Building Barriers: Saving Our Natives

Frances Charters

Masters of Engineering student
University of Canterbury

Department of Conservation *Te Papa Atawhai*

Species to be Protected

Upland BullyPhoto: Peter E. Smith

Taieri Flathead Galaxias Photo: Rod Morris

Upland Longjaw GalaxiasPhoto: DOC

Canterbury Mudfish Photo: Sjaan Bowie

Köaro Photo: Dr Paddy Ryan

Gollum Galaxias
Photo: Richard Allibone

Invasive Species

Brown TroutPhoto: Sthn Rivers Fly Fishing

Rudd Photo: Otago Daily Times



Koi Carp Photo: NZwaterways.co.nz

Removal of pest fish from Travis Wetland, Christchurch Photo: CCC

Case Study: Akatore Creek

BEFORE

- 1.8 m bedrock waterfall
- Compromised in high flows

AFTER

- 2.5 m enhanced barrier
- Galaxiid popn. recovering

Waterway Barriers

Collate current knowledge

Develop tool for recording knowledge

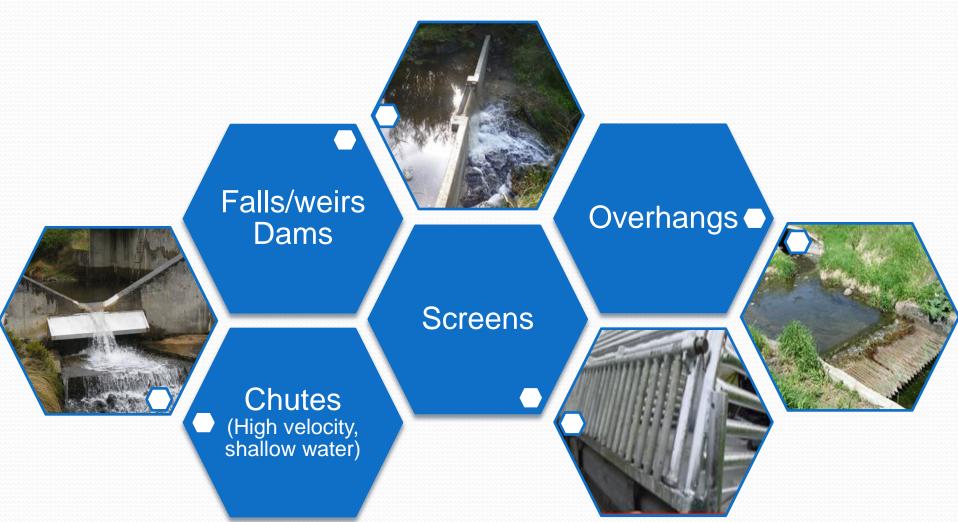
Analyse

Understand what makes barrier effective

Design considerations

Lake Rotopiko

Haumurana Stream



Maruia Tributary

Natural Barriers

Physical Built Barriers

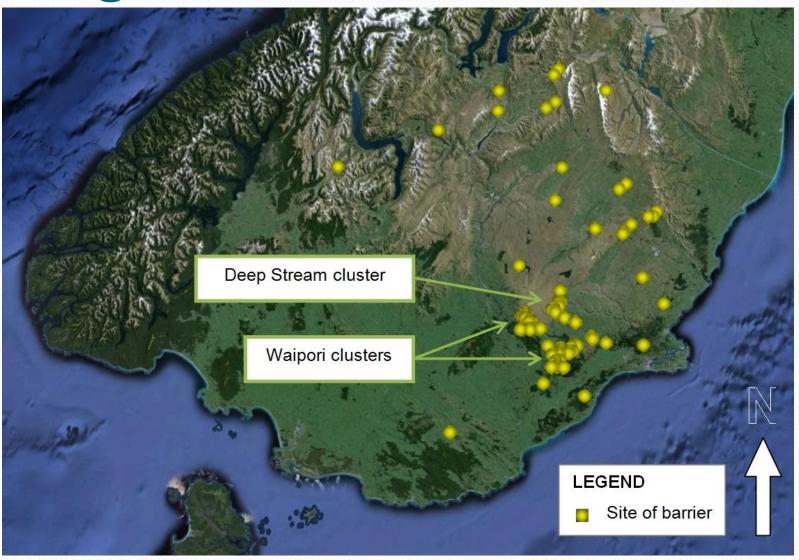
Information Package

Review Report

Barrier Spreadsheets

Design Considerations Checklist

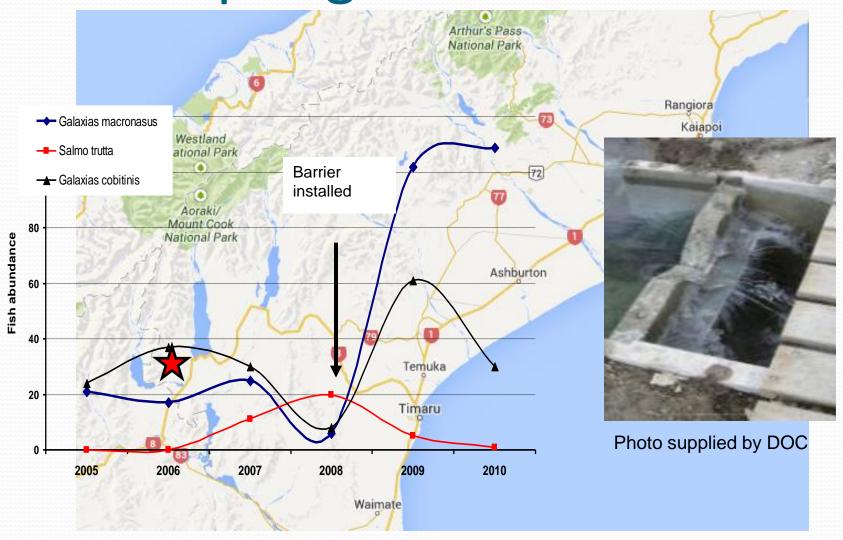
EndNote Reference Library


Photo Library

Drawings Library

Barriers Master Spreadsheet

Summary of Bar A - Barriers Mas																			
Barrier Name	Organisation	Region, Country (by Regional Council)	Projection	Northing	Easting	Elevation at Barrier (m asl)	Category	Waterfall	Weir	Screened	Culvert	Material	Natural Barrier	Protection of upstream native fish	Protection of aquatic habitat	Prevention of movement of invasive species	Prevention of downstream movement	Prevention of upstream movement	
BARRIER NAME		BARRIER LO	CATION				BARRIER TY	PE					BARR	IER OB	JECTIVE				
Akatore Creek Waterfall	DOC	Otago, NZ					Natural	Х				Bedrock	Х					Х	
Cave Stream Waterfall, Maruia catchment	DOC	West Coast, NZ					Natural	х				Bedrock	Х					Х	T
