             | ·               |              |                   | ŀ          |          |       | ı            | ı        | ·     |        | ŀ           |              |               | 3.0         |        |             |
| Caulerpa fastigiata       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6           | ·               | ,            | ·                 | ŀ          | ı        | ,     | ı            | ı        | ŀ     | ı      |             |              | ,             |             |        |             |
| Caulerpa flexilis         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1           |                 | 1.1          | ·                 | ·          |          |       | 10.6         | ı        | ı     |        |             |              |               |             |        |             |
| Caulerpa geminata         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9           | 7.2             | 5.7          | 0.4               | 0.6        |          |       | 3.8          | 6.7      | 17.5  |        |             | 0.8          | 5.2           | 0.9         | 0.6    | ,           |
| Codium convolutum         | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 30.6        |                 | 41.1         | 7.6               | 2.8        | ,        | 6.1   | 10.0         |          |       |        |             | 7.5          |               | 5.5         |        |             |
| Codium cranwelliae        | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 5.0         | 8.9             | 1.7          | 0.4               |            |          | 21.8  | 1.3          |          |       |        |             |              |               |             |        |             |
| Cladophora spp.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6           |                 |              |                   |            |          |       |              |          | •     | 15.4   | 7.5         | 34.2         | 13.0          | 2.1         | 8      | 7.0         |
| Cladophoropsis herpestica |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | •               |              |                   |            | 4.0      |       |              |          |       |        |             |              |               |             |        |             |
| Codium fragile            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |              |                   |            |          |       |              |          |       |        |             |              |               | 2.1         |        |             |
| Halicystis sp.            | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              |                   | ,          |          |       |              | 1.3      | 2.5   |        |             |              |               | 0.4         |        | 1.5         |
| Pedobesia clavaeformis    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1           | 1.1             | 8.0          | ı                 |            |          |       | 1.9          |          | ı     |        |             |              |               |             |        | ,           |
| Ulva spp.                 | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 2.5         | 58.9            | 53.1         | ·                 | ·          |          |       | 36.3         |          |       |        |             | 0.8          | 27.8          | к.<br>К     | 18.3   | ,           |

Table A5.1–continued

| LAND RAGLAN ABEL | VBET LV2WVA<br>NET2OA<br>FOAG I2TVAD<br>KVbili I2TVAD<br>NE& FFXWOALH<br>GVAAEL BOCK<br>BVGTVA<br>WVHIV |                                | 100 100 99.2 98.3 99.6 100 1 | 77.5 23.1 2.5 25.0 22.6 20.0 15.4 5.5 | 61.5 10.0 25.0 39.1 9.4 10.9 |                            |                         |                   | ·<br>·<br>·              | - 3.3             | 17.5 35.8 40.9 11.1 2      |                   | 1.7                  | 6.0                     | 8.5                 | •                   | •                | 5.1          |                          | •                | •                 | 1.7 1.7                | •                    | •               | •                    | •               | 00 |
|------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|---------------------------------------|------------------------------|----------------------------|-------------------------|-------------------|--------------------------|-------------------|----------------------------|-------------------|----------------------|-------------------------|---------------------|---------------------|------------------|--------------|--------------------------|------------------|-------------------|------------------------|----------------------|-----------------|----------------------|-----------------|----|
| PORTLAND         | GISBORNE                                                                                                |                                | -                            | 8.0                                   |                              |                            |                         |                   |                          |                   | 7                          |                   |                      |                         |                     |                     |                  |              |                          |                  |                   |                        |                      |                 |                      |                 |    |
|                  | TUHUA ISLAND                                                                                            |                                | 100                          | 73.1                                  | 53.8                         |                            | 1.9                     |                   |                          |                   | 56.3                       |                   |                      |                         |                     | ,                   | ,                | ,            | ,                        | 1.3              | 10.0              | 3.1                    | 6.9                  |                 | ŀ                    |                 |    |
|                  | НАНЕІ                                                                                                   |                                | 98.8                         | 27.3                                  | 46.7                         |                            | 4.8                     | 7.3               | •                        | •                 | 27.9                       |                   | •                    | •                       |                     | ı                   | ·                | ·            | ·                        | 5.5              | ,                 | •                      | •                    | •               |                      | •               |    |
|                  | LONG BAY                                                                                                |                                | 100                          | 10.7                                  | 14.7                         |                            | •                       |                   | •                        |                   |                            |                   | •                    | •                       |                     | ,                   |                  |              |                          |                  | ,                 |                        |                      |                 |                      |                 |    |
| ERN              | IUNAAAHWAT                                                                                              |                                | 98.3                         | 52.8                                  | 11.1                         |                            | 5.6                     | •                 | •                        | •                 | 11.7                       |                   | •                    | •                       | •                   | ı                   | ·                | ·            | ·                        | 7.2              | ,                 |                        |                      |                 | '                    | 0.6             |    |
| THEASTERN        | LEIGH                                                                                                   |                                | 100                          | 65.8                                  | 5.5                          |                            | 5.5                     | 13.1              | •                        |                   | 14.2                       |                   | •                    | •                       |                     | ı                   | ŀ                | ,            | ,                        | ·                | ,                 | •                      | •                    |                 | ŀ                    | 0.4             |    |
| NORT             | SI ΠΨΝΙΗΟΧΟΜ                                                                                            |                                | 98.9                         | 77.7                                  | 36.6                         |                            | 13.7                    | 3.4               |                          | •                 | 56.0                       |                   |                      |                         | •                   |                     | '                | '            | '                        | 1.7              | 0.6               | 6.3                    |                      |                 |                      |                 |    |
|                  | POOR KNIGHTS IS                                                                                         |                                | 99.4                         | 79.4                                  | 46.7                         |                            | 3.3                     | 7.2               | •                        |                   | 90.0                       |                   | •                    | •                       |                     | •                   | 2.2              | ŀ            | ŀ                        | 21.1             | 8.3               | 21.7                   | 10.0                 | •               |                      | •               |    |
|                  | СУЬЕ КУВІКУВІ                                                                                           |                                | 100                          | 57.5                                  | 50.0                         |                            | 12.5                    | 14.4              | 1.9                      | •                 | 39.4                       |                   |                      |                         | 1.3                 |                     | 7.5              | '            | '                        | 1.9              | ,                 |                        |                      |                 |                      |                 |    |
|                  | CVLE BEINCV                                                                                             |                                | 100                          | 68.6                                  | 85.7                         |                            | 2.9                     | 11.4              | 5.7                      | •                 | 62.9                       |                   | •                    | •                       |                     | ,                   |                  | •            | •                        | 5.7              | ,                 |                        |                      | •               |                      | •               |    |
| BIOREGION        | LOCATION                                                                                                | Encrusting and coralline algae | Crustose coralline algae     | Coralline turf species                | Hildenbrandia spp.           | Red turfing algae (< 5 cm) | Champia novae-zelandiae | Curdiea codioides | Laurencia distichophylla | Liagora harveyana | Red turf (species complex) | Red foliose algae | Anotrichium crinitum | Apbanocladia delicatula | Asparagopsis armata | Ballia callitrichia | Callophyllis sp. | Cbondria sp. | Cladhymenia oblongifolia | Curdiea coriacea | Delisea compressa | Euptilota formosissima | Gigartina macrocarpa | Grateloupia sp. | Gymnogongrus bumilis | Humbrella bydra |    |

