2. Methods

2.1 SAMPLING

Grasshoppers were collected by hand at sites with suitable habitat (Figs 4 & 5). Taxonomic identification primarily followed Bigelow (1967). Most material is held in ethanol at Massey University, although voucher specimens will ultimately be deposited at Museum of New Zealand Te Papa Tongarewa on completion of the research.

Figure 4. Ranges and sampling locations for grasshoppers. A. Locations in North Island sampled for *Sigaus piliferus*; B. approximate taxon ranges of South Island *Sigaus*; C. ranges and sampling for *Brachaspsis* taxa.

Figure 5. Sampling locations around Alexandra, and details of morphospecies found and DNA sequence haplogroup.

2.2 MOLECULAR METHODS

Single stranded conformational polymorphism (SSCP) was used to screen for variant haplotypes (combinations of alleles) prior to DNA sequencing (Trewick et al. 2000). For this purpose, the primers SR-J-14233 and SR-N-14588 (Simon et al. 1994) were used to amplify a c. 380 bp fragment of the 3' end of mitochondrial 12S rRNA. PCR (polymerase chain reaction) products were labelled with a radio isotope by incorporation of α dATP³³P. Amplification products were denatured for 5 min at 95°C in the presence of an equal volume (10 µL) of 95% formamide loading buffer. These were loaded from ice into vertical, nondenaturing polyacrylamide gels consisting of 6% 37.5:1 bis/acrylamide, 5% glycerol and 0.5 × TBE. Gels were electrophoresed at 4°C for 200 W/h at approximately 13 W and then lifted on blotting paper, dried and exposed with Biomax (Kodak) film for 24-48 h. Individuals were scored for haplotype by comparison of re-natured single strand DNA migration patterns (Sunnucks et al. 2000).

Representatives of each haplotype that was resolved by SSCP were subjected to further PCR to amplify and sequence a larger fragment comprising the 3' end of the 12S rRNA, the tRNA valine and the 5' end of the 16S rRNA, using primers LR-J-13417 and SR-N-14588 (Simon et al. 1994). The 12S-16S fragment of at least one individual of each population presenting a particular SSCP pattern was sequenced to confirm that sequences matched. In addition, a fragment from the 3' end of the mitochondrial COI was amplified and sequenced using primers C1-N-2195 and C1-J-3014 (Simon et al. 1994). PCR reactions for sequencing were

performed in 25 µL volumes using the same conditions as for SSCP. Products were purified using High Pure purification columns (Roche). Cycle sequencing used Perkin Elmer Bigdye chemistry following the manufacturer's protocols and were analysed on a Prism 377 DNA sequencer (Applied Biosystems, Inc., Foster City, California). Sequences were checked against the ABI trace file and aligned manually using SeqEd v1.0.3 (Applied Biosystems, Inc., Foster City, California), Sequencher v4.1 (Applied Biosystems, Inc., Foster City, California) and SeAL v2.0 (Rambaut 1996).

2.3 ANALYSIS

Two types of haplotype data were obtained (as reported in Trewick 2001a): initially, multiple individuals of the *B. nivalis* and *S. australis* complexes were screened using SSCP, which provides a rapid means of identifying DNA sequence variants; secondly, individuals representing the sequence diversity indicated by SSCP were sequenced to provide DNA nucleotide data for phylogenetic reconstruction. For *S. piliferus*, all individuals surveyed were sequenced for the COI mtDNA gene without prior screening. Distance estimation and phylogenetic analyses (maximum parsimony (MP), neighbor-joining (NJ), and maximum likelihood (ML)) were performed using PAUP*4.0b10 (Swofford 2002). Character evolution was assessed using McClade version 3.07 (Maddison & Maddison 1997). Further details of the analyses undertaken are reported in Trewick (2008).

3. Results and discussion

DNA sequences representing those obtained for each of the taxon groups detailed below were deposited on GenBank (accession numbers AY42370-AY42390, EF544487-EF544562). Pairwise genetic distances among sequence variants (haplotypes) are given in Appendix 1.

All phylogenetic analyses resulted in similar trees, and there was consistent support for the existence of the three taxon groups in question (*Sigaus piliferus*, the *Brachaspis nivalis* complex and the *Sigaus australis* complex), with each forming a separate clade. The overall level of genetic diversity within each taxon group is within a range that, for these genes, allows confidence in phylogenetic reconstruction, i.e. exhibits sufficient sequence variation to be sensitive enough to reveal within-species variation, yet does not reach a point of mutational substitution that would mask a deeper phylogenetic signal (>13% in COI; Szymura et al. 1996). This confidence is reflected in the high statistical support from bootstrap resampling for each of the three target groups (see Trewick 2001, 2008).

The analyses reported here used COI mtDNA sequence alignments of between 540 and 780 nucleotides in length depending on the samples involved. The use of fairly short gene fragments was the result of a compromise between the number

of individuals surveyed and the quantity of data per individual; however, these fragments are sufficient to provide the necessary haplotypic data for our study.

The extent of genetic divergence among sequences from individuals within each group was in the typical range for insect species. In several instances, genetic distances (expressed here as percentage difference using Kimura two parameter correction) within existing grasshopper species complexes were higher than those found in even the most highly diverse New Zealand orthopterans (c. 8% in scree weta *Deinacrida connectens* (Trewick et al. 2000); and 9.5% in Auckland tree weta *Hemideina thoracica* (Morgan-Richards et al. 2001)). This degree of mtDNA sequence diversity within a species is unusual, and other studies of insects report divergences of as little as 2% between species (e.g. Langor & Sperling 1997). For convenience, we present trees generated using the neighbor-joining clustering method, which utilises the pairwise genetic distances determined from mtDNA sequence data (Appendix 1). Phylogenetic trees were inferred for each of the taxon groups in question, as this is the simplest means of expressing the distribution of haplotypes among sampling locations, morphospecies and the overall phylogeny.

A pattern of spatial structuring of genetic diversity was evident in all three taxon groups examined. Not surprisingly, where total genetic diversity was lowest (*Sigaus piliferus*), spatial structuring was least pronounced. An approximate indication of the likely time since the last common ancestor of a set of sequences can be inferred using a standard rate calibration of 2-2.3% per million years (Brower 1994; Juan et al. 1995; Fleischer et al. 1998). Such rates are generalised for a number of genes and taxa, and variation of gene and taxon specific rates is known.

The results for each taxon group are presented below, together with a discussion of any conservation implications or considerations. Table 1 summarises the combined spatial, morphological (current taxonomic) and haplotype (mtDNA) evidence for the grasshopper populations examined here. A set of management units have also been identified, based upon the available information. Note that this should be viewed as a working evolutionary/taxonomic hypothesis.

3.1 Sigaus piliferus

3.1.1 Genetic structure

Analysis of *S. piliferus* diversity used an alignment of 780 bp for a total of 51 grasshoppers from 14 locations in the North Island (Fig. 4). Two clades are evident among the data. One group (Sp.I; see Fig. 6) includes sequences from grasshoppers collected from the Ruahine Ranges northwards, including the isolated locations at Pirongia, Mt Karioi, Te Araroa and Lake Waikaremoana. The second group (Sp.II) is restricted to the Tararua Ranges. The maximum genetic divergence among samples of this species was 6.5%, and the mean divergence between the two clades was 5.4% (Table A1.1, Appendix 1). This is consistent with, but not proof of, these two groups having species status, and implies a common ancestor for the lineages during the Pliocene (2-5 mya). Within the main northern group (Sp.I), genetic diversity was distributed unevenly. The numerous samples from the Central Plateau area showed almost no DNA sequence variation,

	r areagnanon	is made in tigs o and 1. pocanons e	are mose given mitigs 7 and 0 te	n o. <i>puljerus</i> anu <i>D. metaus</i> comprex, anu rig. 7 101	organs ansi ans compres.
CURRENT Taxonomy	PRINCIPLE CLADE CODE	TAXON/SPATIAL GROUP	MANAGEMENT UNITS	LOCATIONS SAMPLED	CURRENT EVIDENCE
Sigaus piliferus	Sp.II	S. piliferus Tararuas		Taranua Range	MtDNA split and morphology (Bigelow 1967)
North Island	Sp.I	S. piliferus northern	1 Peripheral	Mt Karioi, Pirongia Range, Whenuakura frost flats. Te Arama	Localised, unique mtDNA and morphology (Biselow 1967)
			2 Central	Kawekas, Central Plateau, Ruahines	Shared mtDNA and morphology (Bigelow 1967)
Brachaspis nivalis (complex)	B.II	B. nivalis northern	3 Marlborough—subalpine	Red Spur, Mt Lyford	MtDNA split, habitat, size and morphology (Hutton1897)
South Island			-lowland	Dee Stream	MtDNA split, habitat and size
			4 Canterbury –subalpine	Fog Peak, Craigieburn, Arrowsmith	MtDNA split, habitat and size
			-lowland	Porter River	Mt DNA split, habitat and size
	B.III	B. nivalis southern ("Hunter")	5 Sub-alpine	Mt Dobson, Hunter Hills, Tekapo, Mt Sutton, Mt St Bathans, Rocky Top	MtDNA split, habitat and morphology (Morris 2001a)
			6 Lowland (B. robustus)	Mackenzie Basin	Habitat and morphology (Bigelow 1967)
<i>Sigaus australis</i> (complex)	Sa.I	S. australis northern	7 Typical form	Mt Sutton, Mt Dobson, Scaly Tarns, Craigieburn, Fog Peak, Mt St John	MtDNA split
South Island	Sa.II	S. australis south central	8 Typical form	Alexandra, Mt St Bathans, Mt Sutton, Lindis Pass, Dunstan Mountains	MtDNA split, morphology
			9 S. species A	Alexandra	Morphology (Jamicson 1999)
			10 S. childi	Alexandra	Morphology (Jamicson 1999)
	Sa.III	S. australis southwest	11 Typical form	Rob Roy, Harris Saddle, Remarkables, Old Woman Range, Alexandra	MtDNA split (additional morphs likely; Morris 2003)
			12 S. obelisci	Old Man Range	Isolation, morphology (Bigelow 1967)
			13 S. bomerensis	Earl Mountains	Isolation, morphology (Morris 2003)
	Sa.IV	S. australis southeast	14 Typical form	Danseys Pass, Rock & Pillar Range, Flagstaff Hill, Mt St Bathans, Kakanui Mountains, Rocky Top	MtDNA split
			15 S. "undescribed"	Alexandra	Novel morphotyptes, crypsis

TABLE 1. DIVERSITY AMONG Sigaus piliferus, Brachaspis nivalis COMPLEX AND Sigaus australis COMPLEX.