Shingle Creek Waterfall	DOC	West Coast, NZ					Natural	Х				Unspecified (likely waterfall)	Х					Х	T
Taieri River Barriers	University of Otago	Otago, NZ					Natural	х				Unspecified	Х						
Akatore Creek Built Barrier	DOC	Otago, NZ	NZMG	5454914	2287836	78	Physical		Х			Concrete and stop logs		Х				х	T
Maruia Gabion Barrier	DOC	West Coast, NZ					Physical			Х		Gabion		Х				х	>
Orokonui Gabion Barrier	DOC	Otago, NZ				Near sea level	Physical			х		Gabion with PVC pipe running through gabion to convey main flow through barrier		х					Х
Upper Waipori Barrier	DOC	Otago, NZ					Physical		Х			Modification to existing V-notch weir with metal grill		Х				Х	T
Fraser Spring Permanent Barrier	DOC	Canterbury, NZ					Physical		х			Concrete and overhanging steel plate, bypass culvert		х				х	T
Fraser Spring Temporary Barrier	DOC	Canterbury, NZ					Physical			Х		Pea straw bales wrapped in chicken wire		х				Х	I
Haldon Pastures Barrier	DOC	Canterbury, NZ					Physical		х			Concrete weir with anti-jump screen		Х	Х			Х	
Coach Stream Barrier Introduction	Environment Canterbury	Canterbury, NZ		hysical Barriers		atural Barrier A	Physical			ral B	Х	Modification of concrete apron of existing culvert, and new fish deflector		Х				Х	


Otago Barrier Assessments

Otago Barrier Assessments

Effectiveness	Barrier Type								
of Barrier	Waterfall	Culvert	Weir	Swamp	Dry Stream Bed	Total			
Effective	29	1	3	1	0	34			
Not effective	5	3	1	0	0	9			
Unspecified or unconfirmed	20	2	0	2	2	26			
Total no. of each type	54	6	4	3	2	69			

Fraser Spring Barrier

What we know works:

V-notch or similar crest profile

Minimum fall height > 1.5 m

Small drops (< 2.5 m) should be combined with other barrier mechanisms

≥ 500 mm overhangs to inhibit jumping

Examples of design considerations

Hamurana Stream Barrier, Rotorua

- Protects koaro, koura
- Excludes trout
- Spring-fed stream
- Low-head weir plus overhang combination
- Allows passage for climbers