| Raglan         11.5       1.5       2.3       3.3       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       < | RAGLAN         RAGLAN           12         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         < | КаGLAN<br>КаGLAN<br>Кад СТА<br>Кад СТА<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RAGLAN<br>RAGLAN<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RAGLAN         RAGLAN         RAGLAN         RAGLAN         III.5                                                                                                                                                                                                                                                                                                                                                                    | RdGLAN       RAGIAND       RAGIAND         111       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RAGLAN<br>RAGLAN<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kaglan         · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image: Second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table A5.1-continued

| BIOREGION                                   |            | COOK     | BAL                      | BANKS    | BULLER  | LER           |         |                   | WESTLAND     | <b>AND</b> |      |         | FI          | FIORDLAND     | AND            |                    |              | STE                      | WART           | STEWART ISLAND | D              |                       | СН              | CHALMERS |
|---------------------------------------------|------------|----------|--------------------------|----------|---------|---------------|---------|-------------------|--------------|------------|------|---------|-------------|---------------|----------------|--------------------|--------------|--------------------------|----------------|----------------|----------------|-----------------------|-----------------|----------|
| LOCATION                                    | MELLINGTON | KAIKOURA | NOKTH<br>Banks Peninsula | FLEA BAY | KARAMEA | CVbE FOULWIND | MOERAKI | SOPEN BAY ISLANDS | JVCK800 HEVD | CV3CVDE2   | NARA | BIG BAY | βΓΙCΗ 2ΟΩΛD | CHVBLES SOUND | DOUBTFUL SOUND | beeservation inlet | GREEN ISLETS | CODEI2H-BUGGEDY<br>BLUFF | KUAPUKE ISLAND | SONALSI ITIT   | PATERSON INLET | <b>ΡΟRT ΑDVENTURE</b> | OTAGO PENINSULA | CATLINS  |
| u                                           | 120        | 117      | 55                       | 100      | 45      | 75            | 58      | 66                | 160          | 120        | 60   | 60      | 140         | 39            | 120            | 40                 | 60 ]         | 135 11                   | 119 8          | 80 79          | 9 27:          | 2 78                  | 59              | 60       |
| Large brown algae<br>Carbopbyllum flexuosum | 11.7       |          | 21.8                     | 21.0     |         |               |         | 37.9              |              |            |      |         | 22.1 3      | 33.3<br>2     | 22.5           | 5.1                |              | 4.4 21.0                 | .0 27.5        | .5<br>5.0      | 0 58.4         | 4 10.4                | ،<br>س          |          |
| C. maschalocarpum                           | 66.7       | 25.6     | 23.6                     | 28.0     | ,       |               |         |                   |              |            | ,    |         |             |               |                | ,                  |              |                          |                |                |                |                       |                 |          |
| Cystophora platylobium                      | •          |          | ,                        | ı        |         |               |         |                   |              |            |      |         |             |               |                |                    |              |                          | 2.5 47.5       | .5 18.8        | 8 8.0          | 0 0.7                 | '               | 1.7      |
| Cystophora retroflexa                       | 0.8        |          | ,                        | ı        |         |               |         |                   |              |            |      |         |             |               |                |                    |              | _                        |                |                | 0 1.5          | 5 7.4                 | ۰<br>ب          |          |
| Cystophora scalaris                         | ,          |          |                          |          |         |               | 1.0     | 3.4               |              | 3.3        |      |         |             |               |                |                    |              | - 5.9                    | <u> </u>       | 5 7.5          | 5 16.8         | 8 1.5                 | '               |          |
| Cystophora torulosa                         | ı          |          | 1.8                      | ı        |         |               |         |                   |              |            |      |         |             |               |                |                    |              |                          |                |                |                | -<br>5                |                 |          |
| Durvillaea antarctica                       | 1.7        | 5.1      | 1.8                      |          |         |               |         |                   |              |            |      |         |             |               |                |                    |              |                          |                |                |                | 1                     | '               |          |
| Durvillaea willana                          | ı          | 2.6      | 1.8                      | 9.0      |         | 2.7           |         |                   |              | 1.7        |      |         |             |               |                |                    |              |                          |                | '              |                | 8                     | 23.7            |          |
| Ecklonia radiata                            | 75.8       | 58.1     | 14.5                     | 22.0     |         |               |         | 60.3              | 1.7          |            |      |         | -           |               |                |                    |              |                          |                |                |                |                       |                 |          |
| Landsburgia quercifolia                     | 75.0       | 44.4     | ,                        | ı        |         | 2.7           | 12.0    | 43.1              | 5.0          | 8.3        | _    | 10.0    | 27.9        |               | 14.2 1         | 15.4 3             | 33.3 3       | 1.1 74.8                 | .8 130.0       | .0 12.5        | 5 24.8         | 8 35.6                |                 |          |
| Lessonia variegata                          | 54.2       | 46.2     |                          | 13.0     |         |               |         | 1.7               |              |            |      |         |             |               |                |                    |              |                          |                |                |                |                       | 61.0            |          |
| Macrocystis pyrifera                        | 0.8        | 7.7      | 34.5                     | 14.0     | •       |               |         |                   |              |            |      |         |             |               |                |                    |              | •                        |                |                | -              | 8                     | •               |          |
| Marginariella boryana                       | 24.2       | 59.8     |                          | 1.0      | •       |               |         |                   |              |            |      |         |             |               |                |                    |              |                          |                |                |                | 3 5.2                 | '               |          |
| Marginariella urvilliana                    | ,          | 20.5     |                          | 14.0     |         |               |         |                   |              |            |      |         |             |               |                |                    |              | 3.0 13.4                 | .4 67.5        |                |                | 4 13.3                | '               |          |
| Sargassum sinclairii                        | 7.5        | 6.0      |                          |          |         | 10.7          | 10.0    | 43.1              |              | 6.7        | 1.3  | 11.7    | 14.3        |               | 13.3           | 5.1                |              |                          | .6 25.0        | .0 7.5         |                | 2 1.5                 | '               |          |
| Sargassum verruculosum                      | ı          |          | ,                        | ı        |         |               |         |                   |              |            |      |         |             |               | 4.2            |                    |              |                          | '              |                | '              | '                     |                 |          |
| Xiphophora gladiata                         | 3.3        |          | 3.6                      | 11.0     | ,       |               |         |                   |              |            | 1.3  |         | 17.9        | 5.1 1         | 12.5           | 11.5               | -            | 11.9 31.1                | .1 70.0        | .0 67.5        | 5 41.6         | 6 34.1                | ۰               | 1.7      |
| Small brown algae                           |            |          |                          |          |         |               |         |                   |              |            |      |         |             |               |                |                    |              |                          |                |                |                |                       |                 |          |
| Carpomitra costata                          | 21.7       | 29.9     |                          | •        | •       |               | 9.0     | 25.9              | 18.3         | 10.0       | 13.9 |         | 22.1 3      | 38.5 2        | 21.7           | 6.4 1              |              | 3.7 26.9                 |                | 5.0 8.         | 8 16.1         | 1 3.0                 |                 |          |
| Halohteris son                              | 517        | 33.3     | 45.5                     | 18.0     | 17.8    | 14.7          | 28.0    | 25.9 1            | 128.3        | 51.7       | 58.2 | 25.0    | 48.6 5      | 53.8 2        |                | 24.4 5             | 50.0 4       | 41.5 68                  | 68.9 157.5     | .5 75.0        | 0 50.4         | a.                    | '               | 8.3      |