Figure 6. Neighbor-joining trees of mtDNA COI sequences from *Sigaus pittferus* (top), and *Brachaspis* spp. (bottom). Clades inferred from phylogenetic analysis are labelled Sp.I-II and B.I-III, respectively. Contour plots on the map indicate the geographic distribution of grasshopper clades.

and haplotypes found there were also present in the Ruahines, Kaweka and Lake Waikaremoana samples. The few individuals from isolated sites at Te Araroa, Whenuakura (Lake Taupo) and Pirongia area showed a comparatively high level of sequence difference; each location had unique haplotypes that differed by c. 2.5% from those at other locations.

3.1.2 Conservation considerations

In his examination of *Sigaus piliferus*, Bigelow (1967: 29) identified 'three morphological groups, corresponding with three broad geographical areas; a northern group from the Rotorua area and East cape Peninsula, a central group from Tongariro National Park and the Kaimanawa and Kaweka Ranges, and a southern group from the Tararua Range'. The present genetic analysis is broadly consistent with this, allowing for small differences in the locations sampled.

Two features of these genetic data are particularly significant for conservation. First, there is a distinct split between *S. piliferus* collected on the Tararuas and those collected from all other locations, which represents the minimum number of taxa deserving of conservation effort. Second, some populations outside the Tararuas and the central North Island area are probably very small, isolated and dependent on a vegetation type that may not be self-sustaining (see below). Furthermore, grasshoppers at several of these (northern) sites have distinct genetic identities (i.e. Te Araroa, Pirongia and Whenuakura). Further work to determine the status of these populations and their habitats should be considered. Two locations (Kaueranga Valley on the Coromandel Peninsula, and Mt Maungatautari) reported as having *S. piliferus* by Bigelow (1967) were not searched explicitly for the present work, but no grasshoppers have recently been reported from them. Given that Kaueranga Valley is transected by a road and is fairly accessible, it is reasonable to assume that grasshoppers might have been found there if present. No new information is available for Mt Maungatautari.

Many of the sites from which *S. piliferus* was collected for the present study did not have typical subalpine vegetation. North Kaweka, Ruahine, Whakapapa and Tararua locations were above the treeline in tussock grasslands, whereas Pirongia, Mt Karioi, Lake Waikaremoana, Te Araroa, Rangipo Desert and Whenuakura sites were in areas where the combination of low altitude and low latitude would not normally support subalpine vegetation. However, grasshoppers were typically collected from seral tussock grassland or flax/manuka shrubland habitats. The flax shrublands appear to have developed in exposed areas of poor or thin soil. Whether or not such habitats are natural and permanent or products of past habitat modification by humans is not clear, but Rogers (1994, and references therein) concluded that seral grasslands in central North Island are unlikely to have existed in pre-human times. From the perspective of conservation, some active management role may be required to maintain grasshopper habitat at some of these small but widely spaced sites.

3.2 Brachaspis nivalis COMPLEX

3.2.1 Genetic structure

The genetic structure of the Brachaspis nivalis complex has previously been reported, with an emphasis on the status of the protected species *B. robustus* (Trewick 2001a). Here we used the same DNA sequence data with the addition of sequences from individuals representing three additional locations and forms. Trewick (2001a) reported a prominent split among sequences from individuals of *B. nivalis*, which corresponds with a spatial (north-south) split of populations in the South Island (see Fig. 6, B.II versus B.III; B.I corresponds to the species B. collinus, which is not a subject of this report). COI haplotypes from B. robustus, the rare, low-altitude species of the Mackenzie Basin area, are very closely related to haplotypes of *B. nivalis* (B.III) from montane locations in the southern part of the Brachaspis range. DNA sequence divergence in the B.III group is a maximum of 2.8% (Table A1.2, Appendix 1). Samples from the Hunter Hills that were added in the present study yielded haplotypes that also fell in this southern B.III clade. Sequence divergence between these two B. nivalis clades is relatively high (maximum 10.6%), and at a level more typical of interspecific divergence between insect species.

Haplotypes from both samples of small, low-altitude *Brachaspsis* fell in the northern *B. nivalis* clade (B.II), which is consistent with their geographic position. However, a further split within the B.II clade is evident, which also shows a north-south geographic structure. Instead of the two small, low-altitude forms falling together on the tree, as might be predicted from their similar morphology, they fall into separate clades with sequences from individuals from montane sites that they are each geographically close to. Hence, haplotypes from the low-altitude Porter River *Brachaspsis* are genetically most similar to Craigieburn and Fog Peak montane *Brachaspis*, and those from Dee Stream are genetically most similar to alpine *Brachaspis* from Mt Lyford and Red Spur (a montane location close to Dee Stream).

3.2.2 Conservation considerations

Three low-altitude Brachaspsis populations were included in this study: two populations of small forms from Porter River and Dee Stream, and the large form B. robustus from Mackenzie Basin area. In all three cases, DNA sequences from these low-altitude forms indicate close genealogical relationships with typical nearby B. nivalis from montane habitats. This implies that the low-altitude forms have evolved recently under selective pressure that is specific to these habitats, as Bigelow (1967) suggested. The fact that the two small forms do not share a common ancestor indicates that the small form cannot be treated as a single separate species, and that Bigelow (1967) was, considering the information available to him, correct to group them with B. nivalis. However, when the genetic and morphological evidence are considered together, it is evident that this approach has clearly underestimated diversity within the group. Brachaspis robustus is accepted as a distinct taxon on the grounds of gross external morphological (male genitalia of this species have yet to be characterised) and habitat differences, despite the lack of neutral mtDNA sequence evidence to support it. There may be justification in similarly treating the small, low-altitude forms as distinct taxa (conservation units) as well, given that they are isolated

from one another and may be isolated from their nearest montane relatives, and occupy narrow and atypical habitat. Bigelow (1967) noted that the shape of the subgenital plate of females from low-altitude populations tended to differ from that of other populations and that 'this may raise the question of a possible specific distinction' (Bigelow 1967:70). Further population genetic research would be required to determine if this is, in fact, the case and what feature of the environment results in the reduced body size.

The southern *B. nivalis* clade (B.III) (*B. robustus** in Trewick 2001a) corresponds with the range delineated by Morris (2003) for *Brachaspis* "Hunter". Preliminary examination of leg spines, colouration and epiphalus indicates that the southern and 'Hunter' group are one and the same, and formal delineation of this taxon is required.

Certainly, the possibility that the low-altitude forms have a greater susceptibility to extinction has to be considered. Low-altitude populations occupy extremely restricted habitats in braided rivers (which are themselves narrowly circumscribed). Flooding events, land development, weed invasion and introduced predators could, quite plausibly, extinguish a population rapidly.

3.3 Sigaus australis COMPLEX

3.3.1 Genetic structure

The genetic diversity of *Sigaus australis* complex grasshoppers was initially surveyed using SSCP with the 12S gene fragment. Shared banding patterns indicated a shared mtDNA nucleotide sequence. The alternative haplotypes (banding patterns) were coded alphabetically and their distribution is summarised in Table 2.

Populations of *S. australis* complex tend to have unique mtDNA haplotypes. The general pattern of low diversity at sites that was inferred from SSCP haplotyping was confirmed by sequence data. Most locations have a single and usually unique haplotype, although three closely related haplotypes are evident in the Mt Dobson sample (Table 2, Fig. 7). In contrast, three haplotypes (n, o, j) at Mt St Bathans correspond to two clades (Sa.II and Sa.IV), and five SSCP haplotypes (a, c, i, s, L) at Alexandra correspond to two groups (Sa.II and Sa.III), with the addition of the sequence from *S.* "undescribed" falling into Sa.IV.

Individuals that yielded Sa.I DNA sequences came from the northernmost extent of the *S. australis* complex in the central South Island (Fig. 7). Genetic distances between Sa.I and other *S. australis* complex haplotypes are relatively high (mean 10%) and above typical values for interspecific distances in insects (Table A1.3, Appendix 1). For further discussion, see Trewick (2008).

Each of the three southern groups comprised sequences from individuals that were collected in geographically distinct (but parapatric) ranges that meet at Alexandra (Fig. 5). Clade Sa.III comprises haplotypes (in brackets) from *S. australis* (c, d, g), *S. obelisci* (p) and *S. homerensis* distributed from Alexandra westwards. Haplotype p was unique to and shared by all 13 *S. obelisci* individuals collected on the Old Man Range (Table 2). In contrast, haplotype c was present in grasshoppers from three locations, including Alexandra. Clade

		125-550	СP	SEQ	UENCE	HAPLOGROUP
SPECIES	LOCATION	HAPLOTYPE	n*	COI	128-168	-
S. australis	Mt Sutton	m	3	2	_	+
S. australis	Mt Dobson	e	3	1	1	Sa.I
S. australis	Sealy Tarns	e	7	2	1	Sa.I
S. australis	Mt Dobson	h	5	1	1	Sa.I
S. australis	Craigieburn	k	1	_	_	Sa.I
S. australis	Fog Peak/Torlesse	k	3	_	1	Sa.I
S. australis	Mt Dobson	t	2	_	1	Sa.I
S. australis	Mt Dobson	u	2	_	1	Sa.I
S. australis	Mt John		[1]	_	1	Sa.I
S. australis	Alexandra—Conroy Dam	a	1	_	1	Sa.II
S. childi	Alexandra—Earnscleugh	a	2	1	_	Sa.II
S. childi	Alexandra—Hairpin Little Vallev Rd	e a	4	1	1	Sa.II
S. childi	Alexandra—Earnscleugh	i	1	1	1	Sa.II
S. childi	Alexandra—Gravevard G	ullv i	1			
S. australis	Alexandra—Little Valley	Rd i	2	2	- 1	Sa.II
S. australis	Alexandra—Conrov Dam	L	1	1	1	Sa.II
S. australis	Mt St Bathans	n	1		1	Sa.II
S. australis	Mt St Bathans	0	3	-	1	Sa.II
S. australis	Mt Sutton	a	1	1	1	Sa II
S australis	Dunstan Mountains	4	[1]	1	~	Sa II
S australis	Lindis Pass		[2]	2	-	Sa II
S childi	Alexandra—Gravevard G	ully s	3	-	-	Sa II
S. childi	Alexandra—Little Valley	Rd	[1]	-	1	Sa II
S species A	Alexandra—Farnscleugh		[1]	- 1	-	Sa II
S australis	Rob Roy		[2]	2	-	Sa III
S. homerensis	Farl Mountains		[3]	3	-	Sa.III
S. australis	Harris Saddle	C	9	2	1	Sa.III
S. australis	Alexandra—Little Valley	Rd c	3	-	1	Sa III
S. australis	Mt Scott	c c	5	-	-	Sa III
S. australis	Remarkables	đ	8	- 1	-	Sa.III
S. australis	Old Woman Ra	o	8	1	1	Sa III
S. obelisci	Old Man Ra	8	13	1	1	Sa.III
S. australis	Danseys Pass	P b	15	1	1	Sa IV
S. australis	Banseys Lass	b	13	1	1	Sa IV
S. australis	Flagstaff Hill	f	8	1	1	Sa IV
S. australis	Mt St Bathans	i	5	1	1	Sa IV
S. australis	Kakanui Mnts	J	1	1	1	Sa IV
S. australis	Rocky Top	XX/	8	1	-	Sa IV
S. australis	Crawford Hills	r	2	1	1	Sa IV
S. australis	Dansevs Pass	^	[2]	2	-	Sa IV
S. australis	Banseys Lass		[2]	2	1	Sa IV
S "undescribed"	Alexandra—I ittle Vallev	Rd	[1]	- 1	- 1	Sa IV
5. undescribed	incommuna fattic valley		[*]	I	1	5a. 1 v
Ingroup—Total in	ndividuals SSCP screened		144			
—Total ii	ndividuals inluding non-SS	CP	160	40	29	
Outgroup			<i>(</i> -	1	4	
Total sequences			41	33		

