Review of warp strike mitigation methods on <28m commercial trawl vessels in New Zealand MIT2022-07A

Rachel Hickcox

DOC CSP TWG, 8 June 2023

www.proteus.co.nz

Objectives

Phase 1

Literature review

- Effectiveness of warp mitigation in inshore commercial trawl fisheries
- Collate existing data on mitigation use
- Review data collection methods for at-sea trials

Expert workshop

• Determine practical, at-sea methods for evaluating inshore trawl warp mitigation

At-sea trials

- Quantify relative effectiveness of mitigation options currently being used
- Inform best practice and recommendations

Literature review

Google Scholar

inshore AND commercial trawl AND fisheries AND seabird AND warp strike AND mitigate

+ DOC provided list of data sources

14 published papers or reports

- Seabird warp strike or captures
- International and national mitigation methods
- Small <28m (4 studies) + large (10 studies) trawl vessels
- ACAP recommendations

Literature review

50-100% reduction in observed warp strike/captures

0-50% reduction in observed warp strike/captures

Inconclusive/no significant effect

Not reported/unknown

Reference	Fishery	Vessel class (# of vessels)	Tori lines	Bird baffler	Warp scarer	Warp deflector: pinkie buoy	Warp deflector: plastic cones	Water sprayer	Lasers
González-Zevallos et al. (2007)	ARG hake	Small (3)							
Pierre et al. (2014)	AUS (SESSF)	Small (9)							
Koopman et al. (2018)	AUS	Small (2)		+ pinkie buoy				+ pinkie buoy	
Parker and Rexer-Huber (2019)	NZ	Small, large (33)							
Sullivan et al. (2006)	FLK finfish	Large (1)	NT		No				
Middleton and Abraham (2007)	NZ squid	Large (18)							
Abraham & Thompson (2009)	NZ squid, hoki	Large							
Melvin et al. (2011)	USA pollock	Large (2)	NT	N					
Cleal et al. (2012)	NZ hoki	Large (1)	NT	N					
Snell et al. (2012)	FLK finfish	Large (2)							
Maree et al. (2014)	SA hake	Large (19)	NT						
Tamini et al. (2015)	FLK hake	Large (2)	NT						
Melvin et al. (2016)	USA hake	Large (1)							
Kuepfer (2017)	FLK finfish	Large (1)							

Recommended for testing and continued use

- Accepted as the most effective mitigation measure internationally
- 10% observed inshore tows used tori lines 2013-2017 (Parker & Rexer-Huber 2019)
- ACAP: recommended best practice

<u>Cons</u>:

- Tangles with warp cable
- Safety risk; harder to deploy, trawl blocks outboard of hull
- Streamers break/fade
- Limited by weather conditions
- Tori line strike, with reduced severity and mortality rates
- Requires proper position, length, weight, spacing

Pros:

- Inexpensive
- Easier to setup
- Requires less space on vessel

Source: Deepwater Group Ltd. (2018).

Bird bafflers

- Varying results on effectiveness
- Many different designs (e.g., 2-boom, 4-boom, curtain)
- 25-36% observed inshore tows used bafflers 2013-2017 (Rexer-Huber & Parker, 2019; Parker & Rexer-Huber 2019)
- ACAP: acceptable; more testing required

<u>Cons</u>:

- Requires proper boom/dropper length.
- Requires proper position, height of warp-block, spacing
- Expensive
- Difficult to install
- Requires structure on vessel, takes up deck space

<u>Pros</u>:

- Deployed at beginning of trip (set/forget)
- Internationally used
- Easier to maintain and may be more effective for small vessels

One design of a 2-boom bird baffler. Source: Koopman et al. (2018).

Prototype Curtain baffler. Source: Cleal et al. (2012); Cleal & Pierre (2016).