Upper Waipori Barrier, Otago

- Protects dusky galaxias
- Excludes koaro
- Enhances existing weir
- Existing V-notch weir with apron

Define barrier objectives (see Design Considerations Checkllist - Page 1)

WATERWAY BARRIERS INFORMATION

Define the catchment characteristics

Review Waterways Barrier Database for barriers of similar characteristics (e.g. filter by objectives, stream characteristics)

Review case studies section of report for similar examples

Photo library is available if unsure of what barrier options might look like

Drawings library is available to show construction details of similar barriers

Reference sources are available in the EndNote Library

Review this report's conclusions for lessons learnt and improvements identified from previous experience

CONTINUE TO CONCEPTUAL DESIGN OF BARRIER

Waterway Barriers Review Report

......

Waterway Barriers Database

Waterway Barriers Design Review Checklist

Table 1: Basis of Design

Waterway Barriers
Design Review
Checklist

Table 2: Design Considerations

EndNote Library

Photo Library

Drawing Library

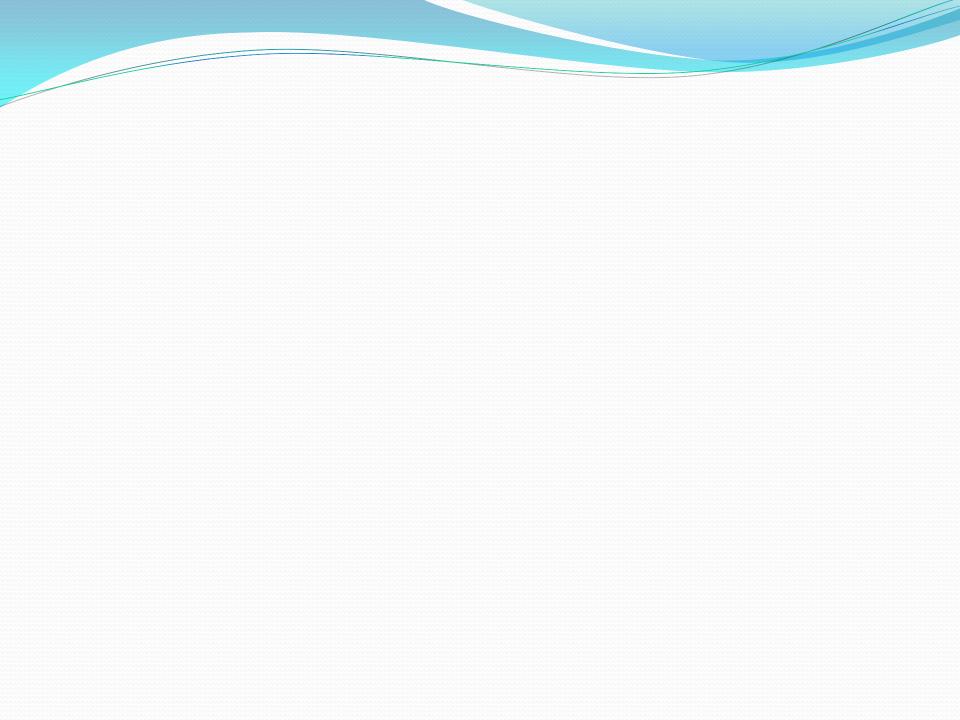
Summary of Progress

- Desk-top study and literature review
- Spreadsheet tool to capture knowledge
- ✓ Information package available to those designing barriers

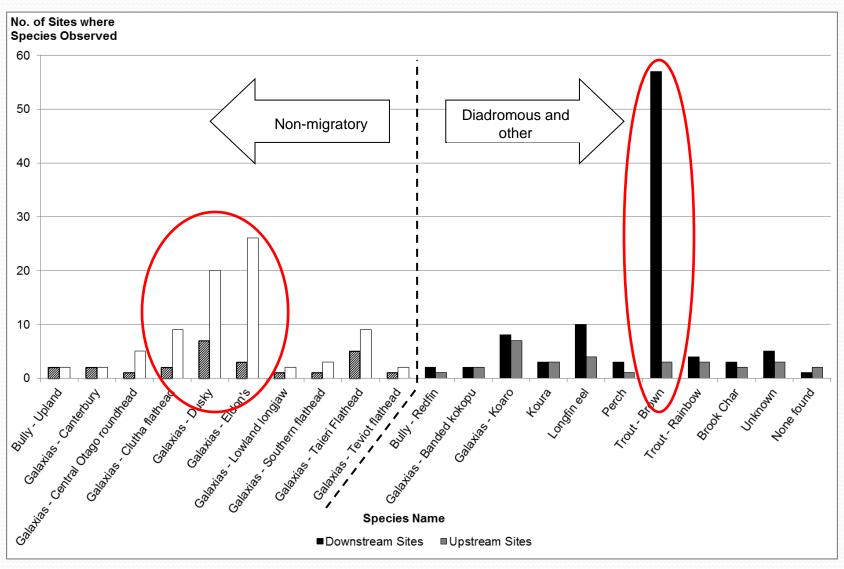
- Lab testing of design criteria
- Maintain feedback into these 'live documents'