TABLE 2. MORPHOSPECIES, SAMPLING LOCATIONS, SSCP HAPLOTYPES, SAMPLE SIZES (*n*), NUMBERS OF INDIVIDUALS SEQUENCED FOR THE COI AND 12S mtDNA GENES, AND HAPLOGROUPS FOR *Sigaus australis* COMPLEX GRASSHOPPERS.

_

* Entries in square brackets [] indicate the number of individuals subjected to DNA sequencing but not SSPC haplotyping.

Sa.IV comprised haplotypes from individuals of *S. australis* (b, f, j, v, w, r) and a single individual of *S.* "undescribed" that was collected north and east of Alexandra (see Fig. 3D). Clade Sa.II included all 12 *S. childi* (a, i, s) surveyed, plus *S. australis* (a, i, L, n, o, q) and the single sequence from *S.* species A (Fig. 7). Some individuals of *S. australis* and *S. childi* shared the same putative (SSCP) haplotypes (two *S. australis* and two *S. childi* had putative haplotype i, one *S. australis* and six *S. childi* had haplotype a). Furthermore, two *S. australis* from Little Valley Rd had the same COI sequence haplotype as an *S. childi* from Alexandra (Earnscleugh), and an *S. australis* from the Dunstan Mountains had the same COI sequence haplotype as an *S. childi* from Alexandra (Hairpin, Little Valley Road; see Fig. 5).

3.3.2 Conservation considerations

The *Sigaus australis* complex contains comparatively high genetic and morphological (taxonomic) diversity. Three of the four main mtDNA clades comprise more than one morphotype. This is above and beyond the colour polymorphism that is known from single populations of typical *S. australis* in typical montane habitat. Further morphospecies have been proposed (Morris 2002a). Preliminary indications from ongoing morphological study are that additional diversity may exist. In particular, morphological and behavioural variation among grasshoppers on the Remarkables may mean that there are sympatric species there.

Of the four clades, Sa.I is the most clearly circumscribed spatially and genetically. The presence of a distinct *S. australis* lineage in central South Island suggests a protracted period of isolation throughout many episodes of Pleistocene climate change, rather than colonisation of the area at the end of the Pleistocene. On the basis of estimates of genetic distance between clade Sa.I and other *S. australis* COI haplotypes, this split may date back to the late Pliocene (5 mya). This spatial pattern and estimated time of divergence are similar to those identified for the alpine scree weta (*Deinacrida connectens*) in the same landscape (Trewick et al. 2000; Trewick 2001b).

Clade Sa.IV is also dominated by typical *S. australis* grasshoppers, with a single undescribed form (in our sample) being closely related to these (Fig. 8). Jamieson (1999) recorded a similar form to this undescribed specimen; both are highly cryptic on the tumbling lichen (*Chondropsis semiviridis*) (Fig. 3F). One of the authors (SM) has also observed this form on several occasions within the geographic range encompassed by Sa.IV. Further survey work is required, as there appears to be more morphological variation in this area, and it would be useful to determine whether this represents polymorphism or the existence of independent evolutionary lineages.

Clade Sa.III consists of the southwestern *S. australis* grasshoppers, and includes *S. bomerensis* (Morris 2003), *S. obelisci* (Bigelow 1967) and *S.* "Rob Roy" (Morris 2002a). The group also includes specimens from the Remarkables, but whether these represent *S.* "Remarkables" (Morris 2002a) remains to be resolved. All of these taxa are very close in general form to typical *S. australis*. The existence of an additional haplotype at Mt Sutton that is weakly associated with Sa.IV (m; Fig. 8) indicates that this location may deserve further study.

Figure 8. Neighborjoining tree of mtDNA COI sequences from grasshoppers of the *Sigaus australis* complex. Four clades are indicated: Sa.I-Sa.IV. Symbols at branch tips indicate morphospecies:
● = *S. australis*,
○ = *S. bomerensis*,
★ = *S. cbilldi*,
■ = *S. obelisci*,
☆ = *S.* species A,
□ = *S.* "undescribed".

Clade Sa.II is the south central *S. australis* group, and includes apparently typical *S. australis*, plus *S. childi* and *S.* species A grasshoppers. These taxa have similar or, in some instances, identical haplotypes and a rather narrow geographic range (Fig. 8). The sharing of haplotypes by species, and therefore their paraphyly, can be explained in two contrasting ways: either mitochondria have been exchanged recently via introgression (hybridisation) or they have been retained by incomplete lineage sorting through a recent speciation event (Funk & Omland 2003). In the case of Sa.II, if hybridisation has been involved, it was not restricted to a single ancestral event but rather has been extensive and recent, with multiple similar haplotypes being shared between species. Morris (2002c) noted that some individuals examined had characteristics of both *S. childi* and *S.* species A. Distinguishing these processes is beyond the scope of the present data.

4. Conclusions and recommendations

It is highly likely that some species (e.g. S. obelisci) represent small, geographically isolated populations of a more widely distributed taxon that have accumulated subtle morphological differences. Diversity in each of the groups studied has evolved relatively recently and probably during the late Pliocene/Pleistocene at the latest. As noted by Trewick (2001a), B. robustus may well have evolved after a population become isolated at the end of the last glacial maximum (LGM). Climate cycling was probably of broad significance in population structuring and speciation in New Zealand grasshoppers. Following each glaciation, the climate warmed and the lowest extent of the alpine zone was raised in altitude. Grasshopper populations presumably tracked this change, maintaining their association with open and predominantly grassland habitat above the treeline. Forest replaced most open country below the montane zone, extirpating grasshoppers. In some instances, successive glacial cycles probably reinforced regional differences. The relatively high genetic distances between Brachaspis nivalis groups (B.II versus B.III) and Sigaus australis groups (Sa.I versus others) are consistent with this (Appendix 1).

In some instances, it is likely that relict low-altitude populations survived climate and vegetation shifts, finding suitable habitat in braided riverbeds and the semiarid environments of Central Otago and central Canterbury. Following the LGM, these semiarid environments apparently did support some woodland (Clark et al. 1996; McGlone et al. 1995)—perhaps as much as 80% (Walker et al. 2004)—but it is unlikely that continuous dense forest developed.

The Alexandra area is of particular interest for conservation. It either represents a focus of speciation within the *S. australis* complex or it is an active contact area, where species and geographic populations meet and hybridise. In the same area, two species of *Phaulacridium* grasshoppers have narrowly circumscribed ecological ranges (Westman & Ritchie 1984) and the status of two *Prodontria* beetles has been debated (Emerson & Wallis 1994; Wallis 2001). Because mitochondrial DNA is inherited maternally, the use of mtDNA sequence data alone cannot distinguish between introgression or recent speciation (with incomplete lineage sorting), no matter how many data are collected. Any hope of understanding the state of gene flow among taxa at Alexandra will require the application of sufficiently variable biparentally inherited markers.

Application of a strict phylogenetic approach to the systematics of these grasshoppers would not be consistent with existing taxonomy and would be unhelpful. It is clear that, for the *S. australis* complex in particular, additional genetic markers are required to determine what process has resulted in the mismatch between mtDNA data and morphology. However, for the purposes of biodiversity conservation (as opposed to taxonomic revision), an optimal approach would be to incorporate both morphological and phylolgenetic evidence to maximise the inclusion and retention of diversity. The molecular phylogenetic evidence is an indicator of historic boundaries among populations, while morphological/behavioural evidence may be indicative of adaptive responses to habitat and predators.

4.1 Sigaus piliferus

This species almost certainly consists of at least two diagnosable entities deserving species status. These will be referred to as *Sigaus* "Tararuas" for the Tararua lineage and *S. piliferus* for the remainder. However, for the purposes of conservation, additional populations should be accommodated in management policy. From the present survey, these include populations at Whenuakura, Pirongia area and Te Araroa (Table 1). It is likely that other populations exist, and effort needs to be given to find these as soon as possible. Anthropogenic habitat modification, vegetation succession and climate change are expected to impact on these populations in the short, medium and long term.

4.2 Brachaspis nivalis COMPLEX

Brachaspis "Hunter" as proposed by Morris (2002a) will, with additional morphological examination, very probably prove to be diagnosable as a separate species from *B. nivalis*. *Brachaspis* "Hunter" corresponds to the southern *B. nivalis* clade (B.III) identified as *B. robustus** by Trewick (2001). In addition, conservation managers need to give special attention to low-altitude populations, all of which are morphologically distinct (on size at least) from alpine populations (White 1994). The two populations of small, low-altitude *Brachaspis* examined in the present study have genealogical relationships in the northern (B.II) clade that are analogous to the pattern observed for *B. robustus* in the southern (B.III) clade. In these cases, morphologically distinct populations (species in the case of *B. robustus*) are allied to nearby montane populations of typical *B. nivalis* (Table 1). Further study will reveal whether there is justification for describing low-altitude forms (e.g. *B.* "low altitude"; Morris 2002a) as distinct species.