TABLE A5.2. SOUTHERN LOCATIONS.

| BIOREGION              |                   | COOK     | BA                       | BANKS    | BU      | BULLER        |         |                  | WESI                 | WESTLAND | _    |         | -            | FIORDLAND     | TAND           |                    |              |       | STEWART ISLAND  | RT ISI         | <b>UND</b>   |                |                | CHAL            | CHALMERS |
|------------------------|-------------------|----------|--------------------------|----------|---------|---------------|---------|------------------|----------------------|----------|------|---------|--------------|---------------|----------------|--------------------|--------------|-------|-----------------|----------------|--------------|----------------|----------------|-----------------|----------|
| LOCATION               | <b>METTINGTON</b> | KAIKOURA | NO&LH<br>BVNKS BENINSULA | FLEA BAY | KARAMEA | CVLE FOULWIND | MOERAKI | OLEN BVA ISTVNDS | <b>ТАСК</b> ЗОИ НЕУD | CV3CVDE2 | BARN | BIG BAY | ΒΓΙΘΗ 200/ΝD | CHV&TES SOUND | DOUBTFUL SOUND | PRESERVATION INLET | CEEEN ISLETS | BLUFF | CODEISH-BUGGEDY | KUAPUKE ISLAND | SUNAJSI ITIT | PATERSON INLET | PORT ADVENTURE | OTAGO PENINSULA | SNITINS  |
| Hormosira banksii      | .                 |          |                          |          | .       | .             | .       | .                | .                    | .        | .    | .       | 6.4          | .             | .              | .                  | .            | .     | .               | .              | .            | .              | .              | .               | .        |
| Microzonia velutina    | 25.0              | 49.6     | 14.5                     | 35.0     | 11.1    | 20.0          | 28.0    | 22.4             | 68.3                 | 63.3     | 54.4 | 10.0    | 17.9         | 5.1           | 9.2            | 2.6                | 8.3          | 16.3  |                 |                | 10.0         | 10.2           |                | 3.6             | 1.0      |
| Sporochnus sp.         |                   |          | ,                        |          | •       |               |         |                  |                      |          |      | 1.7     |              | 2.6           | 6.7            |                    |              |       |                 |                |              | 8.8            |                |                 |          |
| Zonaria spp.           | 55.0              | ,        | ,                        |          |         | ,             | 8.0     | 13.8             | 13.3                 |          | 10.1 | 8.3     | 23.6         | 43.6          | 17.5           | 1.3                | 1.7          |       | 19.3            | 22.5           | 36.3 2       | 20.4           | 7.4            |                 |          |
| Ephemeral brown algae  |                   |          |                          |          |         |               |         |                  |                      |          |      |         |              |               |                |                    |              |       |                 |                |              |                |                |                 |          |
| Asperococcus bullosus  | •                 |          | ı                        |          | •       |               |         |                  |                      |          | ,    |         | ,            |               |                |                    |              | ,     |                 |                |              | 2.2            |                |                 |          |
| Brown turf             | •                 |          | 1.8                      | •        | •       |               |         |                  |                      |          |      |         |              |               | 0.8            |                    |              |       |                 |                | 1.3          | 0.7            |                |                 |          |
| Colpomenia sinuosa     |                   | •        |                          |          |         |               | 2.0     | 13.8             | 6.7                  | 5.0      | 1.3  |         | 4.3          |               | 3.3            | 1.3                |              |       |                 | 2.5            | 6.3          | 26.3           |                |                 |          |
| Cutleria multifida     |                   |          |                          |          |         | •             | ,       |                  |                      |          |      |         |              |               |                |                    |              |       |                 |                |              | 12.4           |                |                 |          |
| Desmarestia ligulata   | 20.8              | 23.1     | 7.3                      | 3.0      |         | •             | 1.0     | 1.7              |                      |          |      |         |              |               |                |                    | 21.7         | 20.7  | -               | 60.0           | 45.0         |                | 7.4 5          | 50.8            | 11.7     |
| Dictyota spp.          | 13.3              | 5.1      | 1.8                      | •        | •       | •             | 21.0    | 15.5             | 26.7                 | 1.7      | 19.0 | 31.7    | 28.6         | 7.7           | 11.7           |                    | 1.7          |       |                 |                |              |                | 0.7            |                 |          |
| Endarachne binghamiae  | •                 |          |                          | •        | 8.9     | 9.3           | •       | •                | •                    |          |      | •       |              |               |                |                    |              |       |                 |                |              |                |                |                 |          |
| Glossophora kunthii    | 40.0              | 11.1     | 12.7                     | 1.0      | 11.1    | 14.7          | 21.0    | 22.4             | 25.0                 | 18.3     | 16.5 | 13.3    | 33.6         |               | 14.2           | 6.4                | 8.3          | 5.9   | 33.6            | 95.0           |              | 29.2 1         | 11.1           |                 | 1.7      |
| Spatoglossum chapmanii | 1.7               | 2.6      | ,                        | •        | •       | •             | 2.0     | 19.0             | 1.7                  |          | 5.1  | 1.7     |              | 2.6           | 5.8            | 2.6                | 10.0         |       | 9.2             | 2.5            | 42.5         | 16.8           | 2.2            |                 |          |
| Undaria pinnatifida    | 3.3               | •        |                          | •        |         | •             |         |                  |                      |          |      |         |              |               |                |                    |              |       |                 |                |              |                |                |                 |          |
| Brown encrusting       |                   |          |                          |          |         |               |         |                  |                      |          |      |         |              |               |                |                    |              |       |                 |                |              |                |                |                 |          |
| <i>Raljsia</i> spp.    | 5.0               | 3.4      | 27.3                     | 9.0      | 2.2     | 4.0           |         | 1.7              |                      | 1.7      | 2.5  |         | 22.1         | 7.7           | 15.8           | 3.8                |              | 5.9   | 0.8             | 12.5           | 18.8         | 87.6           | 1.5            | 5.1             | 8.3      |
| Green algae            |                   |          |                          |          |         |               |         |                  |                      |          |      |         |              |               |                |                    |              |       |                 |                |              |                |                |                 |          |
| Bryopsis spp.          | ,                 | •        | ŀ                        | ı        | •       | •             | 1.0     | •                | •                    | •        |      | 1.7     |              |               |                |                    |              |       |                 |                |              | 5.1            |                |                 |          |
| Caulerpa articulata    | 8.3               |          | ,                        |          | •       | •             |         |                  |                      |          |      |         |              |               |                | ,                  |              |       |                 |                | ,            | ,              |                |                 | ,        |
| Caulerpa brownii       | 26.7              | 29.1     |                          | •        | •       | •             | •       | •                | •                    |          | 2.5  | 25.0    | 10.7         | 23.1          | 15.8           | 16.7               | 11.7         | 26.7  | 19.3            | 37.5           | 21.3         | 4.4 1          | 16.3           |                 | 1.7      |
| Caulerpa flexilis      | 5.0               |          | ı                        |          |         | '             | ,       |                  |                      |          | ,    |         |              |               |                | ,                  |              |       |                 |                | ,            | ,              |                |                 |          |
| Caulerpa geminata      | 14.2              |          | ,                        |          |         | •             |         |                  |                      |          |      |         |              |               |                |                    |              |       |                 |                |              |                |                |                 |          |
| Chaetomortha aerea     |                   | ·        |                          | •        | •       | •             | •       |                  | •                    |          | ,    | ,       |              |               | 1.7            |                    | ,            |       |                 |                |              |                |                |                 |          |