Contacts

Sjaan Bowie Dave West


sjaanbowie@doc.govt.nz dwest@doc.govt.nz

Freshwater Technical Advisor Freshwater Science Advisor


Department of Conservation

Science and Capability, Freshwater Team

Questions?

Species' response to barriers

Waterway Barriers - Design Review

DESIGN CONSIDERATIONS

This spreadsheet provides a checklist of factors that should be considered in the design of a physical built waterway barrier.

Also included is a checklist of hydrological field data, which, if it can be obtained, will help focus the design decisions and reduce the risk of the barrier not performing as expected.

rway Hydrology							
Define the design flood that the barrier is required to pass without being compromised	leed to ensure barrier will not be compromised at higher flows, through undermining of barrier, overturning, scour and washout of the abutments						
Define expected flood characteristics at this design flood: stream flow, stage height, flow paths in vicinity of barrier, level of debris							
Is barrier location in hydrologically stable reach?	Minimises the effects of the barrier on the sediment transportation within the stream, i.e. a hydrologically stable reach will not alter its profile, aggra degrade over time						
What is the expected profile of the upstream backwater, i.e. how much ponding is expected upstream of barrier and what area will this cover?	This can be positive in terms of providing addiitonal upstream pool habitats, or can be negative due to desired riffle habitat being drowned out, st of water (reduced DO levels), raising of localised groundwater table (in neighbouring land) and flooding of dry land. Consider if barrier is at outlet of lake, then will raising effect of water level create an alternative outlet at another low point along the lake edge?						
Is there possibility of the barrier being drowned out due to downstream obstruction or flooding?	Consider the barrier's proximity to other obstruction features						
What is the expected reduction in water flow downstream of barrier?	May cause degradation of habitat during low flow periods						
Define the cross-sectional profile of the stream at barrier site	How does the waterway behave at different flow levels? What physical features need to accounted for in the design of the barrier abutments and be						
What is the expected sediment load in the stream?	Settling out of sediment in upstream pool created by barrier will need to be managed in the long term. Also, consider whether silt or coarser sedin filling in gaps in barrier surfaces could creating issues (e.g. increased splash zone allowing climbers more access, smoother surfaces (changing texture))						
How will expected hydrological changes affect the wider community balance, including macrophytes?	Invasion of macrophytes, for example, could be detrimental to the species to be protected						
Include in the design criteria any expected future change in hydrological regime	Designing for the future. Historical data provides a baseline but expected future changes must also be incorporated into the design criteria.						
cies to be Protected							
Do they need to be able to climb past barrier as part of their migratory lifecycle?	These factors contribute to design choices for overhang details and upstream face slope (affecting upstream pooling and riffle habitat)						
Availability of habitat that species require	mese racions communic to design choices for overnany details and upstream race stope (affecting upstream pooling and fille habitat)						
Interchange/connectivity needed to maintain healthy population	Consider whether isolation of species may contriubte to inbreeding effects or decline in numbers						

Design considerations include

Location and reach profile

Response to varying flows

Upstream effects

Downstream effects

Sediment

Erosion protection

Dimensions and crest profile

Foundations and connections

Habitat health

Other Built Barriers

Effectiveness of Barrier	Weir	Screened Barrier (includes gabions)	Culverts	Other	Total	
Effective	5	3	1	1	10	
Not effective	1	2	0	0	3	
Unspecified or unconfirmed	11	4	2	2	19	
Total no. of each type	17	9	3	3	32	

Design considerations include:

Construction Enabling Works

- Temporary diversion
- Clearance of vegetation
- Bank reshaping, bunding
- Sediment control

Commissioning

Shaw Creek Barrier, VIC, Australia Photo: Tarmo Raadik, 2012

Before:

After:

Non-physical Built Barriers

- Air bubble curtains
- Acoustic
- Electric
- Light
- Chemicals

Hydrological focus = Physical barriers