4.3 Sigaus australis COMPLEX

Recognition needs to be given to the spatial distribution of diversity within this group (Table 1). Further morphological study may support the splitting of one or more of the groups indicated by phylogenetic analysis of mtDNA sequences (i.e. Sa.I, etc.). There is, however, currently little evidence from the mtDNA to support *S*. "Remarkables" and *S*. "Rob Roy" as being distinct, although this may change with further sampling and analysis. Whilst *S. homerensis* and *S. obelisci* show distinct morphological characters, they are closely allied to the above and other Sa.III populations in the geographic area (Table 2). The status of *S. childi* and *S.* species A in Sa.II is of paramount concern in this group. There is little doubt that these and other cryptic forms are geographically localised and deserving of further study to determine to what extent they are threatened ecologically.

5. Acknowledgements

This study was funded by DOC (Science Investigation No. 3742). We are grateful for the assistance of Paul Schilov, David King, Vivienne Nicholls and Graeme Atkins of DOC, and also David Blakiston, David Havell and Tyne Crow, all of whom provided specimens of *Sigaus piliferus*. Dee Stream *Brachaspis* were collected through the generosity of Richard Murray and family of Bluff Station, Marlborough.

6. References

- Avise, J.C. 1989: A role for molecular genetics in the recognition and conservation of endangered species. *Trends in Ecology and Evolution* 4: 279–281.
- Avise, J.C. 1992: Molecular population structure and the biogeographic history of a regional faunal a case history with lessons for conservation. *Oikos* 63: 62–76.
- Avise, J.C. 2004: Molecular markers, natural history and evolution. 2nd edition. Sinauer, Sunderland, Massachusetts, USA. 511 p.
- Bigelow, R.S. 1967: The grasshoppers of New Zealand. University of Canterbury, Christchurch, New Zealand.
- Brower, A.V.Z. 1994: Rapid morphological radiation and convergence among races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial DNA evolution. *Proceedings of the National Academy of Sciences USA 91*: 6491-6495.
- Buckley, T.R.; Simon, C.; Chambers, G.K. 2001: Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with cenozoic environmental change. Evolution 55: 1395–1407.
- Clark, G.R.; Petchey, P.; McGlone, M.S.; Bristow, P. 1996: Faunal and floral remains from Earnscleugh Cave, Central Otago, New Zealand. *Journal of the Royal Society of New Zealand 26*: 363–380.
- Emerson, B.C.; Wallis, G.P. 1994: Species status and population genetic structure of the flightless chafer beetles *Prodontria modesta* and *P. bicolorata* (Coleoptera; Scarabaeidae) from South Island, New Zealand. *Molecular Ecology* 3: 339-345.
- Fleischer, R.C.; McIntosh, C.E.; Tarr, C.I. 1988: Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. *Molecular Ecology* 7: 533–545.
- Funk, D.J.; Futuyma D.J.; Orti, G.; Meyer, A. 1995: Mitochondrial DNA sequences and multiple data sets: a phylogenetic study of phytophagous beetles (Chrysomelidae: Ophraella). *Molecular Biology and Evolution 12*: 627–640.
- Funk, D.J.; Omland, K.E. 2003: Species-level paraphyly and polyphyly: frequency, causes, consequences, with insights from animal mitochondrial DNA. *Annual Review of Ecology* and Systematics 34: 397–423.
- Hutton, F.W. 1897: The grasshoppers and locusts of New Zealand and the Kermadec Islands. *Proceedings and Transactions of the New Zealand Institute* 30: 135-150.
- Hutton, F.W. 1898: Note on the New Zealand Acrididae. *Proceedings and Transactions of the New Zealand Institute 31*: 44–50.

- Jamieson, C.D. 1999: A new species of *Sigaus* from Alexandra, New Zealand (Orthoptera: Acrididae). *New Zealand Journal of Zoology 26*: 43-48.
- Juan, C.; Oromi, P.; Hewitt, G.M. 1995: Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus *Pimelia* (Tenebrionidae). *Proceedings of the Royal Society of London. Series B, Biological Sciences 162*: 173-180.
- Langor, D.W.; Sperling, F.A.H. 1997: Mitochondrial DNA sequence divergence in weevils of the *Pissodes strobi* species complex (Coleopotera: Curculionidae). *Insect Molecular Biology 5*: 153-165.
- Maddison, W.P.; Maddison, D.R. 1997: McClade: analysis of phylogeny and character evolution. Version 3.07. Sinauer Associates, Sunderland, Massachusetts.
- McGlone, M.S.; Mark, A.F.; Bell, D. 1995: Late Pleistocene and Holocene vegetation history, Central Otago, South Island, New Zealand. *Journal of the Royal Society of New Zealand* 25: 1-22.
- McGuinness, C.A. 2001: The conservation requirements of New Zealand's nationally threatened invertebrates. Department of Conservation, Wellington. 658 p.
- Morgan-Richards, M.; Trewick, S.; Wallis, G.P. 2001: Chromosome races with Pliocene origins: evidence from mtDNA. *Heredity* 86: 303-312.
- Morris, S.J. 2002a: Distribution and taxonomic status of New Zealand endangered grasshoppers (Orthoptera: Acrididae). Internal Department of Conservation Report. Department of Conservation, Wellington.
- Morris, S.J. 2002b: The Grasshopper *Brachaspis robustus* Bigelow: database and distribution. *Records of Canterbury Museum 16*: 60–63.
- Morris, S.J. 2002c: Identification guide to grasshoppers (Orthoptera: Acrididae) in Central Otago and Mackenzie Country. *DOC Science Internal Series 26*. Department of Conservation, Wellington. 17 p.
- Morris, S.J. 2003: Two new species of *Sigaus* from Fiordland, New Zealand (Orthoptera: Acrididae). *New Zealand Entomologist* 26: 65–74.
- Morris, S.J. 2007: The New Zealand grasshopper. <u>http://homepages.cyberxpress.co.nz/visualmap/</u> <u>grasshopper.htm</u> (viewed 19 Feb 2008).
- Rambaut, A. 1996: Se-Al: sequence alignment editor. <u>http://tree.bio.ed.ac.uk/software/seal/</u> (viewed 30 Oct 2007).
- Rogers, G.M. 1994: North Island seral tussock grasslands 1. Origins and land-use history. *New Zealand Journal of Botany 32*: 271–286.
- Salmon, J.T. 1950: A new species of Acridiidae (Insecta: Orthoptera) from New Zealand. *Transactions* of the Royal Society of New Zealand, Zoology 78: 69.
- Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. 1994: Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the American Entomological Society* 87: 651–701.
- Sunnucks, P.; Wilson, A.C.; Beheregaray, L.B.; Zenger, K.; French, J.; Taylor, A.C. 2000: SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. *Molecular Ecology 9*: 1699-1770.
- Swofford, D.L. 2002: PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.
- Szymura, J.M.; Lunt, D.H.; Hewitt, G.M. 1996: The sequence and structure of the meadow grasshopper (*Chorthippus parallelus*) mitochondrial srRNA, ND2, COI, COII, ATPase8 and 9 tRNA genes. *Insect Molecular Biology* 5: 127-139.
- Trewick, S.A. 2000: Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand *Peripatoides* (Onychophora). *Molecular Ecology* 9: 269–281.
- Trewick, S.A. 2001a: Identity of an endangered grasshopper (Acrididae: *Brachaspis*): taxonomy, molecules and conservation. *Conservation Genetics* 2: 233-243.

- Trewick, S.A. 2001b: Scree weta phylogeography: surviving glaciation and implications for Pleistocene biogeography in New Zealand. *New Zealand Journal of Zoology 28*: 291–298.
- Trewick, S.A. 2008: DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). *Cladistics* 23: 1-15.
- Trewick, S.A.; Wallis, G.P.; Morgan-Richards, M. 2000: Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae). *Molecular Ecology* 9: 657-666.
- Walker, S.; Lee, W.G.; Rogers, G.M. 2004: Pre-settlement woody vegetation of Central Otago, New Zealand. *New Zealand Journal of Botany 42*: 613–646.
- Wallis, G. 2001: Taxonomic status of the chafer beetles *Prodontria modesta* and *P. bicolorata*. *DOC Science Internal Series 10*. Department of Conservation, Wellington, New Zealand. 13 p.
- Westman, M.; Ritchie, J.M. 1984: The taxonomy, distribution and origins of two species of *Phaulacridium* (Orthoptera: Acrididae) in the South Island of New Zealand. *Biological Journal of the Linnean Society 21*: 283–298.
- White, E.G. 1994: Ecological research and monitoring of the protected grasshopper *Brachaspis robustus* in the Mackenzie Basin. *Science and Research Series* 77. Department of Conservation, Wellington, New Zealand.

7. Glossary

Allopatric Spatially separate populations or species.

Biogeography The study of the distribution of diversity over space and time.

Haplotypes A set of closely linked alleles (genes or DNA polymorphisms) inherited as a unit. In the case of mitochondrial data, haplotypes are DNA sequence variants identified at mitochondrial gene regions.

Introgression Gene flow between species.

Morphospecies A typlogical species distinguished solely on the basis of morphology.

Morphotype The morphological form of a species.

Neoallotype The single specimen designated as the name-bearing type of a nominal species or subspecies for which no holotype, etc. is available.

Parapatric Adjacent populations or closely related species.

Paraphyletic A group of organisms that contains its most recent common ancestor but does not contain *all* the descendants of that ancestor.

Phylogenetics The study of the evolutionary relationships of organisms.

Phylogeny The evolutionary relationships of organisms.

Phylogeography Biogeography as revealed by a comparison of estimated phylogenies of populations or species with their geographic distributions.

Sympatric Species inhabiting the same geographic area.

Appendix 1

PAIRWISE GENETIC DISTANCES FOR NEW ZEALAND GRASSHOPPERS

Pairwise genetic distances (Kimura 2 parameter model) among mitochondrial COI DNA sequences from *Sigaus piliferus*, *Brachaspis nivalis* complex and *Sigaus australis* complex. Values indicate genetic distance between pairs of individual grasshoppers (indicated by codes GH1, SP6, etc.); smaller values indicate greater similarity of individuals.