Table A5.2-continued

| BIOREGION                   | C                  | COOK     | BAI                      | BANKS    | BU      | BULLER        |         |                  | WES          | WESTLAND | ~    |         |             | FIORDLAND     | LAND           |                   |              | ò       | TEWA            | STEWART ISLAND | AND          |                |                | CHALMERS        | MER     |
|-----------------------------|--------------------|----------|--------------------------|----------|---------|---------------|---------|------------------|--------------|----------|------|---------|-------------|---------------|----------------|-------------------|--------------|---------|-----------------|----------------|--------------|----------------|----------------|-----------------|---------|
| LOCATION                    | <b>M</b> ETTINGLON | KAIKOURA | NO&LH<br>BVNKS LENINSULA | FLEA BAY | KARAMEA | CAPE FOULWIND | MOERAKI | OLEN BVA ISTVNDS | JVCK800 HEVD | CV3CVDE2 | BARN | BIG BAY | ΒΓΙϾΗ 2ΟΠΛD | CHVETES SOUND | DOUBTFUL SOUND | DEFERENTION INLET | CBEEN ISTELS | BLUFF   | CODEISH-RUGGEDY | Βυλρυκε Ιδιλησ | SANAJSI ITIT | PATERSON INLET | PORT ADVENTURE | OTAGO PENINSULA | CATLINS |
| Chaetomorpha coliformis     | 0.8                | 0.9      |                          |          |         |               |         |                  |              |          |      |         | 2.1         |               | 0.8            |                   |              |         |                 |                |              |                |                | 1.7             | 10.0    |
| Cladophora sericea          |                    |          |                          |          |         |               |         | ,                |              | ,        |      | ,       | ,           | 12.8          | 1.7            |                   |              |         | ,               |                |              |                |                |                 | ,       |
| Cladophora spp.             | 20.0               | 6.0      |                          |          |         | •             |         |                  |              |          |      |         | 0.7         |               | 5.8            |                   |              |         |                 |                |              | 7.3            |                | 3.4             | 6.7     |
| Cladophoropsis herpesticata |                    |          | 3.6                      |          |         | 1.3           | 1.0     | 3.4              |              | ,        | 2.5  |         |             | 2.6           | 1.7            |                   |              | 5.2     | 3.4             | 5.0            | 3.8          |                | -<br>-         |                 | 1.7     |
| Codium convolutum           | 4.2                |          | ·                        | 6.0      |         | 6.7           | 1.0     | 3.4              | 1.7          | 8.3      | 2.5  | ,       | 22.9        | 7.7           | 14.2           | 6.4 ]             | 15.0 1       |         |                 |                | -            |                |                |                 | 5.0     |
| Codium fragile              | 0.8                |          |                          |          |         | •             |         | •                |              |          |      |         |             |               |                |                   |              |         |                 |                |              |                |                |                 |         |
| Codium gracile              |                    | •        |                          | •        | •       | •             |         | •                |              |          |      |         | 30.7        | 20.5          | 18.3           |                   |              |         |                 |                |              |                |                |                 |         |
| Halicystis sp.              |                    | •        |                          |          |         | •             |         |                  |              |          |      |         | 0.7         |               | 1.7            |                   |              |         |                 |                |              |                |                |                 |         |
| Ulva spp.                   | 7.5                | 3.4      |                          | ,        | 2.2     |               |         | ·                | 1.7          | 1.7      | ·    |         | 1.4         | 23.1          | 29.2           | 2.6               | 1.7          | -       | 13.4 1          | 10.0 1         | 12.5 1       | 15.3           |                |                 | 3.3     |
| ine a                       | lgae               |          |                          |          |         |               |         |                  |              |          | ì    |         |             |               |                |                   |              |         |                 |                |              |                |                |                 | 1       |
| ac                          | 100.0              | 94.0     | 83.6                     | 100.0    |         | 85.3          | 53.0    | 98.3             | 135.0        | 95.0     | 75.9 | 78.3    | 95.0        | 97.4          |                | 51.3 1(           |              |         |                 |                | 98.8 19      |                | 57.8 96        | 96.6 9          | 95.0    |
| Coralline turf species      | 86.7               | 55.6     | 30.9                     | 59.0     | 20.0    | 17.3          | 33.0    | 70.7             | 98.3         | 86.7     | 74.7 |         |             |               |                |                   |              | 78.5 9  | 91.6 19         | 197.5 8        |              |                |                |                 | 5.0     |
| Hildenbrandia spp.          | 63.3               | 35.9     | 36.4                     | 63.0     | 8.9     | 44.0          | 4.0     | 13.8             | 10.0         | 11.7     | 27.8 |         |             | 59.0          | 25.0           | 11.5              | 11.7 3       |         | 1.8 10          | 105.0 5        |              | 90.5 1         | 12.6 47        | 47.5 4          | 1.7     |
| Red turfing algae           |                    |          |                          |          |         |               |         |                  |              |          |      |         |             |               |                |                   |              |         |                 |                |              |                |                |                 |         |
| (Multi-species complex)     | 65.8               | 35.9     | 27.3                     | 1.0      | 31.1    | 50.7          | 50.0    | 94.8             | 123.3        | 86.7     | 60.8 | 76.7    | 32.9        | 28.2          | 40.0           | 15.4 ]            | 16.7 2       | 20.0 10 | 16.0 1          | 15.0           | 3.8 3        | 33.6 1         | 17.8 22        | 22.0 5          | 55.0    |
| Red foliose algae           |                    |          |                          |          |         |               |         |                  |              |          |      |         |             |               |                |                   |              |         |                 |                |              |                |                |                 |         |
| Adamsiella chauvinii        | 1.7                | 16.2     |                          |          |         | •             |         |                  |              |          |      |         | 0.7         |               | 11.7           |                   |              |         | 4.2             |                |              | 8.8            |                |                 |         |
| Adamsiella angustifolia     |                    |          |                          |          |         |               | ,       | ,                |              |          |      | ,       | 3.6         |               | ,              |                   |              |         |                 |                |              |                |                |                 |         |
| Anotrichium crinitum        | 0.8                | 12.8     | 9.1                      |          |         |               | 30.0    | 63.8             | 61.7         | 20.0     | 16.5 | 6.7     | 2.9         | 12.8          | 20.8           |                   | 6.7          |         |                 |                |              |                | 2.2 13         | 13.6            | 5.0     |
| Aphanocladia delicatula     | 2.5                | ,        |                          |          |         |               | •       |                  | •            |          |      |         |             |               |                |                   |              |         |                 |                |              |                |                |                 |         |
| Asparagopsis armata         |                    | 0.9      | ·                        |          |         | •             | 20.0    | 46.6             | 65.0         | 31.7     | 12.7 | 25.0    | 37.9        | 51.3          | 61.7           | 2.6               |              |         |                 |                |              |                | 2.2            |                 |         |
| Ballia callitrichia         | 5.8                | 12.8     |                          | 5.0      | 2.2     | 4.0           |         |                  | 6.7          | 10.0     | 3.8  | 5.0     | 5.7         | 12.8          | 11.7           | 1.3               | 18.3 3       | 32.6    | 3.4 1           | 10.0           | 1.3          | 2.9            |                | 27.1 2          | 26.7    |
|                             |                    |          | ,                        |          |         |               |         |                  |              |          |      |         |             |               |                |                   |              |         |                 |                |              | 8 ()           |                |                 |         |