Warp scarers

Not recommended for testing

- Varying results on effectiveness
- Not currently used on large or small trawlers due to limited efficacy and safety concerns
- May be more effective for small seabirds (Sullivan et al. 2006)
- ACAP: not recommended; more testing required

<u>Cons</u>:

- Tangles with warp cable
- Streamers break/fade
- Requires proper weighting
- Difficult to deploy/retrieve
- Safety risk
- Limited by weather conditions

Pros:

Inexpensive

Warp deflectorpinkie buoy system

- Varying and limited results on effectiveness
- May be more effective for large seabirds (Pierre et al. 2014)
- Considerable safety concerns and entanglement risk
- ACAP: not recommended; more testing required

<u>Cons</u>:

- Tangles with warp cable
- Difficult to position along warp and above water
- Requires proper size, weight, position
- Prone to device loss
- Requires frequent adjustment
- Limited by weather conditions
- Limited reduction in flying bird strike high up on warps

<u>Pros</u>:

Inexpensive

Source: Pierre et al. (2014).

Recommended

for testing

Warp deflectorplastic cones

- Only one reviewed study
- 89% reduction in warp strike
- Cost effective for smaller vessels
- Suitable for small vessels
- ACAP: not recommended; more testing required

<u>Cons</u>:

Requires adjustment throughout trip

Pros:

- Reduced severity and mortality rates if bird strikes cone
- 1 person can deploy/haul
- Inexpensive
- Easy to deploy/retrieve
- Covers the warp-water interface, may be useful as dual deployment device

Source: González-Zevallos et al. (2007).

Recommended for testing

Water sprayer

Recommended for testing

- Only one reviewed study
- Different designs e.g., boom/arm length, number, positioning
- 58.9% 92% reduction in warp strike
- Safer option
- ACAP: not recommended

<u>Cons</u>:

- Safety hazard; deck and crew get wet
- Potential of mechanical malfunctioning pump or sprayers
- Specific configuration required
- Requires a structure on the vessel
- Requires maintenance
- Expensive
- Difficult to install

Pros:

- Deployed at the beginning of trip (set and forget)
- Safer to use

Source: Koopman et al. (2018).

Lasers

Not recommended

for testing

- Few studies
- Many types of lasers e.g., Seabird Saver, the Dazzler
- Fixed or hand-held, can be accompanied by deterrent sounds
- Some evidence that seabirds follow the vessel at greater distances
- ACAP: not recommended

<u>Cons</u>:

- Potential injury to seabirds
- Not effective in high light levels
- Difficult to manoeuvre or change beam direction
- Requires specific power level, strength/length of beam, field of view
- Electronic device failure

Pros:

- Deployed at the beginning of trip (set and forget)
- Easy to use
- Reduced space requirements

Other methods

Offal/discharge management

- TIMING e.g., during setting, hauling, towing
- QUANTITY
- FREQUENCY e.g., batch, continuous, holding
- POSITION e.g., port, stern, offside
- Batch discharge + tori line reduced capture rates in small vessels (Rexer-Huber & Parker, 2019)

Modification of warp cables

• Material like Dyneema

Modification of fishing practices

- Net cleaning
- Night fishing
- Proper deck lighting

Offal discharge. https://www.doc.govt.nz/our-work/conservation-services-programme/csp-resources-for-fishers/resources-for-trawl-fisheries/

Observed captures

				Wai	p cap	tures	Mitigation device captures									
	Γ	lumbe	er of c	apture	es	Total	Rate	I	Numbe	Total	Rate					
Mitigation method	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020	All	All	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020	All	All		
No mitigation	3	-	1	1	1	6	0.08	-	-	-	-	-	-	-		
Tori lines	-	-	-	1	2	3	0.29	-	1	5	-	1	7	0.67		
Bird baffler	1	5	-	1	-	7	0.35	-	-	-	-	-	-	-		
Bird scarer	1	-	3	-	6	10	2.44	-	-	-	-	1	1	0.24		
Other	-	-	-	2	-	2	0.34	-	-	-	-	-	-	-		
Tori lines + baffler	-	-	1	1	-	2	0.39	-	-	4	-	-	4	0.78		
Tori lines + other	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Tori lines + scarer	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Bird baffler + other	-	-	-	-	5	5	1.66	-	-	-	-	-	-	-		
Tori lines + baffler + other	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Tori lines + baffler + scarer + other	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Total captures	5	5	5	6	14	35	0.59	0	1	9	0	2	12	0.20		