CH36 CH36	0000 0000	Sp.I			0.000	0.000 0.000 0.000	0.000 0.000	0.000 0.000	0.006 0.006 0.006	0.008 0.008	0.002 0.002	0.002 0.002	0.002 0.002	0.002 0.002	0.002 0.002	0.012 0.012	0.014 0.014	0.014 0.014 0.012 0.012 0.008 0.008	0.014 0.014 0.014 0.012 0.012 0.012 0.008 0.008 0.008 0.012 0.012 0.012	0.014 0.014 0.012 0.012 0.008 0.008 0.012 0.012 0.014 0.014 0.014 0.014	0.014 0.014 0.012 0.012 0.008 0.008 0.012 0.012 0.014 0.014 0.014 0.014 0.052 0.052	0.014 0.014 0.012 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.014 0.014 0.057 0.057 0.057 0.057 0.061 0.061	0.014 0.014 0.012 0.012 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.057 0.057 0.051 0.051 0.051 0.051 0.059 0.059	0.014 0.014 0.012 0.012 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057	0.014 0.014 0.012 0.012 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.057 0.057 0.057 0.057 0.057 0.057 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052
0 5112 6	10 UID4				2 0 0.002 0.002	0 0.002 0 0.002	0 0.002	0 0.002	0 0.002 6 0.008	8 0.010	2 0.004 2 0.004	2 0.004 4 0.006	2 0.004	2 0.004	2 0.004 2 0.004	2 0.014	4 0.016	4 0.016 2 0.014 8 0.010	4 0.016 2 0.014 8 0.010 2 0.010	 4 0.016 2 0.014 8 0.016 4 0.016 4 0.016 4 0.016 	 # 0.016 2 0.014 8 0.010 4 0.014 2 0.014 2 0.014 2 0.015 5 0.016 	 4 0.016 2 0.014 8 0.010 8 0.0114 2 0.014 4 0.016 4 0.016 7 0.055 1 0.055 	 4 0.016 2 0.014 8 0.010 8 0.0116 4 0.016 4 0.016 4 0.016 1 0.055 9 0.057 	4 0.016 2 0.014 8 0.014 2 0.016 4 0.016 4 0.016 4 0.016 4 0.016 4 0.016 4 0.016 4 0.016 5 0.016 6 0.016 1 0.055 0 0.055 0 0.055	 4 0.016 2 0.014 8 0.0114 2 0.014 2 0.014 4 0.016 4 0.016 4 0.055 1 0.055 1 0.055 2 0.055 2 0.055
	מעון מעו			0.000	0.002 0.00 0.000 0.00 0.000 0.00	00.0 000.0	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.002 0.00	0.002 0.00	0.002 0.002	0.002 0.00	0.002 0.002	0.012 0.01	0.014 0.01	0.014 0.012 0.012 0.013 0.08 0.00	0.014 0.01 0.012 0.01 0.008 0.00 0.012 0.01	0.014 0.014 0.012 0.011 0.008 0.000 0.012 0.011 0.014 0.01 0.014 0.01 0.014 0.01	0.014 0.014 0.012 0.012 0.012 0.011 0.014 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21110	ento			0.002	0.004 0.002 0.002	0.002 0.002	0.002	0.002	0.002	0.006	0.000	0.000	0.000	0.000	0.000	0.014 (0.014	0.014	0.014 0.010 0.016 0.016 0.016 0.016	0.014 0.014 0.014 0.014 0.015 0.015 0.055	0.014 0.014 0.014 0.014 0.014 0.015 0.055 0.055 0.063	0.014 0.014 0.014 0.014 0.015 0.015 0.055 0.055 0.063 0.061	0.014 0.014 0.014 0.015 0.015 0.055	0.014 0.014 0.014 0.014 0.015 0.015 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055
71112 611	4110 GUI4		002 002	002 0.000 002 0.000 002 0.000	004 0.002 002 0.000 002 0.000	002 0.000 02 0.000	002 0.000	000 0.000	002 0.000 008 0.006	010 0.008	004 0.002	004 0.002	0.002 0.002	0.002	0.002 0.002 0.002	014 0.012		0.012	114 0.012 010 0.008 014 0.012 014 0.012	114 0.012 110 0.008 114 0.012 115 0.012 116 0.012 110 0.012 111 0.012 112 0.012 112 0.012	114 0.012 110 0.008 114 0.012 114 0.012 115 0.012 116 0.012 110 0.012 110 0.012 110 0.012 110 0.012 112 0.014 112 0.014	114 0.012 110 0.008 114 0.012 114 0.012 116 0.012 116 0.014 110 0.012 110 0.012 110 0.012 110 0.012 110 0.012 110 0.012 110 0.012 112 0.014 113 0.015 114 0.015 115 0.016	114 0.012 110 0.008 114 0.012 114 0.012 115 0.012 116 0.014 112 0.014 112 0.015 112 0.016 113 0.016 114 0.057 115 0.057	114 0.012 114 0.012 114 0.012 116 0.012 116 0.012 116 0.014 110 0.012 111 0.012 111 0.012 110 0.014 112 0.014 055 0.057 055 0.057 055 0.057 055 0.057 055 0.057	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CI13 CI	19 C7 H9		0.004 0.002 0.0	0.002 0.0	0.004 0.0 0.002 0.0 0.002 0.0	0.002 0.0	0.002 0.0	0.002 0.0	0.004 0.0	0.006 0.0	0.000 0.0	0.000 0.0	0.000 0.0	0.000 0.0	0.000 0.0	0.014 0.0	0 0 1 1 0 0	0.014 0.0	0.014 0.0	$\begin{array}{c} 0.014 \\ 0.010 \\ 0.014 \\ 0.016 \\ 0.016 \\ 0.0 \\ 0.016 \\ 0.0 \\ 0.016 \\ 0.0 \\ 0.0 \\ 0.016 \\ 0.0 \\ 0$	$\begin{array}{c} 0.014 \\ 0.014 \\ 0.010 \\ 0.014 \\ 0.016 \\ 0.0 \\ 0.016 \\ 0.0 \\ 0.055 \\ 0.0$	0.014 0.0 0.010 0.0 0.014 0.0 0.014 0.0 0.016 0.0 0.055 0.0 0.053 0.0	0.014 0.0 0.010 0.0 0.014 0.0 0.014 0.0 0.016 0.0 0.016 0.0 0.055 0.0 0.053 0.0 0.063 0.0	0.014 0.0 0.010 0.0 0.014 0.0 0.014 0.0 0.016 0.0 0.055 0.0 0.059 0.0 0.059 0.0 0.059 0.0	0.0114 0.00 0.010 0.016 0.0 0.014 0.0 0.016 0.0 0.016 0.0 0.055 0.0 0.055 0.0 0.055 0.0 0.055 0.0 0.055 0.0 0.055 0.0 0.055 0.0 0.055 0.0 0.055 0.0
1 61133	1 90.22		0 0.000 4 0.004 0.002	0.002	4 0.004 2 0.002 0.002	2 0.002 2 0.002	2 0.002 4 0.004	2 0.002	2 0.002 4 0.004	5 0.006	0.000	0.000	0.000	0.000	+ 0.004 0.0000	4 0.014 5 0.016	i 0.014	0100) 0.010 4 0.014	0.010 0.014 0.016 0.016 0.016 0.016	0.014 0.014 0.015 0.016 0.016 0.016	0.010 0.014 0.014 0.016 0.016 0.016 0.016 0.055 0.055	0.0016 0.016 0.016 0.016 0.016 0.016 0.016 0.055 0.063	0.0014 0.016 0.016 0.016 0.014 0.016 0.055 0.005 0.063 0.063	0.005 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.055 0.061 0.061
	u19 GU2	000	.000 .000 .004 .002 .002 0.002	002 0.00	.004 0.00 .002 0.00 .002 0.002	.002 0.00 002 0.002	.002 0.002 004 0.004	002 0.001	.002 0.00.	006 0.000	000 0.000	000 0.000	000 0.000	000 0.000	000 0.000	014 0.014	014 0.014		010 0.010 014 0.014	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010 0.010 014 0.014 015 0.016 016 0.016 055 0.055 053 0.056 063 0.056	010 0.010 014 0.014 014 0.014 016 0.014 0.055 0.055 063 0.065 063 0.065	010 0.010 0.010 0.010 0.010 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2112	0 CUD	0.002	0.002 0.002 0.002 0.002 0.002	0.000	0.002 0.000 0.000 0.000	0.000 0.000 0.0	0.000 0.002	0.000	0.000	0.008 0.	0.002 0.	0.002 0.004	0.002 0.	0.002 0.	0.002 0.	0.012 0.014 0.0	0.012 0.008		0.012 0.	0.012 0. 0.014 0. 0.012 0. 0.014 0.	0.012 0. 0.014 0. 0.012 0. 0.014 0. 0.014 0.	0.012 0. 0.014 0. 0.012 0. 0.014 0. 0.014 0. 0.057 0. 0.057 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.014 0.0012 0.0014 0.0012 0.0012 0.0012 0.0012 0.0057 0.00057 0.0055 0.0	$\begin{array}{c} 0.012 & 0.\\ 0.014 & 0.\\ 0.012 & 0.\\ 0.014 & 0.\\ 0.057 & 0.\\ 0.057 & 0.\\ 0.057 & 0.\\ 0.057 & 0.\\ 0.057 & 0.\\ 0.057 & 0.\\ 0.055 & 0.\\$
2113	00 AU2	0 0.000 0 0.000 0 0.000	0.000 0.000 0.004 0.004 0.002	0.002	4 0.004 2 0.002 0.002	2 0.002 2 0.002	2 0.002 4 0.004	2 0.002	4 0.004	0.006	000.0	0.000	00000	0.000	4 0.004 0 0.000	4 0.014 5 0.016	4 0.014	4 0.010 4 0.014		6 0.016 6 0.016 6 0.016	5 0.016 5 0.016 5 0.016 5 0.055	5 0.016 6 0.016 5 0.055 9 0.055 3 0.063	5 0.016 6 0.016 5 0.016 9 0.055 3 0.063 1 0.061	5 0.016 6 0.016 5 0.055 9 0.055 3 0.063 1 0.061 0 0.059	5 0.016 6 0.016 5 0.016 9 0.055 9 0.055 9 0.055 1 0.061 1 0.055 9 0.055
	202 202),000),000	0.000 0.00 0.000 0.00 0.004 0.00 0.002 0.00 0.000 0.00	0.002 0.00 0.002 0.00).004 0.00).002 0.00).002 0.00	0.002 0.00 0.00 0.00	0.00 0.00	0.002 0.00	0.00 0.00	0.00 0.00	00.0 000.0	0.00 0.00	00.0 0.00	000 0.00	000 0.00	0.014 0.01	0.014 0.01	0.012 0.01		0.0 4 0.01 0.016 0.01	0.014 0.01 0.016 0.01 0.053 0.05	0114 0.01 016 0.01 053 0.05 0.058 0.05 0.062 0.06	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.06 \\ 0.$	014 0.01 015 0.01 0058 0.05 0.062 0.06 0.060 0.06 0.06 0.06	0114 0.01 0114 0.01 0153 0.05 0.058 0.05 0.058 0.05 0.058 0.05 0.058 0.05 0.053 0.05 0.055 0.055 0.05 0.055 0.
703	0.10	0.002 0	0.002 0	0.000	0.002 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000	0.000 0	0.000	0.000	0.000	0.008 0	0.002 0	0.002 0	0.002 6	0.002 0	0.002 0	0.012 0	0.012 0	0.012 0	0.014 0	0.012 0 0.014 C	0.012 0 0.014 0 0.052 C	0.012 0 0.014 0 0.052 0 0.057 0 0.057 0	0.012 0 0.014 0 0.052 0 0.057 0 0.061 0 0.059 0	$\begin{array}{c} 0.012 & 0.012 \\ 0.014 & 0 \\ 0.057 & 0 \\ 0.057 & 0 \\ 0.059 & 0 \\ 0.057 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
100	E GUI	0.002 0.002 0.000 0	0.002	0.000	0.002 0.000 0.000	0.000	0.000	0.000	0.000	0.008	0.002	0.002	0.002	0.002	0.002	0.012	0.012	0.012	0.014	0.014	0.014	0.014 0.052 0.057 0.061	0.014 0.052 0.057 0.061 0.059	0.014 0.052 0.057 0.051 0.059 0.057	0.014 0.052 0.057 0.061 0.059 0.059 0.052
		6H1 SP6 6H2 6H2 6H2 6H2 6H2 6H2 6H2 6H2 6H2 6H	GH22 GH13 GH14 GH14	GH17 GH17 GH18	GH34 GH35 GH36	GH37 GH38	GH39 GH40	GH41	GH42 GH44	GH45 CH10	GH9	GH8 GH7	GH12	CH11 GH11	GH10 GH20	GH24 GH115	GH26 CH36	GH27	GH28 GH4	GH6	GH6 GH57	GH6 I GH57 GH59 GH60	GH6 GH57 GH59 GH97 GH97	GH6 GH57 GH59 GH07 GH97 GH95	GH6 GH57 GH59 GH60 GH97 GH95 GH95 GH61
VIS NOISEd	REGIUN CLA	Central Sp.I														Pirongia Pirongia	Pirongia	Whenuakura	Whenuakura Te Araroa	Te Araroa	Te Araroa Tararuas Sp.I I	Te Araroa Tararuas Sp.II	Te Araroa Tararuas Sp.D	Te Araroa Tararuas Sp.II	Te Araroa Tararuas Sp.U