Table A5.2—continued

| BIOREGION                      | 0                  | COOK     | BANKS                    | NKS      | BULLER  | LER           |         |                  | WESTLAND             | AND.     |      |         | FI          | FIORDLAND     | AND            |                    |              | STI     | STEWART ISLAND                    | ISLAN        | Q              |                       | СН              | CHALMERS |
|--------------------------------|--------------------|----------|--------------------------|----------|---------|---------------|---------|------------------|----------------------|----------|------|---------|-------------|---------------|----------------|--------------------|--------------|---------|-----------------------------------|--------------|----------------|-----------------------|-----------------|----------|
| LOCATION                       | <b>M</b> ELLINGTON | KAIKOURA | NOKLH<br>Bynks Leninsury | FLEA BAY | KARAMEA | CAPE FOULWIND | MOERAKI | OLEN BYA ISFYNDS | <b>ЈУСК</b> ЗОИ НЕУD | CV2CVDE2 | NAAA | BIG BAY | вгіен голир | CHYBLES SOUND | DOUBTFUL SOUND | DBESERVATION INLET | CBEEN ISLETS | BLUFF   | KUAPUKE ISLAND<br>CODFISH-RUGGEDY | LILL ISTANDS | PATERSON INLET | <b>ΔΟΚΤ ΑDVENTURE</b> | OTAGO PENINSULA | CATLINS  |
| Callophyllis atrosanguinea     |                    | .        |                          |          |         |               |         |                  |                      |          |      |         |             |               |                |                    |              |         |                                   | 5.0          | 0 1.5          |                       |                 |          |
| Callophyllis callibrepharoides | - 8                |          |                          |          | 2.2     |               | ,       |                  |                      |          |      |         |             |               |                | а<br>-             | 3.3 15       | 15.6 1. | י<br>ר                            | '            | 5.2            | '<br>01               | 8.5             | 5.0      |
| Callophyllis hombroniana       | 12.5               | 3.4      |                          | 6.0      |         |               |         |                  |                      |          |      |         |             |               |                |                    |              |         |                                   | 5 2.5        | 5 2.9          | •                     | 52.5            | 21.7     |
| Callophyllis ornata            |                    |          |                          | 1.0      |         |               |         |                  |                      |          |      |         |             |               |                | -                  | 11.7 10      | 0.4 7.6 | Η                                 | 5 11.3       | 3 14.6         | 5 0.7                 | 22.0            | 3.3      |
| Callophyllis variegata         | ,                  |          |                          |          |         | ,             | ,       |                  |                      |          |      |         |             |               |                | й<br>-             |              | 0.6 6.7 |                                   |              | 5 13.9         | 0.7                   | '               |          |
| Carmontagnea birsuta           | ,                  |          |                          |          | 2.2     | 1.3           |         |                  |                      |          |      |         |             | 5.1           |                |                    |              | 1.5 0.8 |                                   | 1.3          |                | 2 0.7                 | 1.7             | 1.7      |
| Carmontagnea scoparia          |                    |          |                          |          |         |               |         |                  |                      |          |      |         |             |               |                | 1.3                |              |         | •                                 | '            | 1.5            | '                     | •               | •        |
| Ceramium spp.                  | •                  |          |                          | •        |         |               |         |                  | 8.3                  | 1.7      |      |         |             | 2.6           |                |                    | -            |         | 4 -                               | •            | 0.7            | -                     | •               | •        |
| Champia chathamensis           |                    | 0.9      |                          |          |         |               |         |                  |                      |          |      |         |             | 2.6           |                |                    |              | 6.0 9.2 | 2                                 | 1.3          | 5.1            | •                     | 1.7             | 1.7      |
| Chondria sp.                   |                    |          |                          |          |         |               |         |                  |                      |          |      |         |             |               |                |                    |              |         |                                   |              | •              | •                     | •               | •        |
| Cladhymenia oblongifolia       | 4.2                | 16.2     |                          |          |         |               |         |                  |                      |          |      |         |             |               |                | - 10               | ••           | •••     | 6 5.0                             |              |                |                       | 8.5             | 13.3     |
| Craspedocarpus erosus          | 10.8               | 41.0     | 1.8                      |          |         |               |         |                  |                      |          |      |         |             |               |                | ₽                  |              |         | ·                                 | 5 40.0       | 22.6           | 6.4                   | •               | 15.0     |
| Curdiea flabellata             | 0.8                | 1.7      |                          | •        |         |               |         |                  |                      |          |      |         |             |               |                |                    | ,<br>"       |         |                                   | •            |                | •                     | 3.4             | 15.0     |
| Dasya collabens                |                    |          |                          |          |         |               |         |                  |                      |          |      |         |             |               |                |                    |              | 5 0.8   | 8                                 |              |                |                       | •               | •        |
| Delesseria sp.                 | ,                  |          |                          |          |         | ,             |         | ,                |                      |          |      |         |             |               |                |                    |              |         | -                                 | '            | •              |                       | 8.5             | 8.3      |
| Delisea elegans                | •                  |          | ı                        | •        |         |               |         |                  |                      |          |      |         |             |               |                | 7.7                |              |         |                                   |              |                | 2 3.0                 | •               | •        |
| Delisea plumosa                | •                  | ·        | ,                        | •        |         | ,             |         |                  |                      |          |      |         |             |               |                |                    |              |         | '                                 |              |                | •                     | •               | •        |
| Echinothamnion spp.            |                    | 9.4      |                          |          | 24.4    | 2.7           | 13.0    | 3.4              |                      | ,,       | 17.7 | 5.0     | 0.7         |               |                |                    | ••           | (       |                                   |              |                |                       | 5.1             | •        |
| Euptilota formosissima         | 46.7               | 72.6     |                          | 1.0      |         |               | 34.0    | 20.7             | 50.0 1               | ,,       | 11.4 | 1.7     |             |               |                |                    |              | 1 8.4   | _                                 | 4.           |                | 7 15.6                | 6.8             | 31.7     |
| "Gelidium" ceramoides*         | •                  |          |                          | •        |         |               |         |                  |                      |          |      |         |             |               |                |                    |              |         | - 0                               | •            |                | -                     | •               | •        |
| Gigartina sp.                  |                    | 0.9      |                          |          |         |               |         |                  |                      |          |      |         |             |               |                |                    |              |         | •                                 | •            | •              | •                     | •               | 3.3      |
| (large round circle)           |                    |          |                          |          |         |               |         |                  |                      |          |      |         |             |               |                |                    |              |         |                                   |              |                |                       |                 |          |
| Gigartina circumcincta         |                    | ·        |                          |          | 22.2    |               |         |                  |                      |          |      |         |             |               | 0.8            |                    |              | 0.7 1.7 | -                                 | 3.8          | '              | •                     | •               | 15.0     |
| Gigartina decipiens            |                    | ·        |                          |          | 15.6    |               |         |                  |                      |          |      |         |             |               |                |                    |              | 1<br>1  | •                                 | •            | '              | •                     | •               | •        |
| Gipartina lanceata             |                    |          | ï                        |          | 6.7     | ,             |         |                  |                      |          |      |         |             |               |                |                    |              | •       | •                                 | '            |                | ,                     |                 |          |