Number of observed seabird captures on small trawl vessels 2015-2020 from PSC database

Observed capture rate = $C/(E_o/100)$

C = sum of observed captures E_0 = observed effort (# tows)

Invited Expert Workshop-22 March, 2023

Mitigation devices

- Practicality
- Applicability
- Perceived effectiveness

Recommendations for devices to trial

Study design

- Trial scope
- Data collection methods
- Limitations

Recommendations for study design

Study design recommendations

Device recommendations

Vessel recommendations

Size

Fishery

Fishing area/target species

Already on vessel/in use

Large sample size

•

٠

٠

٠

٠

Vessel class	Tier 1	Tier 2	Tier 3
Vessel size	≥ 50ft/15m	40-50ft/12-15m	30-40ft/9-12m
Seabird warp strike risk	High	Moderate	Low
Tori lines	\checkmark	\checkmark	√ (pole)
Bird baffler	\checkmark	\checkmark	Х
Warp deflector: pinkie buoy	Х	\checkmark	\checkmark
Warp deflector: plastic cone	Х	\checkmark	\checkmark
Offal discharge	\checkmark	\checkmark	No discharge

Vessel specifications

- Randomly assign to vessels of similar specs (e.g., gear, skipper, location, timing)
- Consistent offal management (or no discharge at all)

Sources of variation recommendations

(Some) sources of variation

- Vessel configuration/construction
- Location/frequency/method of offal discharge
- Mitigation device design
- Location
- Vessel speed, orientation
- Trawl block height/position
- Location of warp/water interface
- Time of day
- Weather
- Target species
- Observer bias
- Data collection methods

etc.

Data collection recommendations

Me<u>thods</u>

DOC and ACAP abundance and warp strike protocols Modified for this trial, specific to small vessels

FORMS: Mitigation Assessment Warp Strike Modified mitigation details Non-Fish or Protected Fish Species Catch Report

ERS: Vessel and catch data

CAMERAS: Mitigation method, abundance, warp strikes?

Above: Warp entry points with a 25m observation field. Source: Ramm et al. (2015) and ACAP (2021).

Fishing event descri iking ID eserver trip	iptions Date Observer tow					Tow start time Observer initials							Cable angle θ Dist. to entry (m)							
Fifteen-minute warp hing stage min observation	tion device strike observati 2. At depth / hauling Time start Time end						nd bi depth start	rd ab / hau Time	unda: ling end	See reverse for direct nce 4. At depth Time start			of / hauling Time end							
xa grouping	L Alb	S Alb	P	CP	0	L Alt	S Alb	P	CP	0	L Alb	S Alb	P	CP	0	L Alb	S Alb	Р	CP]
d abundance																				Γ
light contacts																				Ī
heavy contacts:		_			-	-					-					-				_
ir																				L
Vater (deflected)																				
Vater (dragged under)																				
Environmental factor ell height (m) ell direction (1 - 12 h)	rs and	l miti	gatio	n dev	ices											E				
nd speed (Beaufort)	<u> </u>					_					<u> </u>					<u> </u>				_
charge location		P/	/S/R	/ N			P/	P/S/R/N					P/S/R/N							
scharge rate		0	/1/2	/3		0/1/2/3					0/1/2/3						0/	1/2	/3	_
scharge type	S/O/D					S	/0/	D		S/O/D						S	/0/	D	_	
tigetion used	BSL/BB/O BS				BSI	L/BB/O BSL/BB/O						/0	BSL/BB/O							