TABLE A1.1. PAIRWISE GENETIC DISTANCES FOR *sigaus piliferus*. = CLADE Sp.I; = Sp.II.

GH20	P.I 0.014 0.014 0.016 0.014 0.016 0.016 0.016 0.016	0.055 0.059 0.063 0.061 0.051 0.055 0.055 0.055 0.055
GH16	S 0.004 0.014 0.016 0.016 0.016 0.010 0.010 0.010 0.012	0.050 0.055 0.059 0.057 0.057 0.055 0.050 0.050
GH11	$\begin{array}{c} 0.004\\ 0.004\\ 0.014\\ 0.016\\ 0.014\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\end{array}$	0.055 0.059 0.063 0.061 0.059 0.055 0.054
GH12	$\begin{array}{c} 0.000\\ 0.004\\ 0.004\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.016\\ 0.014\\ 0.016\\ 0.014\\ 0.016\\ 0.016\end{array}$	0.055 0.059 0.063 0.061 0.059 0.051 0.055 0.055
GH7	$\begin{array}{c} 0.002\\ 0.002\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.018\\ 0.016\\ 0.018\end{array}$	0.057 0.061 0.065 0.063 0.063 0.063 0.057 0.057
GH8	$\begin{array}{c} 0.002\\ 0.004\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\end{array}$	0.055 0.059 0.063 0.061 0.059 0.055 0.055 0.055
6H9	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.0014\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\end{array}$	0.055 0.059 0.063 0.061 0.061 0.059 0.055 0.055
GH10	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.0014\\ 0.016\\ 0.014\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\\ 0.016\end{array}$	0.055 0.059 0.063 0.061 0.061 0.059 0.055 0.055
GH45	$\begin{array}{c} 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.0020\\ 0.002\\ 0$	0.061 0.065 0.070 0.067 0.067 0.067 0.061 0.061 0.061
GH44	$\begin{array}{c} 0.006\\ 0.004\\ 0.004\\ 0.004\\ 0.006\\ 0.004\\ 0.0018\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0$	0.059 0.063 0.068 0.068 0.065 0.063 0.063 0.065 0.059 0.059
GH42	$\begin{array}{c} 0.006\\ 0.002\\ 0.$	0.053 0.057 0.061 0.059 0.059 0.053 0.053 0.053
GH41	$\begin{array}{c} 0.000\\ 0.002\\ 0.$	0.052 0.057 0.061 0.059 0.057 0.057 0.057 0.052 0.052
GH40	$\begin{array}{c} 0.002\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.0016\\ 0.0014\\ 0.0016\\ 0.0006\\ 0.$	0.055 0.055 0.057 0.057 0.057 0.057 0.055 0.055 0.055
GH39	$\begin{array}{c} 0.002\\ 0.$	0.052 0.057 0.061 0.059 0.057 0.057 0.052 0.052 0.052
GH38	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.000\\ 0.001\\ 0.000\\ 0.$	0.052 0.057 0.061 0.059 0.059 0.052 0.052 0.052
GH37	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.$	0.052 0.057 0.059 0.059 0.057 0.057 0.052 0.052 0.052
CODE	GH1 SP6 GH2 GH2 GH2 GH2 GH2 GH2 GH2 GH2 GH2 GH2	GH57 GH59 GH60 GH97 GH95 GH95 GH96 GH94
CLADE	Sp.1	ILq2
REGION	Central Pirongia Pirongia Pirongia Pirongia Whenuak Whenuak Te Araroa Te Araroa	Tararuas

GH94					Sp.II
GH61					0.026
6H96					0.014 0.028
GH95					0.002 0.016 0.030
GH97					$\begin{array}{c} 0.002\\ 0.000\\ 0.014\\ 0.028\end{array}$
GH60					0.002 0.004 0.016 0.016 0.030
GH59					0.008 0.006 0.008 0.008 0.008 0.008
GH57					0.004 0.012 0.010 0.008 0.010 0.008 0.008
6H6	I.q				0.050 0.055 0.057 0.057 0.055 0.055 0.055
GH4	∞ ∕v			0.002	$\begin{array}{c} 0.048\\ 0.053\\ 0.057\\ 0.055\\ 0.053\\ 0.053\\ 0.053\\ 0.048 \end{array}$
GH28				0.018	$\begin{array}{c} 0.055\\ 0.059\\ 0.063\\ 0.061\\ 0.059\\ 0.059\\ 0.059\\ 0.059\end{array}$
GH27			0.002	0.016 0.018	$\begin{array}{c} 0.053\\ 0.057\\ 0.057\\ 0.059\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ \end{array}$
GH46			$0.012 \\ 0.014$	0.012 0.010	$\begin{array}{c} 0.057\\ 0.057\\ 0.059\\ 0.059\\ 0.059\\ 0.057\\ 0.052\end{array}$
GH26		0.008	0.016 0.018	0.016 0.018	$\begin{array}{c} 0.057\\ 0.057\\ 0.059\\ 0.059\\ 0.059\\ 0.057\\ 0.052\\ 0.052\\ \end{array}$
GH110		0.002 0.010	0.018 0.020	0.018 0.020	$\begin{array}{c} 0.059\\ 0.059\\ 0.064\\ 0.061\\ 0.066\\ 0.061\\ 0.059\\ 0.055\end{array}$
GH24		0.002 0.000 0.008	0.016 0.018	0.016 0.018	$\begin{array}{c} 0.057\\ 0.057\\ 0.061\\ 0.059\\ 0.059\\ 0.057\\ 0.052\\ 0.052\\ \end{array}$
CODE	GH1 SP6 GH2 GH2 GH2 GH2 GH2 GH2 GH2 GH2 GH2 GH2	GH110 GH26 GH46	GH27 GH28	GH4 GH6	GH57 GH59 GH60 GH97 GH97 GH95 GH95 GH96 GH94
CLADE	I.q2		kura kura	<u>.</u>	Sp.II
REGION	Central	Pirongia Pirongia	Whenua	Te Araro Te Araro	Tararuas