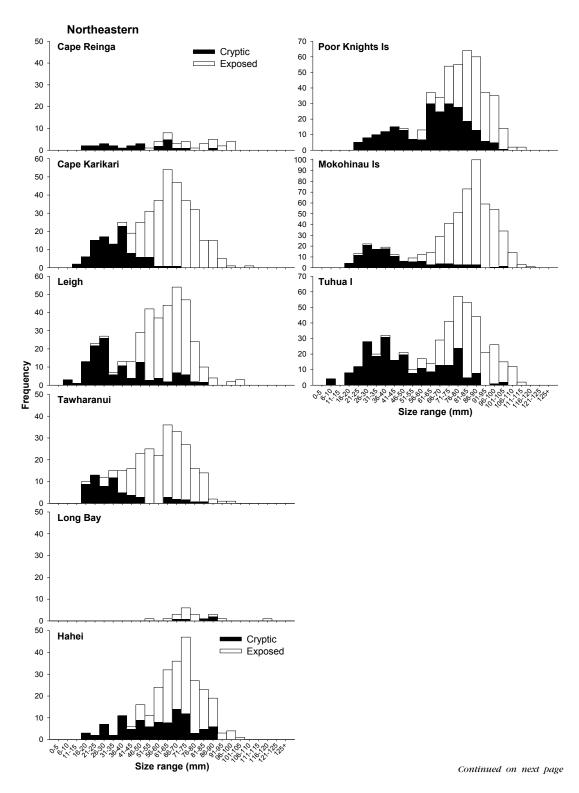
Continued on next page

Table A5.2—continued

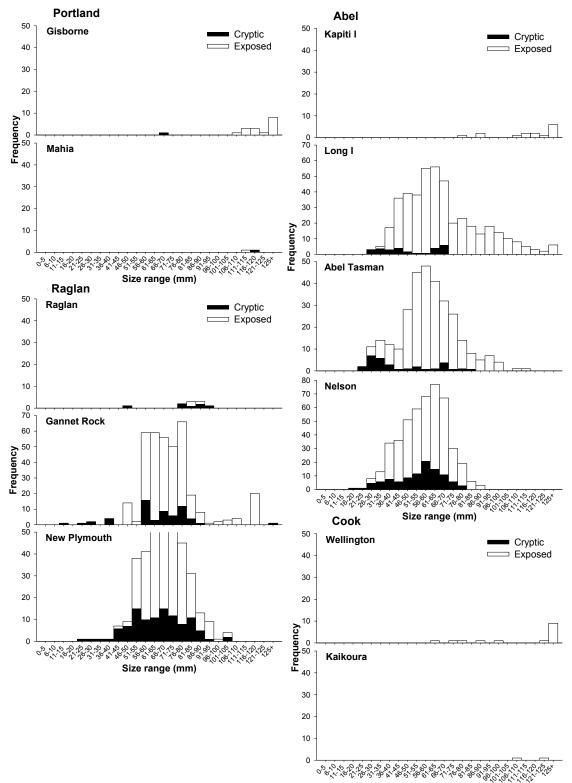
| LOCATION                    |             | NOOD     | 70                       | CANAD    | 2       | BULLEK        |         |                  |              |               |         |         |             |                |                |              |        |                 |                |              |                |                |                 |         |
|-----------------------------|-------------|----------|--------------------------|----------|---------|---------------|---------|------------------|--------------|---------------|---------|---------|-------------|----------------|----------------|--------------|--------|-----------------|----------------|--------------|----------------|----------------|-----------------|---------|
|                             | & EFFINCLON | KAIKOURA | NOKLH<br>BVNKS LENINSULA | FLEA BAY | KARAMEA | CVLE FOULWIND | MOERAKI | OLEN BYX ISFYNDS | JACKSON HEAD | CV3CVDE2      | NAAA    | BIG BYA | ΒΓΙϾΗ 2ΟΩΛD | CHVBTEIN SOUND | DOUBTFUL SOUND | CBEEN ISTELS | BLUFF  | CODEI2H-BUGGEDY | RUAPUKE ISLAND | SUNVISI ILIL | PATERSON INLET | ΡΟΑΤ ΑDVENTURE | OTAGO PENINSULA | CVLFINS |
| Gigartina livida            | •           |          |                          | •        |         |               |         |                  |              |               |         |         | - 12        | 2.8 9.2        | 5              |              | '      |                 |                | 1.3          | 3.6            |                | •               |         |
| Gracilaria chilensis        |             |          |                          | •        | ,       | •             |         |                  |              |               |         |         |             |                | 5.8            |              | '      | '               | •              | ,            | •              | •              |                 |         |
| Gracilaria truncata         | ı           |          | ı                        | ı        |         |               |         |                  |              |               |         |         |             | - 4.2          | 2              |              | '      | •               | •              |              | •              |                | •               |         |
| Griffithsia antarctica      | ,           | ,        | ,                        | ,        |         | •             |         |                  |              |               |         |         |             |                | '              | •            | '      | •               | •              | 1.3          | 1.5            | •              | •               | •       |
| Griffithsia crassiuscula    | '           |          | ı                        |          |         |               |         |                  |              |               |         |         |             | '              | '              | •            | 20.0   | 0 0.8           | 7.5            | •            | 8.8            | 0.7            | •               |         |
| Griffithsia traversii       | 0.8         | 0.9      |                          | •        | ,       |               | -       | 01.7 10          | 66.7 10      | 0.00          | 5.9 100 | . 0.001 |             | •              | '              |              | '      | •               |                |              | 0.7            |                | 3.4             |         |
| Gymnogongrus humilis        | •           | ,        |                          | •        | 6.7     | 13.3          | 7.0     |                  |              | 11.7          | -       | . 0.51  |             | 2.6 -          | '              |              | 1.5    |                 | •              |              |                |                | 13.6            | 10.0    |
| Halymenia sp.               | •           | ,        | ·                        |          |         | •             |         |                  |              |               |         |         | ,           | '              | '              | 1.7          | 7 2.2  |                 |                | 1.3          | 0.7            | •              | •               |         |
| Heterosiphonia concinna     | •           | 0.9      | ·                        |          |         | •             | 5.0     |                  | 6.7          | 1.7           | 1.3     |         | .1          | 2.6 1.7        |                | 11.7         |        | _               |                | 1.3          | 0.7            | •              | 28.8            | 36.7    |
| Hymenena durvillaei         | •           | 1.7      | ·                        | •        | 2.2     |               | 7.0     |                  | 1.7          | 6.7           | 1.3     | 1       | ,           | - 2.5          | 5 2.6          | .6 35.0      | 0 34.8 |                 |                |              | 2.2            | 12.6           | 52.5            | 60.0    |
| Hymenena palmata            | 4.2         | 54.7     | ı                        | 1.0      |         |               |         |                  |              |               |         |         | ,           | - 18.3         | Η              | -            | 0 43.7 | 7 47.9          | 35.0           | 28.8         | 6.6            | 8.1            | 18.6            | 33.3    |