	Beaufort Sci	ale of Wind Ford	e			1	1	1
Beaufort Number	Description	Mean wind speed (knots)	Probable wave height* (m)				Cable angle (degrees)	Cable angle (degrees)
0	Calm	<1		1				
1	Light air	1-3	0.1 (0.1)			+-		
2	Light breeze	4 - 6	0.2 (0.3)		_	i i		
3	Gentle breeze	7 - 10	0.6 (1.0)		-			
4	Moderate breeze	11 - 16	1.0 (1.5)			i i		
5	Fresh breeze	17 - 21	2.0 (2.5)	1				
6	Strong breeze	22 - 27	3.0 (4.0)	I				
7	Near gale	28 - 33	4.0 (5.5)	I				
8	Gale	34 - 40	5.5 (7.5)					
9	Strong gale	41 - 47	7.0 (10.5)			1	Distance to entry (m)	Distance to entry (m)
10	Storm	48 - 55	9.0 (12.5)			── \ +	· · · · · · · · · · · · · · · · · · ·	─ <>
11	Violent storm	56 - 63	11.5 (16.0)			1.1	i i i	and the second
12	Hurricane	> 64	14 (-)					
This table is in	ntended as a rough guide	for the open sea. Figures	in parentheses indicate			Mit	Mitigation codes:	Mitigation codes:
the proba	able maximum wave heigi	hts. In coastal areas, gree	ter heights will be					
	ex	penencea.				BSL	BSL = bird scaring line	BSL = bird scaring line
						BB	BB = bird baffler	BB = bird baffler
Discharg	e codes:					0	O = other	O = other
					-	_		
Discharge	side: (one or more) Discl	harge rate: (record)	_	Disc	Discharge type: (one or more)	Discharge type: (one or more)
P = Por	t		= none		_	S	S = sump water (deck wash)	S = sump water (deck wash)
S = Sta	rboard	1	= negligible		_	0	O = offal, i.e. heads and guts	O = offal, i.e. heads and guts
R = Ster	rn	2	= intermittent		_	D	D = discards of whole fish	D = discards of whole fish
N = Nei	ther / none	3	= continuous					

Source: Ramm et al. (2015) and ACAP (2021).

Conclusions

- Tori lines, bird bafflers, cones, pinkie buoy
- Simultaneous use of multiple devices
- Device selection based on trial scope, feasibility, cost, vessel availability
- Reduce confounding effects
- Consider offal management
- Integrate trial of Dyneema with warp mitigation devices
- Collect abundance (proxy) and warp strike/capture data
- Modified DOC and ACAP data collection protocols
- Randomised approach

Acknowledgements

Workshop attendees

Darryl MacKenzie	Pro
Stefan Meyer	Pro
Rachel Hickcox	Pro
Tiffany Plencner	DC
lgor Debski	DC
Rosa Edwards	Fis
Graham Parker	DC
John Cleal	DC
Ben Leslie	DC
Richard Wells	Fis
Robert Win	Fis
Olivia Hamilton	Fis
John Richardson	Fis
Matthew Rolfe	Fis
Ionathon Barrington	Δι

oteus oteus oteus C sheries Inshore NZ DC; Parker Conservation DC; FV Management Services DC; Coastal-Equilibrium Ltd. sheries New Zealand; Resourcewise Ltd. sheries New Zealand sheries New Zealand sheries New Zealand sheries New Zealand

nathon Barrington Australian Department of Climate Change, Energy, the Environment and Water

References (see report for full list)