TABLE A1.2.	PAIRW	ISE GEN	ETIC DI	[STANC	ES FOR	Bracha	spis niu	valis CO	MPLEX.		LADE B.	I; =	B.II;	= B.III.				000160		
TAXON/ REGION	CLADE	CODE	BC48	BN311	BN334	f BC3	BN108	BN134	GH49	GH51	BN165	BN332	GH102	GH105	GH100	GH101	BN335	BN333	BR1 I	3R204
B. collinus	B.I	BC48				B.I														
		BN311	0.002																	
		BN334	0.002	0.000																
		BC3	0.004	0.004	0.004															
Northern	В.П	BN108	0.080	0.083	0.083	0.066											æ	H		
B. nivalis		BN134	0.080	0.083	0.083	0.066	0.004										-	1		
Porter		GH49	0.080	0.083	0.083	0.066	0.004	0.000												
		GH51	0.083	0.085	0.085	0.069	0.006	0.002	0.002											
		BN165	0.083	0.086	0.086	0.069	0.010	0.010	0.010	0.012										
		BN332	0.063	0.065	0.065	0.053	0.044	0.040	0.040	0.042	0.048									
Dee		GH102	0.063	0.065	0.065	0.053	0.044	0.040	0.040	0.042	0.048	0.008								
		GH105	0.069	0.067	0.067	0.057	0.046	0.042	0.042	0.044	0.051	0.010	0.014							
		GH100	0.061	0.063	0.063	0.051	0.042	0.038	0.038	0.040	0.046	0.006	0.002	0.012						
Dee		GH101	0.063	0.065	0.065	0.053	0.044	0.040	0.040	0.042	0.048	0.008	0.000	0.014	0.002					
		BN335	0.067	0.069	0.069	0.058	0.044	0.044	0.044	0.046	0.048	0.008	0.004	0.014	0.006	0.004				
		BN333	0.061	0.063	0.063	0.051	0.044	0.040	0.040	0.042	0.044	0.008	0.004	0.014	0.002	0.004	0.008			
Southern	B.III	BR1	0.076	0.074	0.074	0.069	0.082	0.078	0.078	0.080	0.083	0.065	0.065	0.067	0.063	0.065	0.069	0.065		B.III
B. nivalis		BR204	0.078	0.076	0.076	0.066	0.085	0.080	0.080	0.082	0.085	0.067	0.067	0.073	0.065	0.067	0.071	0.067	0.010	
		BN319	0.074	0.072	0.072	0.062	0.080	0.076	0.076	0.078	0.081	0.067	0.067	0.074	0.065	0.067	0.071	0.067	0.014 (0.012
		BN321	0.074	0.071	0.071	0.062	0.080	0.076	0.076	0.078	0.081	0.063	0.063	0.069	0.060	0.063	0.067	0.063	0.010 (0.004
		BN301	0.074	0.072	0.072	0.062	0.076	0.071	0.071	0.074	0.076	0.063	0.063	0.069	0.061	0.063	0.067	0.063	0.010 (.008
		BN324	0.078	0.076	0.076	0.066	0.080	0.076	0.076	0.078	0.081	0.067	0.067	0.073	0.065	0.067	0.071	0.067	0.006 (.004
"Hunter"		GH52	0.083	0.080	0.080	0.071	0.085	0.080	0.080	0.082	0.085	0.067	0.067	0.074	0.065	0.067	0.071	0.067	0.014 (0.012
"Hunter"		GH53	0.083	0.080	0.080	0.071	0.085	0.080	0.080	0.082	0.085	0.067	0.067	0.074	0.065	0.067	0.071	0.067	0.014 (0.012
		BR2	0.073	0.071	0.071	0.062	0.078	0.078	0.078	0.080	0.076	0.069	0.073	0.075	0.071	0.073	0.078	0.069	0.026 (0.024
		BR202	0.076	0.073	0.073	0.064	0.080	0.080	0.080	0.082	0.078	0.071	0.071	0.078	0.069	0.071	0.075	0.067	0.020 (.018
B. robustu	SI	Brob	0.080	0.078	0.078	0.069	0.082	0.078	0.078	0.080	0.079	0.069	0.069	0.076	0.067	0.069	0.073	0.069	0.024 (0.022
		Bn271	0.071	0.069	0.069	090.0	0.074	0.069	0.069	0.071	0.070	0.061	0.065	0.067	0.063	0.065	0.069	0.065	0.024 ().022
		BN265	0.074	0.071	0.071	0.062	0.080	0.076	0.076	0.078	0.076	0.063	0.063	0.069	0.060	0.063	0.067	0.063	0.022 ().024
		BN266	0.071	0.069	0.069	0.060	0.074	0.069	0.069	0.071	0.070	0.061	0.065	0.067	0.063	0.065	0.069	0.065	0.024 (0.022

Continued on next page

ed.
tinu
con
27
V
əlc
\sim

Table A1.2—co	ntinued.													
TAXON/ REGION	CLADE	CODE	BN319	BN321	BN301	BN324	GH52	GH53	BR2	BR202	BROB	BN271	BN265	BN266
B. collinus	B.I	BC48												
		BN311												
		BN334												
		BC3												
Northern		BN108												
B. nivalis	B.II	BN134												
Porter		GH49												
		GH51												
		BN165												
		BN332												
Dee		GH102												
		GH105												
		GH100												
Dee		GH101												
		BN335												
		BN333												
Southern		BR1												
B. nivalis	B.III	BR204												B.III
		BN319												
		BN321	0.012											
		BN301	0.008	0.004										
		BN324	0.008	0.004	0.004									
"Hunter"		GH52	0.012	0.012	0.008	0.008								
"Hunter"		GH53	0.012	0.012	0.008	0.008	0.000							
		BR2	0.024	0.022	0.018	0.020	0.024	0.024						
		BR202	0.018	0.016	0.012	0.014	0.018	0.018	0.006					
B. robustus		Brob	0.022	0.018	0.014	0.018	0.022	0.022	0.026	0.020				
		Bn271	0.022	0.018	0.014	0.018	0.022	0.022	0.022	0.020	0.008			
		BN265	0.024	0.020	0.016	0.020	0.024	0.024	0.028	0.022	0.006	0.006		
		BN266	0.022	0.018	0.014	0.018	0.022	0.022	0.022	0.020	0.008	0.000	0.006	

REGION	CLADE	CODE	SA340-e	SA277-e	SA288-e	SA361-u	SA360-h	GH78	SA110-b	SA57-b	SA174-f	SA13-v	GH73	GH74	SA67	SA70 SA	347-w
Northern	Sa.I	SA340-e SA277-e SA288-e SA361-u SA360-h GH78	0.022 0.020 0.018 0.020 0.020	0.004 0.010 0.014 0.020	0.010 0.014 0.018	0.006 0.014	0.012	Sa.I									
Southeastern	Sa.IV	SA110-b SA57-b SA174-f SA13-v GH73 GH73 GH74 SA67 SA70 SA70 SA35-j Unkn201 SA208	0.061 0.063 0.063 0.067 0.073 0.068 0.068 0.074 0.072 0.072	0.062 0.068 0.065 0.065 0.073 0.076 0.076 0.076 0.076 0.075	0.055 0.061 0.057 0.057 0.062 0.064 0.065 0.069 0.069 0.069	0.057 0.059 0.063 0.064 0.064 0.065 0.065 0.065 0.072 0.072 0.067	0.057 0.059 0.063 0.061 0.062 0.062 0.067 0.067 0.067	$\begin{array}{c} 0.047\\ 0.046\\ 0.052\\ 0.055\\ 0.055\\ 0.046\\ 0.046\\ 0.045\\ 0.057\\ 0.057\\ 0.051\\ 0.051\end{array}$	0.004 0.008 0.008 0.004 0.008 0.008 0.018 0.018 0.018 0.0124 0.018	0.012 0.014 0.010 0.010 0.010 0.010 0.012 0.018 0.016	0.002 0.006 0.018 0.018 0.018 0.018 0.026 0.028	0.008 0.008 0.020 0.028 0.028 0.028 0.028	0.004 0.016 0.014 0.020 0.026 0.024 0.020	0.014 0.016 0.024 0.030 0.028 0.028	0.000 0.008 0.018 0.016	0.000 0.012 0.016	Sa.IV 0.014 0.008
		SA274-m SA291-m	0.067 0.069	0.071 0.074	0.065 0.067	0.061 0.063	0.063 0.065	0.050	0.026 0.028	0.026 0.028	0.034 0.036	$0.032 \\ 0.034$	0.036 0.039	$0.032 \\ 0.034$	0.026 0.028	0.030 0.032	0.040 0.042
Southwestern	Sa.III	SA351-d S251-g SA152 GH48 GH89 GH90 GH90 SA12-c SA12-c SA12-c SA12-c SA18-1 GH98 SA185-1 SA185-1 SA183-1 SA183-1	0.083 0.087 0.087 0.069 0.074 0.072 0.075 0.075 0.072 0.072 0.072 0.072 0.072	0.085 0.092 0.078 0.081 0.083 0.081 0.083 0.083 0.072 0.069 0.071 0.071 0.072 0.072	0.078 0.085 0.086 0.080 0.080 0.083 0.083 0.065 0.065 0.065 0.065 0.065 0.065 0.067 0.069	$\begin{array}{c} 0.083\\ 0.091\\ 0.067\\ 0.081\\ 0.074\\ 0.074\\ 0.063\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.065\\ 0.$	$\begin{array}{c} 0.085\\ 0.092\\ 0.074\\ 0.074\\ 0.076\\ 0.076\\ 0.065\\ 0.065\\ 0.067\\ 0.067\\ 0.066\\ 0.066\\ 0.066\\ 0.066\\ 0.069\\ 0.069\\ 0.069\end{array}$	0.076 0.083 0.061 0.074 0.065 0.065 0.065 0.067 0.061 0.061 0.067 0.067	$\begin{array}{c} 0.045\\ 0.046\\ 0.047\\ 0.047\\ 0.045\\ 0.045\\ 0.046\\ 0.048\\ 0.048\\ 0.046\\ 0.048\\ 0.046\\ 0.058\\ 0.053\\ 0.$	$\begin{array}{c} 0.042\\ 0.046\\ 0.039\\ 0.044\\ 0.044\\ 0.046\\ 0.048\\ 0.048\\ 0.018\\ 0.028\\ 0.028\\ 0.053\\ 0.053\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ \end{array}$	$\begin{array}{c} 0.048\\ 0.048\\ 0.050\\ 0.055\\ 0.055\\ 0.056\\ 0.$	$\begin{array}{c} 0.050\\ 0.050\\ 0.056\\ 0.054\\ 0.056\\ 0.058\\ 0.058\\ 0.052\\ 0.$	$\begin{array}{c} 0.049\\ 0.045\\ 0.045\\ 0.053\\ 0.051\\ 0.051\\ 0.054\\ 0.051\\ 0.$	$\begin{array}{c} 0.049\\ 0.049\\ 0.046\\ 0.046\\ 0.047\\ 0.035\\ 0.036\\ 0.047\\ 0.036\\ 0.047\\ 0.047\\ 0.047\\ 0.047\\ 0.047\\ 0.047\\ 0.047\\ 0.047\\ \end{array}$	$\begin{array}{c} 0.049\\ 0.047\\ 0.041\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.053\\ 0.053\\ 0.055\\ 0.$	$\begin{array}{c} 0.047\\ 0.045\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.057\\ 0.056\\ 0.056\\ 0.059\\ 0.059\end{array}$	$\begin{array}{c} 0.052\\ 0.056\\ 0.041\\ 0.046\\ 0.046\\ 0.048\\ 0.034\\ 0.034\\ 0.036\\ 0.036\\ 0.065\\ 0.065\\ 0.067\\ 0.067\\ 0.067\\ \end{array}$
Central	Sa.II	SCH1794 GH79 GH80 GH72 SA197 SA292-q SCH388-a GH93 SV305	0.072 0.075 0.069 0.069 0.076 0.078 0.078 0.100	$\begin{array}{c} 0.072\\ 0.069\\ 0.066\\ 0.076\\ 0.074\\ 0.071\\ 0.072\\ 0.084\\ 0.084\end{array}$	$\begin{array}{c} 0.069\\ 0.066\\ 0.071\\ 0.064\\ 0.064\\ 0.072\\ 0.069\\ 0.069\\ 0.082\\ 0.082\end{array}$	0.065 0.062 0.067 0.060 0.067 0.067 0.065 0.065	$\begin{array}{c} 0.069\\ 0.069\\ 0.073\\ 0.067\\ 0.074\\ 0.072\\ 0.072\\ 0.072\\ 0.087\end{array}$	0.067 0.058 0.056 0.056 0.063 0.063 0.061 0.080	0.053 0.050 0.050 0.048 0.048 0.049 0.053 0.049	0.055 0.050 0.047 0.047 0.047 0.050 0.053 0.078	0.054 0.051 0.049 0.049 0.052 0.054 0.050 0.078	$\begin{array}{c} 0.052\\ 0.049\\ 0.049\\ 0.047\\ 0.047\\ 0.050\\ 0.052\\ 0.048\\ 0.080\end{array}$	$\begin{array}{c} 0.051\\ 0.049\\ 0.049\\ 0.047\\ 0.047\\ 0.051\\ 0.047\\ 0.047\\ 0.081\end{array}$	0.047 0.045 0.045 0.043 0.043 0.043 0.043 0.043 0.043	0.055 0.050 0.050 0.048 0.048 0.048 0.053 0.053	$\begin{array}{c} 0.059\\ 0.054\\ 0.054\\ 0.052\\ 0.055\\ 0.055\\ 0.057\\ 0.053\\ 0.053\\ 0.081\end{array}$	0.067 0.062 0.060 0.060 0.063 0.065 0.065 0.061