| Hymenena sp. (Red dots)     | 4.2         | 12.8     | 7.3                      | •        | •       |               |         |                  |              |               |         |         |             |                | '              |              | 0.7    |                 |                |              |                | •              | •               | •       |
| Hymenocladia sanguinea      | •           | 35.9     |                          | 3.0      | •       |               |         |                  |              |               |         |         |             |                | '              |              | 10.4   | 4 5.0           | ) 2.5          | 1.3          | 0.7            | •              | 5.1             | 30.0    |
| Iridaea sp.                 | •           | 4.3      |                          | •        | •       |               |         |                  |              |               |         |         |             | •              | '              | •            | •      | •               | •              | 5.0          | •              | •              | 10.2            | 3.3     |
| Kallymenia spp.             | 5.0         | ı        | ,                        |          | •       |               |         |                  |              |               |         |         | . 4         | 2.6 0.8        | 8              | 1.7          | 7 5.2  |                 |                |              | •              | 2.2            | •               |         |
| Laingia hookeri             | •           |          |                          |          | •       | •             | •       |                  |              |               |         |         |             | •              | '              | 3.3          | 3 9.6  | 6 7.6           |                | 3.8          | 5.8            |                | 3.4             | 21.7    |
| Lophurella hookeriana       | •           | 6.0      | 1.8                      |          | 22.2    | 5.3           | 20.0    | 10.3             | ч.           | <b>£1.7</b> 1 | .1.4 3  | 33.3 3  | 3.6 2       | 2.6 6.7        | 7 15.4         |              | 7 13.3 | <i>(</i> (,     | •              | 2.5          | 2.9            | 0.7            | •               | 10.0    |
| Melanthalia abscissa        | 3.3         | 1.7      | •                        | •        | •       |               |         |                  |              |               |         |         |             |                |                | '            |        | •               | •              | •            | •              | •              | •               | •       |
| Microcladia pinnata         | •           |          | •                        | •        | •       |               |         |                  |              |               |         | •       |             | •              | '              | '            | '      | 2.5             | ۰<br>م         |              | •              | •              | •               | •       |
| Medeiothamnion lyalli       | •           | ·        | ,                        | •        | •       |               |         |                  |              |               |         |         | ,           |                | '              | 1.           |        | •               | •              | •            | •              | 0.7            | •               | •       |
| Schizymenia sp.**           | •           | ı        | ı                        | •        | •       |               | •       |                  |              |               |         | ,       | ,           |                | '              | 16.7         | 7 0.7  | 7 9.2           | 22.5           | 12.5         | •              | 3.0            | •               | •       |
| Phacelocarpus labillardieri | 1 0.8       | •        |                          | •        | •       |               |         |                  |              |               |         |         |             | •              | '              | •            | •      | •               |                | •            | •              | •              | •               | 3.3     |
| Phitymophora linearis       | •           | •        |                          |          | •       | •             |         |                  |              |               |         | 1.7     |             |                | '              | 26.7         | 7 4.   | 4 2.5           | 5 15.0         | •            | 1.5            | •              | •               | •       |
| Phycodrys quercifolia       | •           | 12.0     |                          |          | •       | •             |         |                  |              |               |         |         |             |                | '              | '            | •      | •               | •              | •            | •              | •              | •               | •       |
| Platythamnion lindaueri     | •           | 6.0      |                          |          | •       | •             | •       |                  |              |               |         |         |             |                | '              | •            | 0.7    |                 | •              | 1.3          | •              | •              | 5.1             | 8.3     |