- Abraham, E. R., & Thompson, F. N. (2009). Warp strike in New Zealand trawl fisheries, 2004-05 to 2006-07. New Zealand Aquatic Environment and Biodiversity Report No. 33 (pp. 1–21). Ministry of Fisheries.
- Cleal, J., & Pierre, J. P. (2016). Development of bird baffler designs for offshore trawl vessels. Report Prepared for DOC Conservation Services Programme No. MIT2013-05 (pp. 1–23). Management Services Ltd.
- Cleal, J., Pierre, J. P., & Clement, G. (2012). Warp strike mitigation devices in use on trawlers > 28 m in length operating in New Zealand fisheries. Final Report Prepared for DOC Conservation Services Programme MIT2011/07 (pp. 1–50). Clement and Associates Ltd.
- Deepwater Group Ltd. (2018). Deepwater trawl seabirds operational procedures version 6.0 (pp. 1–23). Deepwater Group Ltd.
- Department of Conservation, & Fisheries New Zealand. (2019a). Mitigation standards to reduce the incidental captures of seabirds in New Zealand commercial fisheries <28 metre trawl (pp. 1–11).
- González-Zevallos, D., Yorio, P., & Caille, G. (2007). Seabird mortality at trawler warp cables and a proposed mitigation measure: A case of study in Golfo San Jorge, Patagonia, Argentina. Biological Conservation, 136(1), 108–116. https://doi.org/10.1016/j.biocon.2006.11.008
- Koopman, M., Boag, S., Tuck, G., Hudson, R., Knuckey, I., & Alderman, R. (2018). Industry-based development of effective new seabird mitigation devices in the southern Australian trawl fisheries. Endangered Species Research, 36, 197–211. https://doi.org/10.3354/esr00896
- Kuepfer, A. (2017). The warp deflector (pinkie system): Practical implications of a physical seabird bycatch mitigation device trialled in the Falkland Islands trawl fishery (pp. 1–13).
- Maree, B. A., Wanless, R. M., Fairweather, T. P., Sullivan, B. J., & Yates, O. (2014). Significant reductions in mortality of threatened seabirds in a South African trawl fishery. Animal Conservation, 17(6), 520–529. https://doi.org/10.1111/acv.12126
- Melvin, E. F., Asher, W. E., & Lim, A. (2016). Results of initial trials to determine if laser light can prevent seabird bycatch in North Pacific fisheries. Seventh Meeting of the Seabird Bycatch Working Group (pp. 1–16). Agreement on the Conservation of Albatrosses and Petrels.
- Melvin, E. F., Dietrich, K. S., Fitzgerald, S., & Cardoso, T. (2011). Reducing seabird strikes with trawl cables in the pollock catcher-processor fleet in the eastern Bering Sea. Polar Biology, 34(2), 215–226. https://doi.org/10.1007/s00300-010-0873-1
- Middleton, D. A. J., & Abraham, E. R. (2007). The efficacy of warp strike mitigation devices: Trials in the 2006 squid fishery. Report Prepared for the Ministry of Fisheries No. IPA2006-02 (pp. 1–66). Dragonfly.
- Parker, G. (2017). Stocktake of measures for mitigating the incidental capture of seabirds in New Zealand commercial fisheries. Report to Southern Seabird Solutions Trust. Parker Conservation.
- Parker, G. C., & Rexer-Huber, K. (2019). Characterisation and mitigation of protected species interactions in the inshore trawl fishery. Report Prepared for DOC Conservation Services Programme No. MIT2017-03 (pp. 1-45). Parker Conservation.
- Pierre, J., Gerner, M., & Penrose, L. (2014). Assessing the effectiveness of seabird mitigation devices in the trawl sectors of the Southern and Eastern Scalefish and Shark Fishery in Australia (pp. 1–28). Johanna Pierre Environmental Consulting Ltd.
- Rexer-Huber, K., & Parker, G. C. (2019). Characterising discharge management in small-vessel trawl and longline fisheries. Report Prepared for DOC Conservation Services Programme No. MIT2017-02 (pp. 1–44). Parker Conservation.
- Sacchi, J. (2021). Overview of mitigation measures to reduce the incidental catch of vulnerable species in fisheries. Studies and Reviews No. 100. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb5049en
- Snell, K. R. S., Brickle, P., & Wolfaardt, A. C. (2012). Refining Tori lines to further reduce seabird mortality associated with demersal trawlers in the South Atlantic. Polar Biology, 35(5), 677–687. https://doi.org/10.1007/s00300-011-1113-z
- Sullivan, B. J., Brickle, P., Reid, T. A., Bone, D. G., & Middleton, D. A. J. (2006). Mitigation of seabird mortality on factory trawlers: Trials of three devices to reduce warp cable strikes. Polar Biology, 29(9), 745–753. https://doi.org/10.1007/s00300-006-0111-z
- Tamini, L. L., Chavez, L. N., Góngora, M. E., Yates, O., Rabuffetti, F. L., & Sullivan, B. (2015). Estimating mortality of black-browed albatross (*Thalassarche melanophris*, Temminck, 1828) and other seabirds in the Argentinean factory trawl fleet and the use of bird-scaring lines as a mitigation measure. Polar Biology, 38(11), 1867–1879. https://doi.org/10.1007/s00300-015-1747-3