Continued on next page

TABLE A1.3. PAIRWISE GENETIC DISTANCES FOR Sigaus australis COMPLEX. 🔲 = CLADE Sa.I; 🛄 = Sa.III; 🛄 = Sa.IV.

-continued.
ŝ
1
\mathbf{V}
e
ā
\overline{a}

1/1 3/1 <th>SA35-j</th> <th>Unkn20</th> <th>1 SA208</th> <th>SA274-m</th> <th>SA291-m 5</th> <th>SA351-d</th> <th>S251-g</th> <th>SA152</th> <th>GH48</th> <th>GH89</th> <th>GH90</th> <th>GH91</th> <th>SA12-c</th> <th>SO106</th> <th>S095-p</th>	SA35-j	Unkn20	1 SA208	SA274-m	SA291-m 5	SA351-d	S251-g	SA152	GH48	GH89	GH90	GH91	SA12-c	SO106	S095-p
1/1 3000															
0.07 0.03 0.02 0.054 0.007 0.057 0.059 0.057 0.051 0.011 0.001 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.011<	0.004		Sa.IV												
0.05 0.07 0.05 0.07 0.05 0.012 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.013 0.014 0.003 0.014 0.003 0.014 0.0014	0.040 0.042		0.037 0.039	0.002											
0.065 0.067 0.087 0.074 0.087 0.087 0.087 0.087 0.087 0.065 0.066 0.055 0.066 0.055 0.066 0.055 0.066 0.055 0.066 0.055 0.066 0.055 0.066 0.055 0.066 0.055 0.066 0.056 0.056 0.066 0.056 0.056 0.066 0.056 0.066 0.056 0.066 0.056 0.066 0.065 0.066 0.065 0.066 0.065 0.066 0.065 0.066 0.065 0.066 0.052 0.066 0.056 0.065 0.066 0.056 0.065 0.066 0.052 0.066 0.052 0.066 0.052 0.066 0.052 0.066 0.053 0.066 0.052 0.066 0.053 0.066 0.052 0.066 0.052 0.066 0.053 0.066 0.052 0.066 0.053 0.066 <	0.061 0.059 0.045 0.046 0.046 0.048 0.048 0.033 0.033		0.056 0.054 0.041 0.049 0.045 0.045 0.045 0.055 0.028 0.028	0.057 0.059 0.043 0.050 0.058 0.048 0.048 0.052 0.036 0.036	0.059 0.057 0.045 0.052 0.052 0.052 0.056 0.036 0.036 0.046	0.010 0.035 0.036 0.036 0.036 0.036 0.036 0.038 0.038	0.037 0.032 0.040 0.038 0.038 0.042 0.042 0.042	0.016 0.004 0.002 0.006 0.010 0.031 0.026	0.016 0.014 0.018 0.020 0.020 0.036	0.002 0.002 0.016 0.036 0.032	$\begin{array}{c} 0.004\\ 0.014\\ 0.034\\ 0.030\end{array}$	0.018 0.038 0.034	0.020	0.008	Sa.III
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.065 0.065 0.063		0.060 0.060	0.065 0.065	0.067	0.085 0.085 0.085	0.087 0.087	0.074 0.074	0.087 0.087 0.082	0.083 0.083 0.083	0.081 0.081 0.070	0.085 0.085	0.066 0.066	0.055 0.055	0.063 0.063 0.061
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.067 0.067		0.062 0.062 0.062	0.067 0.067	690.0	0.083 0.083 0.083	0.085 0.085	0.076 0.076	060.0	0.085 0.085 0.085	0.083 0.083 0.083	0.087 0.087 0.087	0.068	0.058 0.058 0.058	0.065
(0.55 0.060 0.062 0.078 0.081 0.069 0.080 0.076 0.074 0.078 0.061 0.050 0.058 0.055 0.060 0.062 0.078 0.080 0.076 0.074 0.078 0.061 0.050 0.058 0.058 0.063 0.065 0.085 0.085 0.081 0.058 0.051 0.059 0.058 0.065 0.065 0.085 0.072 0.085 0.081 0.078 0.083 0.053 0.061 0.065 0.065 0.087 0.076 0.078 0.083 0.055 0.061 0.061 0.063 0.083 0.074 0.076 0.078 0.063 0.063 0.061 0.063 0.081 0.083 0.076 0.076 0.051 0.053 0.063 0.061 0.063 0.083 0.076 0.076 0.078 0.063 0.063 0.061 0.063 0.083 0.076 0.076 <td>0.067 0.062 0.062</td> <td></td> <td>0.062 0.058 0.058</td> <td>0.067 0.062 0.062</td> <td>0.069 0.064 0.064</td> <td>0.083 0.081 0.081</td> <td>0.085 0.083 0.083</td> <td>0.076 0.072 0.072</td> <td>0.090 0.083 0.083</td> <td>0.085 0.078 0.078</td> <td>0.083 0.076 0.076</td> <td>0.087 0.080 0.080</td> <td>0.068 0.063 0.063</td> <td>0.058 0.052 0.052</td> <td>0.065 0.060 0.060</td>	0.067 0.062 0.062		0.062 0.058 0.058	0.067 0.062 0.062	0.069 0.064 0.064	0.083 0.081 0.081	0.085 0.083 0.083	0.076 0.072 0.072	0.090 0.083 0.083	0.085 0.078 0.078	0.083 0.076 0.076	0.087 0.080 0.080	0.068 0.063 0.063	0.058 0.052 0.052	0.065 0.060 0.060
0.005 0.005 0.008 0.007 0.008 0.007 0.008 0.006 0.005 <th< td=""><td>0.060</td><td></td><td>0.055</td><td>0.060</td><td>0.062 (</td><td>0.078 0.078</td><td>0.081</td><td>0.069</td><td>0.080</td><td>0.076</td><td>0.074</td><td>0.078 0.078</td><td>0.061</td><td>0.050</td><td>0.058 0.058</td></th<>	0.060		0.055	0.060	0.062 (0.078 0.078	0.081	0.069	0.080	0.076	0.074	0.078 0.078	0.061	0.050	0.058 0.058
0.060 0.065 0.067 0.085 0.085 0.087 0.074 0.087 0.080 0.081 0.085 0.060 0.051 0.055 0.061 0.063 0.081 0.083 0.070 0.083 0.076 0.076 0.078 0.061 0.051 0.059 0.059 0.088 0.080 0.077 0.109 0.101 0.105 0.103 0.105 0.089 0.078 0.087	0.063		0.058	0.063	0.065	0.083 0.083	0.085	0.072	0.085	0.081	0.078	0.083 0.083 0.083	0.064	0.053	0.061
	0.061 0.061		0.060 0.055 0.088	0.061 0.061	0.06/	(2010) 1010 7010	0.087	0.0/4 0.070	0.08/ 0.083 0.05	0.080 0.076 0.102	0.081 0.076 0.103	0.085 0.078 0.105	0.060 0.061 0.080	0.051 0.051 0.05	0.005 0.059 0.087

зd.
inue
ont
ĭ
AI.
ble.
Ta

CLADE CODE 5	Sa.I SA340-e SA277-e SA288-e SA360-h SA360-h GH78	n Sa.IV SA110b SA57-b SA174-f SA13-v SA13-v GH74 SA67 SA67 SA67 SA70 SA35-j Unkn201 SA35-j Unkn201 SA274m SA274m SA274-m	rn Sa.III SA351-d S251-g SA152 GH48 GH90 GH91 SA12-c SO106 SO35-p	Sa.II SA385-L GH98 SCH181-a SCH181-a SA185-i SA185-i SA187-i GH79 GH79 GH79 SA197 SA197 SA197 SA197 SA197 SA197 SA197 SA197 SA197 SCH388-a GH93	SV305 [
SA385-L GH98				0.000 0.002 0.002 0.002 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.004 0.010 0.004 0.004 0.004 0.004 0.004 0.004 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.095 0.095
scH181-				0.008 0.008 0.006 0.005 0.002 0.002 0.002 0.014 0.010	0.093
a SA 185-i				0.000 0.000 0.008 0.008 0.010 0.010 0.012 0.014 0.014	0.100
SA183-i S				0.000 0.008 0.010 0.012 0.012 0.012 0.014 0.010 0.010 0.010 0.010	0 100
CH179-i GH				008 008 010 010 012 012 016 0.00 016 0.00 0.00 0.00 0.00	100 0.00
79 GH8)4 0.000 0.000 0.000 0.000 0.000 0.000	.00 0
0 GH72				0.000 0.006 0.008 0.008	0000
SA197				0.006 0.008 0.008	0000
SA292-q				0.014 0.010	0000
SCH388-a GH9				0.004	0.001 0.00
3 SV30				Sa.II	

DOC Research & Development Series

DOC Research & Development Series *is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peerreviewed.*

Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in the DOC Science Publishing catalogue on the website, refer <u>www.doc.govt.nz</u> under Publications, then Science & technical.