Table A5.2-continued

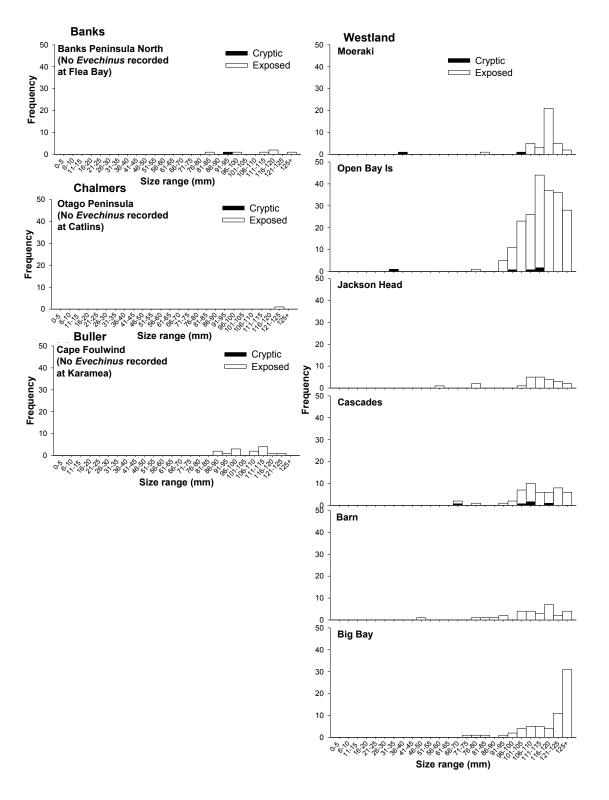
| и<br><i>tiae</i> 23.3 20.8 (%) МЕНТИИСТОИ<br><i>tiae</i> - 0.8 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BIOREGION                    | Ö          | COOK     | BANKS | KS       | BULLER  | ER            |         |                  | WESTLAND     | AND      |      |         | H H         | FIORDLAND | ND |                    |              | ST | STEWART ISLAND | [ ISLA] | QN           |                |                | CHALMERS                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|----------|-------|----------|---------|---------------|---------|------------------|--------------|----------|------|---------|-------------|-----------|----|--------------------|--------------|----|----------------|---------|--------------|----------------|----------------|----------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOCATION                     | METTINGLON | KAIKOURA |       | FLEA BAY | KARAMEA | CVbE FOULWIND | MOERAKI | OPEN BAY ISLANDS | IVCK800 HEVD | CV3CVDE2 | NAAA | BIG BYY | вгіен голир |           |    | BRESERVATION INLET | GBEEN ISLETS |    |                |         | SUNVISI ILIL | DATERSON INLET | PORT ADVENTURE | CVLFINS<br>OLVCO LENINSULV |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phycodrys quercifolia        |            | 12.0     |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    | '              |         |              |                |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Platythamnion lindaueri      | •          | 6.0      |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| 08         09         7.3         -         -         -         -         -         0.7         -         0.8         -         1.7         1.5         0.8         -         -         1.7         1.5         0.8         -         -         1.7         1.5         0.8         -         -         1.7         1.5         0.8         -         -         -         -         0.7         7.7         8.3         46.7         26.9         800         79.3         46.2         300         -         -         -         -         -         -         -         -         -         5.2         1.4         3.3         46.7         26.9         800         79.3         46.2         300         -         -         -         -         -         -         -         5.2         1.7         1.7         1.3         3.3         46.7         26.9         800         7.3         300         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | Plocamium cirrbosum          | 15.0       | 1.7      | 1.8   |          | 2.2     | 1.3           |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              | 5.1 -          | - 10.2         | 2 11.7                     |
| 208         735         23.6         -         8.9         14,7         480         55.2         143.3         683         506         50.0         37.1         33.3         467         26.9         80.0         79.3         46.2         30.0         -         -         -         -         -         -         -         52.1         143.0         55.2         143.3         683         50.0         37.1         33.3         467         26.9         80.0         79.3         46.2         30.0           -         -         -         -         -         -         -         -         -         -         -         -         -         52.0         -         -         -         52.0         -         -         -         -         52.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<    | Plocamium microcladioides    | 0.8        | 0.9      | 7.3   |          | ı       |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plocamium spp. (all species) | 20.8       | 73.5     | 23.6  |          | 8.9 1   | 4.7           |         | —                | •            | 4        |      |         |             |           |    |                    |              |    |                | 7       |              |                |                | Ū                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Polysiphonia spp.            |            |          | ,     |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pterocladiella capillacea    |            |          |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pterocladia lucida           | 23.3       | 31.6     |       |          | 8.9     |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ptilonia spp.                | 5.8        |          |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rhodophyllis acanthocarpa    |            | 10.3     |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rbodophyllis gunnii          | 23.3       | 46.2     | 5.5   | 1.0      |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              | (              |                |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rbodymenia obtusa            | 7.5        | 36.8     |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                | 1                          |
| 0.8       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·                                                                                                                                                                   | Rhodymenia spp.              |            | 42.7     |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                | ,<br>v         |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sarcodia flabellata          | 0.8        | ı        |       |          | ,       |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Schizoseris spp.             |            | 22.2     |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Schizymenia novae-zelandia.  | '          |          |       |          | 4.4     |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scinia australis             | 1.7        |          |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stenogramme interrupta       | •          | ,        |       | •        |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |
| - 19.7 0.7 10.4 54.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Streblocladia glomerulata    |            | 19.7     |       |          |         |               |         |                  |              |          |      |         |             |           |    |                    |              |    |                |         |              |                |                |                            |


\* Genus (also family and order) unknown for this species; restricted to southern New Zealand. Also Wendy Nelson, NIWA, pers. comm. 2006.

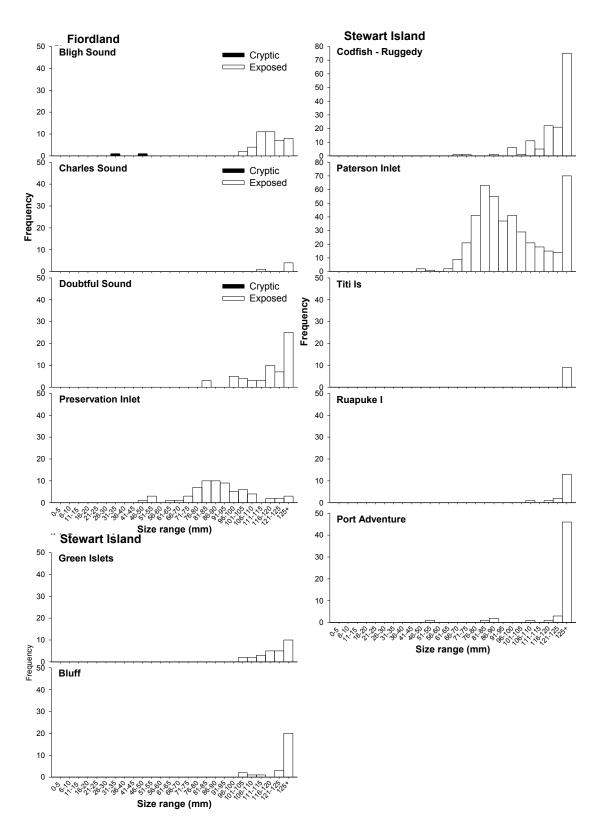
\*\* Sensu Nemastoma lacinata (Adams 1994).


Table A5.2-continued

# SIZE-FREQUENCY DISTRIBUTIONS OF *Evecbinus* chloroticus


All locations within each bioregion. Note that the number of sites and depths sampled vary among locations.




Science for Conservation 280



Size range (mm)



Continued on next page



#### Quantifying New Zealand's shallow subtidal reef communities

Shallow subtidal reef communities are some of the most productive babitats in temperate marine ecosystems and are of enormous commercial, recreational and cultural value to society. In general, much of the New Zealand coastline is undescribed and our understanding of the factors controlling coastal reef ecology is poor. This report presents the results of the first nationwide study of mainland New Zealand's subtidal benthic reef communities. The national overview of reef communities, and descriptions of reef assemblages within bioregions and how these vary, will provide a resource for ecologists and conservation workers.

Shears, N.T.; Babcock, R.C. 2007: Quantitative description of mainland New Zealand's shallow subtidal reef communities. *Science for Conservation 280*. 126 p.

New Zealand Government